
Logic
Programming
with Prolog

Max Bramer

Second Edition

Logic Programming with Prolog

123

Max Bramer

Logic Programming
with Prolog

Second Edition

Max Bramer
School of Computing
University of Portsmouth
Portsmouth, UK

ISBN 978-1-4471-5486-0 ISBN 978-1-4471-5487-7 (eBook)
DOI 10.1007/978-1-4471-5487-7
Springer London Heidelberg New York Dordrecht

© Springer-Verlag London 2005, 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Contents

Introduction . ix

1 Getting Started . 1
1.1 Starting Prolog . 1
1.2 Prolog Programs. 3
1.3 Data Objects in Prolog: Prolog Terms. 8
Practical Exercise 1 . 11

2 Clauses and Predicates . 13
2.1 Clauses . 13
2.2 Predicates . 15
2.3 Loading Clauses . 18
2.4 Variables . 22
Practical Exercise 2 . 27

3 Satisfying Goals . 29
3.1 Introduction . 29
3.2 Unification . 31

3.2.1 Unifying Call Terms . 31
3.3 Evaluating Goals . 35
3.4 Backtracking. 39
3.5 Satisfying Goals: A Summary . 48
3.6 Removing Common Variables . 50
3.7 A Note on Declarative Programming. 51
3.8 Important Note on User-Controlled Backtracking 52
Practical Exercise 3 . 53

4 Operators and Arithmetic . 55
4.1 Operators . 55
4.2 Arithmetic . 58
4.3 Equality Operators . 61

v

vi Contents

4.4 Logical Operators . 64
4.5 More About Operator Precedence . 65
Practical Exercise 4 . 68

5 Input and Output . 69
5.1 Introduction . 69
5.2 Outputting Terms . 69
5.3 Inputting Terms. 71
5.4 Input and Output Using Characters. 72
5.5 Outputting Characters . 72
5.6 Inputting Characters . 73
5.7 Using Characters: Examples . 74
5.8 Input and Output Using Files . 76
5.9 File Output: Changing the Current Output Stream 77
5.10 File Input: Changing the Current Input Stream . 77

5.10.1 Reading from Files: End of File . 78
5.10.2 Reading from Files: End of Record . 78

5.11 Using Files: Examples . 79
Practical Exercise 5 . 81

6 Loops . 85
6.1 Introduction . 85
6.2 Looping a Fixed Number of Times . 85
6.3 Looping Until a Condition Is Satisfied . 89

6.3.1 Recursion . 89
6.3.2 Using the 'repeat' Predicate. 91

6.4 Backtracking with Failure . 94
6.4.1 Searching the Prolog Database. 94
6.4.2 Finding Multiple Solutions . 96

Practical Exercise 6 . 97

7 Preventing Backtracking . 99
7.1 Introduction . 99
7.2 The Cut Predicate . 99
7.3 Cut with Failure . 105
Practical Exercise 7 . 107

8 Changing the Prolog Database . 109
8.1 Changing the Database: Adding and Deleting Clauses 109
8.2 Adding Clauses . 110
8.3 Deleting Clauses. 111
8.4 Changing the Database: Example . 112
8.5 Maintaining a Database of Facts. 114
Practical Exercise 8 . 117

9 List Processing . 119
9.1 Representing Data as Lists . 119
9.2 Notation for Lists . 120

Contents vii

9.3 Decomposing a List . 122
9.4 Built-in Predicate: member . 124
9.5 Built-in Predicate: length . 125
9.6 Built-in Predicate: reverse . 126
9.7 Built-in Predicate: append . 127
9.8 List Processing: Examples . 128
9.9 Using findall/3 to Create a List . 132
Practical Exercise 9 . 134

10 String Processing . 137
10.1 Converting Strings of Characters To and From Lists 137
10.2 Joining Two Strings . 138
10.3 Trimming a String . 139
10.4 Inputting a String of Characters . 141
10.5 Searching a String . 142
10.6 Dividing a String into Its Component Parts . 144
Practical Exercise 10. 146

11 More Advanced Features . 147
11.1 Introduction . 147
11.2 Extending Prolog: Arithmetic . 147
11.3 Extending Prolog: Operations on Strings . 153
11.4 Extending Prolog: Sets . 155
11.5 Processing Terms . 157
Practical Exercise 11. 163

12 Using Grammar Rules to Analyse English Sentences 165
12.1 Introduction . 165
12.2 Parsing English Sentences . 165
12.3 Converting Sentences to List Form . 181
Practical Exercise 12. 186

13 Prolog in Action . 187
13.1 Implementing an Artificial Language . 187
13.2 Developing an Expert System Shell . 200
Practical Exercise 13. 210

Appendix 1 Built-in Predicates . 211

Appendix 2 Built-in Operators . 217

Appendix 3 Specimen Solutions to Practical Exercises . 221

Appendix 4 Glossary . 243

Index . 251

Introduction

Logic Programming is the name given to a distinctive style of programming, very
different from that of conventional programming languages such as CCC and Java.
Fans of Logic Programming would say that 'different' means clearer, simpler and
generally better!

Although there are other Logic Programming languages, by far the most widely
used is Prolog. The name stands for Programming in Logic. This book teaches the
techniques of Logic Programming through the Prolog language. Prolog is based
on research by computer scientists in Europe in the 1960s and 1970s, notably at
the Universities of Marseilles, London and Edinburgh. The first implementation
was at the University of Marseilles in the early 1970s. Further development at the
University of Edinburgh led to a de facto standard version, now known as Edin-
burgh Prolog. Prolog has been widely used for developing complex applications,
especially in the field of Artificial Intelligence. Although it is a general-purpose
language, its main strengths are for symbolic rather than for numerical computation.

The developers of the language were researchers working on automating math-
ematical theorem proving. This field is often known as computational logic. But if
you are not a Computer Scientist, a logician or a mathematician do not let this deter
you! This book is aimed at the 99.9 % of the population who are none of these.
Those who are, already have a number of excellent textbooks from which to choose.

The idea that the methods developed by computational logicians could be used as
the basis for a powerful general purpose programming language was revolutionary
30 years ago. Unfortunately most other programming languages have not yet
caught up.

The most striking feature of Prolog for the newcomer is how much simpler
the programs look than in other languages. Many language designers started out
with good intentions but could not resist, or perhaps could not avoid, making their
creations over elaborate. In some languages even writing the customary test program
to print out the words Hello World! to the user's screen is hard work. All the user
has to do in Prolog is to enter write('Hello World!').

Traditional programming languages have one feature in common. They all
contain a series of instructions that are to be performed ('executed') one after another.

ix

x Introduction

This style of programming is called procedural. It corresponds closely to the way
computers are generally built. This is a tempting approach that has been used since
the 1950s but is ultimately flawed. The way users write programs should depend as
little as possible on how the underlying machine was built and as much as possible
on what the user is trying to do. In just the same way, the facilities I use when I
drive my car should depend as little as possible on how the engine was designed
or the carburettor works. I want all that level of detail hidden from me, although in
practice I understand that it may not be completely possible to ignore it.

Prolog programs are often described as declarative, although they unavoidably
also have a procedural element. Programs are based on the techniques developed
by logicians to form valid conclusions from available evidence. There are only two
components to any program: facts and rules. The Prolog system reads in the program
and simply stores it. The user then types in a series of questions, known as queries,
which the system answers using the facts and rules available to it. This is a simple
example, a series of queries and answers about animals. The program consists of
just seven lines (blank lines are ignored).

dog(fido).
dog(rover).
dog(henry).
cat(felix).
cat(michael).
cat(jane).
animal(X):-dog(X).

This program is not too hard to decipher. The first three lines are facts, with the
obvious interpretation that fido, rover and henry are all dogs. The next three facts
say that felix, michael and jane are all cats.

The final line is a rule saying that anything (let us call it X) is an animal if it
is a dog. Cat lovers may feel that cats can also claim to be called animals, but the
program is silent about this.

Having loaded the program, the user is then faced with the two character symbol
?- which is called the system prompt. To check whether fido is a dog all that is
necessary is to type the query dog(fido) followed by a full stop and press the 'return'
key, which indicates to the system that a response is needed. This gives the complete
dialogue:

?- dog(fido).
true.

The user can enter a series of queries at the prompt, asking for further
information.

Introduction xi

?-dog(jane). [Is jane a dog? No - a cat]
false.

?- animal(fido). [Is fido an animal?]
true. [yes - because it is a dog and any dog is an animal]

?- dog(X). [Is it possible to find anything, let us call it X, that is a dog?]

X D fido; [All 3 possible answers are provided]
X D rover;
X D henry

?-animal(felix). [felix is a cat and so does not qualify as an animal, as far as the
program is concerned]

false.

Although straightforward, this example shows the two components of any Prolog
program, rules and facts, and also the use of queries that make Prolog search through
its facts and rules to work out the answer. Determining that fido is an animal involves
a very simple form of logical reasoning:

GIVEN THAT
any X is an animal if it is a dog

AND
fido is a dog

DEDUCE
fido must be an animal

This type of reasoning is fundamental to theorem proving in Mathematics and to
writing programs in Prolog.

Even very simple queries such as:

?-dog(fido).

can be looked at as asking the Prolog system to prove something, in this case that
fido is a dog. In the simplest cases it can do so simply by finding a fact such as
dog(fido) that it has been given. The system answers 'true' to indicate that this
simple 'theorem' has been proved.

xii Introduction

You have now seen all three elements needed for logic programming in Prolog:
facts, rules and queries. There are no others. Everything else is built from them.

A word of warning is necessary at this stage. It is easy for the newcomer to
get started with Prolog, but do not be fooled by these examples into thinking
that Prolog is only capable of handling simple (Mickey Mouse?) problems. By
putting these very basic building blocks together Prolog provides a very powerful
facility for building programs to solve complex problems, especially ones involving
reasoning, but all Prolog programs are simple in form and are soundly based on the
mathematical idea of proving results from the facts and rules available.

Prolog has been used for a wide variety of applications. Many of these are in
Mathematics and Logic but many are not. Some examples of the second type of
application are

• programs for processing a 'natural language' text, to answer questions about its
meaning, translate it to another language etc.

• advisory systems for legal applications
• applications for training
• maintaining databases for the Human Genome project
• a personnel system for a multi-national computer company
• automatic story generation
• analysing and measuring 'social networks'
• a software engineering platform for supporting the development of complex

software systems
• automatically generating legally correct licences and other documents in multiple

languages
• an electronic support system for doctors.

Prolog is also being used as the basis for a standard 'knowledge representation
language' for the Semantic Web – the next generation of internet technology.

Prolog is one of the principal languages used by researchers in Artificial
Intelligence, with many applications developed in that field, especially in the form
of Expert Systems – programs that 'reason out' the solution to complex problems
using rules.

Many textbooks on Prolog assume that you are an experienced programmer with
a strong background in Mathematics, Logic or Artificial Intelligence (preferably all
three). This book makes no such assumptions. It starts from scratch and aims to
take you to a point where you can write quite powerful programs in the language,
often with considerably fewer lines of program 'code' than would be needed in other
languages.

You do not need to be an experienced programmer to learn Prolog. Some initial
familiarity with basic computing concepts such as program, variable, constant and
function would make it easier to achieve, but paradoxically too much experience of
writing programs in other languages may make the task harder – it may be necessary
to unlearn bad habits of thinking learnt elsewhere.

Introduction xiii

Some Technical Details

Experienced programmers will search this book in vain for such standard language
features as variable declarations, subroutines, methods, for loops, while loops or
assignment statements. (If you don't know what these terms mean, don't worry –
you will not be needing them.)

On the other hand experienced readers may like to know that Prolog has a
straightforward uniform syntax, programs that are equivalent to a database of facts
and rules, a built-in theorem prover with automatic backtracking, list processing,
recursion and facilities for modifying programs (or databases) at run-time. (You
probably will not know what most of these mean either – but you will be using all
of them by the end of this book.)

Prolog lends itself to a style of programming making particular use of two
powerful techniques: recursion and list processing. In many cases algorithms that
would require substantial amounts of coding in other languages can be implemented
in a few lines in Prolog.

There are many versions of Prolog available for PC, Macintosh and Unix
systems, including versions for Microsoft Windows, to link Prolog to an Oracle
relational database and for use with 'object-oriented' program design. These range
from commercial systems with many features to public domain and 'freeware'
versions. Some of these are listed (in alphabetical order) below, together with web
addresses at which more information can be found.

• Amzi! Prolog
http://www.amzi.com/products/prolog_products.htm

• B-Prolog
http://www.probp.com/

• Ciao Prolog
http://clip.dia.fi.upm.es/Software/Ciao/

• GNU Prolog
http://gnu-prolog.inria.fr/

• Logic Programming Associates Prolog (versions for Windows, DOS and Macin-
tosh)
http://www.lpa.co.uk

• PD Prolog (a public domain version for MS-DOS only)
http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/prolog/
pdprolog/0.html

• SICStus Prolog
http://www.sics.se/isl/sicstuswww/site/index.html

• SWI Prolog (public domain versions for Windows, Linux and Macintosh)
http://www.swi-prolog.org/

• Turbo Prolog (an old version that only runs in MS-DOS)
http://www.fraber.de/university/prolog/tprolog.html

http://www.amzi.com/products/prolog_products.htm
http://www.probp.com/
http://clip.dia.fi.upm.es/Software/Ciao/
http://gnu-prolog.inria.fr/
http://www.lpa.co.uk
http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/prolog/pdprolog/0.html
http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/impl/prolog/pdprolog/0.html
http://www.sics.se/isl/sicstuswww/site/index.html
http://www.swi-prolog.org/
http://www.fraber.de/university/prolog/tprolog.html

xiv Introduction

• Visual Prolog
http://www.visual-prolog.com/

• W-Prolog (a Prolog-like language that runs in a web browser)
http://waitaki.otago.ac.nz/~michael/wp/

• YAP Prolog
http://www.ncc.up.pt/~vsc/Yap/

The programs in this book are all written using the standard 'Edinburgh syntax'
and should run unchanged in virtually any version of Prolog you encounter
(unfortunately, finding occasional subtle differences between implementations is
one of the occupational hazards of learning any programming language). Features
such as graphical interfaces, links to external databases etc. have deliberately not
been included, as these generally vary from one implementation to another. All
the examples given have been tested using version 6.2.6 of SWI-Prolog, a popular
public-domain version of the language which is available on a range of platforms.

This second edition has been expanded by the addition of two further chapters
illustrating the use of grammar rules to analyse English sentences and the use of
Prolog for Artificial Intelligence applications.

Each chapter has self-assessment exercises to enable you to check your progress.
A full glossary of the technical terms used completes the book.

Max Bramer
Emeritus Professor of Information Technology

University of Portsmouth, Portsmouth, UK
October 2013

http://www.visual-prolog.com/
http://waitaki.otago.ac.nz/~michael/wp/
http://www.ncc.up.pt/~vsc/Yap/

Chapter 1
Getting Started

Chapter Aims
After reading this chapter you should be able to:

• Write and load a simple Prolog program
• Enter goals at the Prolog system prompt
• Understand the basic terminology of the Prolog language
• Distinguish between different types of term (data objects).

1.1 Starting Prolog

Starting the Prolog system is usually straightforward, but the precise details will
vary from one version to another. Consult the documentation if necessary. Starting
Prolog will generally produce a number of lines of headings followed by a line
containing just

?-

This is the system prompt. (In some versions of Prolog a slightly different combina-
tion of characters may be used.)

The prompt indicates that the Prolog system is ready for the user to enter a
sequence of one or more goals, which must be terminated by a full stop, for example:

?- write('Hello World'),nl,write('Welcome to Prolog'),nl.

nl stands for 'start a new line', as will be explained later. Like all other user input,
the above line does not have any effect until the 'return' key is pressed.

Doing so produces the output

Hello World
Welcome to Prolog
true.

followed by a further system prompt ?-.

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__1,
© Springer-Verlag London 2013

1

2 1 Getting Started

In this book a sequence of goals entered by the user will generally be shown
preceded by the ?- prompt. The prompt must not be typed by the user. It is generated
automatically by the Prolog system to show that it is ready to receive a sequence of
goals.

In the above example, the user has entered a sequence of four goals: write('Hello
World'), nl (twice) and write('Welcome to Prolog'). The commas separating the
goals signify 'and'.

In order for the sequence of goals

write('Hello World'),nl,write('Welcome to Prolog'),nl

to succeed each of the following goals has to succeed in order:

write('Hello World')

Hello World has to be displayed on the user's screen

nl

a new line has to be output to the user's screen

write('Welcome to Prolog')

Welcome to Prolog has to be displayed on the user's screen

nl

A new line has to be output to the user's screen.
The Prolog system can achieve all these goals simply by outputting lines of text

to the user's screen. It does so and then outputs true to indicate that the sequence of
goals has succeeded.

From the system's point of view, the important issue is whether or not the
sequence of goals entered by the user succeeds. The generation of output to the
screen is considered much less important and is described as (merely) a side effect
of evaluating the goals write('Hello World') etc.

The meanings of write and nl are pre-defined by the Prolog system. They are
known as built-in predicates, sometimes abbreviated to BIPs.

Two other built-in predicates that are provided as standard in almost all versions
of Prolog are halt and statistics.

?-halt.

causes the Prolog system to terminate.

?- statistics.

causes system statistics (of value mainly to more experienced users) such as the
following to be generated.

0.250 seconds cpu time for 61,957 inferences
4,179 atoms, 2,858 functors, 1,936 predicates, 36 modules, 62,926 VM-codes

1.2 Prolog Programs 3

1 garbage collections gained 14,448 bytes in 0.000 seconds.
Stack shifts: 2 local, 1 global, 1 trail in -0.000 seconds.
true.

Note that this output ends with the word true, signifying that the goal has
succeeded, as statistics, halt and many other built-in predicates always do. Their
value lies in the side effects (generating statistics etc.) produced when they are
evaluated.

A sequence of one or more goals entered by the user at the prompt is often called
a query. We will generally use the term 'sequence of goals' in this book.

1.2 Prolog Programs

Entering a goal or a sequence of goals at the system prompt using only built-in
predicates would be of little value in itself. The normal way of working is for the
user to load a program written in the Prolog language and then enter a sequence
of one or more goals at the prompt, or possibly several sequences in succession, to
make use of the information that has been loaded into the database.

The simplest (and most usual) way to create a Prolog program is to type it into a
text editor and save it as a text file, say prog1.pl.

This is a simple example of a Prolog program. It has three components, known
as clauses, each terminated by a full stop. Note the use of blank lines to improve
readability – they are ignored.

dog(fido).
cat(felix).
animal(X):-dog(X).

The program can then be loaded for use by the Prolog system using the built-in
predicate consult.

?-consult('prog1.pl').

Provided that the file prog1.pl exists and the program is syntactically correct, i.e.
contains valid clauses, the goal will succeed and as a side effect produce one or
more lines of output to confirm that the program has been read correctly, e.g.

?-
% prog1.pl compiled 0.02 sec.
true.
?-

4 1 Getting Started

If the Prolog system has a graphical user interface, there will probably be a 'Load'
or 'Consult' option provided on a menu as an alternative to using the consult
predicate. These and other menu options such as 'Exit' are not a standard part
of the Prolog language and will not be described in this book.

Loading a program simply causes the clauses to be placed in a storage area called
the Prolog database. Entering a sequence of one or more goals in response to the
system prompt causes Prolog to search for and use the clauses necessary to evaluate
the goal(s). Once placed in the database the clauses generally remain there until
the user exits from the Prolog system and so can be used to evaluate further goals
entered by the user.

Terminology

In the program above the three lines:

dog(fido).
cat(felix).
animal(X):-dog(X).

are all clauses. Each clause is terminated by a full stop. Apart from comments and
blank lines, Prolog programs consist only of a sequence of clauses. All clauses are
either facts or rules.

dog(fido) and cat(felix) are examples of facts. They can be interpreted in a
natural way as meaning 'fido is a dog' and 'felix is a cat'.

dog is called a predicate. It has one argument, the word fido enclosed in (). fido
is called an atom (meaning a constant which is not a number).

The final line of the program

animal(X):-dog(X).

is a rule. The :- character (colon and hyphen) can be read as 'if'. X is called a
variable. The meaning of a variable used in a rule or fact is described in Chapter
2. In this context X represents any value, as long as it is the same value both times.
The rule can be read in a natural way as X is an animal if X is a dog (for any X).

From the above clauses it is simple (for humans) to deduce that fido is an animal.
Prolog can also make such deductions:

?- animal(fido).
true.

However there is no evidence to imply that felix is an animal:

http://dx.doi.org/10.1007/978-1-4471-5487-7_2

1.2 Prolog Programs 5

?- animal(felix).
false.

More Terminology

We say that a goal succeeds or fails, or alternatively that it is satisfied or cannot be
satisfied. The term evaluating a goal is used to mean determining whether or not
it is satisfied. Equivalently, we can say that a goal evaluates to true (i.e. succeeds)
or false (i.e. fails). This all fits in well with the everyday definition of a goal as
'something to be achieved'.

Note that sometimes a goal entered by the user can be interpreted as a command,
e.g.

?-halt.

At other times it can be regarded as a question, e.g.

?- animal(fido).
true.

Here is another program about animals. This one comprises eight clauses. All
text between /* and */ is taken to be a comment and ignored.

/* Animals Program 1 */
dog(fido).
cat(mary). dog(rover).
dog(tom). cat(harry).
dog(henry).
cat(bill). cat(steve).
/* Apart from comments and blank lines, which are
ignored, Prolog programs consist of a number of
clauses. A clause is always terminated by a full
stop. It may run over more than one line, or there
may be several on the same line, separated by at
least one space. There are two types of clause:
facts and rules. dog(tom) is an example of a fact */

There are four clauses for predicate dog and four for predicate cat. We say that
the program comprises four clauses defining the dog predicate and four defining the
cat predicate.

Assuming that the program has been saved in a text file 'animals1.pl', the output
generated by loading the program and entering a sequence of goals at the system
prompt is given below.

6 1 Getting Started

?-consult('animals1.pl'). System prompt
% animals1.pl compiled 0.00 sec. animals1.pl loaded using consult
true.

?-dog(fido).
true.

?-dog(daisy).
false.

?- dog(X).
X D fido pauses – user presses return key

?- dog(Y).
Y D fido ; pauses – user presses ;
Y D rover ; pauses – user presses ;
Y D tom ; pauses – user presses ;
Y D henry No pause – goes on to next line

?- cat(X).
X D mary ; pauses – user presses ;
X D harry pauses – user presses return

?- listing(dog). List all the clauses defining predicate dog

dog(fido).
dog(rover).
dog(tom).
dog(henry).
true.
?-

There are several new features of Prolog introduced in this example. The query

?- dog(X).

(a single goal) means 'find a value of X for which the goal dog(X) is satisfied', or
effectively 'find a value of X which is the name of a dog'. Prolog answers

XDfido

1.2 Prolog Programs 7

However there are other possible answers (rover, tom and henry). Because of
this Prolog pauses and waits for the user to press the 'return' key before it outputs
the system prompt ?-.

The next query entered is

?- dog(Y).

This is essentially the same query as before. It is unimportant which variable (X
or Y) is used. The query means 'find a value of Y which is the name of a dog'. Prolog
answers

Y D fido

and again pauses. This time the user presses the ; (semicolon) key. Prolog now looks
for an alternative solution or, more precisely, an alternative value of Y that satisfies
the goal dog(Y). It replies

Y D rover

It pauses again and the user again presses the ; key. A further solution is given

Y D tom

Prolog pauses again. The user again presses the ; key, producing a further solution

Y D henry

This time there are no more solutions available and Prolog recognises this by not
pausing, but immediately going on to output the system prompt ?-.

The process of finding alternative ways of satisfying a goal by entering a
semicolon at the system prompt is known as backtracking, or more precisely 'forcing
the Prolog system to backtrack'. Backtracking will be discussed in more detail in
Chapter 3.

The example also introduces a new built-in predicate. Entering the goal

?-listing(dog).

causes Prolog to list all four clauses defining predicate dog, in the order in which
they were loaded into the database (which is the same as the order in which they
appeared in file animals1.pl).

The next example shows more about the use of variables in queries. The sequence
of goals

?-cat(X),dog(Y).

gives all possible combinations of a dog and a cat.

?-cat(X),dog(Y).
X D mary ,
Y D fido ;

X D mary ,

http://dx.doi.org/10.1007/978-1-4471-5487-7_3

8 1 Getting Started

Y D rover ;

X D mary ,
Y D tom ;

X D mary ,
Y D henry ;

etc.

By contrast, the sequence of goals

?-cat(X),dog(X).

gives all animals which are both a cat and a dog (there are no such animals in the
database). Although X stands for 'any value' in both cat(X) and dog(X) they must
both be the same value.

?- cat(X),dog(X).
false.

1.3 Data Objects in Prolog: Prolog Terms

The data objects in Prolog are called terms. Examples of terms that have been used
in Prolog programs so far in this book are fido, dog(henry), X and cat(X).

There are several different types of term, which are listed below.

(1) Numbers

All versions of Prolog allow the use of integers (whole numbers). They are written
as any sequence of numerals from 0 to 9, optionally preceded by a C or - sign, for
example:

623
-47
C5
025

Most versions of Prolog also allow the use of numbers with decimal points. They
are written in the same way as integers, but contain a single decimal point, anywhere
except before an optional C or - sign, e.g.

6.43
-.245
C256.

(2) Atoms

Atoms are constants that do not have numerical values. There are three ways in
which atoms can be written.

1.3 Data Objects in Prolog: Prolog Terms 9

(a) Any sequence of one or more letters (upper or lower case), numerals and
underscores, beginning with a lower case letter, e.g.

john
today_is_Tuesday
fred_jones
a32_BCD

but not

Today
today-is-Tuesday
32abc

(b) Any sequence of characters enclosed in single quotes, including spaces and
upper case letters, e.g.

'Today is Tuesday'
'today-is-Tuesday'
'32abc'

(c) Any sequence of one or more special characters from a list that includes the
following C - * / > < D & # @:

Examples

CCC
>D
>

C–

(3) Variables

In a query a variable is a name used to stand for a term that is to be determined, e.g.
variable X may stand for atom dog, the number 12.3, or a compound term or a list
(both to be described below). The meaning of a variable when used in a rule or fact
is described in Chapter 2.

The name of a variable is denoted by any sequence of one or more letters (upper
or lower case), numerals and underscores, beginning with an upper case letter or
underscore, e.g.

X
Author
Person_A
_123A

but not

45_ABC
Person-A
author

http://dx.doi.org/10.1007/978-1-4471-5487-7_2

10 1 Getting Started

Note: The variable _ which consists of just a single underscore is known as the
anonymous variable and is reserved for a special purpose (see Chapter 2).

(4) Compound Terms

Compound terms are of fundamental importance in writing Prolog programs.
A compound term is a structured data type that begins with an atom, known here as
a functor. The functor is followed by a sequence of one or more arguments, which
are enclosed in brackets and separated by commas. The general form is

functor(t1,t2, : : : ,tn) n�l

If you are familiar with other programming languages, you may find it helpful to
think of a compound term as representing a record structure. The functor represents
the name of the record, while the arguments represent the record fields.

The number of arguments a compound term has is called its arity. Some examples
of compound terms are:

likes(paul,prolog)
read(X)
dog(henry)
cat(X)
>(3,2)
person('john smith',32,doctor,london)

Each argument of a compound term must be a term, which can be of any kind
including a compound term. Thus some more complex examples of compound terms
are:

likes(dog(henry),Y)
pred3(alpha,beta,gamma,Q)
pred(A,B,likes(X,Y),-4,pred2(3,pred3(alpha,beta,gamma,Q)))

(5) Lists

A list is often considered to be a special type of compound term, but in this book it
will be treated as a separate type of data object.

Lists are written as an unlimited number of arguments (known as list elements)
enclosed in square brackets and separated by commas, e.g. [dog,cat,fish,man].
Unlike the arity of a compound term, the number of elements a list has does not
have to be decided in advance when a program is written, as will be explained in
Chapter 9. This can be extremely useful.

At this stage, all that it is necessary to know is that an element of a list may be a
term of any kind, including a compound term or another list, e.g.

[dog,cat,y,mypred(A,b,c),[p,q,R],z]
[[john,28],[mary,56,teacher],robert,parent(victoria,albert),[a,b,[c,d,e],f],29]
[[portsmouth,edinburgh,london,dover],[portsmouth,london,edinburgh],[glasgow]]

A list with no elements is known as the empty list. It is written as [].

http://dx.doi.org/10.1007/978-1-4471-5487-7_2
http://dx.doi.org/10.1007/978-1-4471-5487-7_9

Practical Exercise 1 11

(6) Other Types of Term

Some dialects of Prolog allow other types of term, e.g. character strings. These will
not be described in this book. However, it is possible to use atoms to perform a
rudimentary type of string processing (see Chapter 10).

Atoms and compound terms have a special importance in Prolog clauses and are
known collectively as call terms. We will return to this in future chapters.

Chapter Summary

This chapter shows how to write simple Prolog programs, load them into the
Prolog database and enter goals that can be evaluated using them. It also introduces
basic terminology and the different types of data object (terms).

Practical Exercise 1

Specimen solutions to all the Practical Exercises are given in Appendix 3.

(1) Create a disk file animals.pl containing Animals Program 1 (leaving out the
comments). Start up Prolog and load your program.

Test your program with the queries given in the text and some others of your own.

(2) Write a program to put facts indicating that a lion, a tiger and a cow are animals
into the database and to record that two of them (lion and tiger) are carnivores.

Save your program to a disk file and load it. Check that the database is correct using
listing.

Enter goals to test whether:

(a) there is such an animal as a tiger in the database
(b) a cow and a tiger are both in the database (a conjunction of two goals)
(c) a lion is an animal and also a carnivore
(d) a cow is an animal and also a carnivore.

(3) Try to predict what Prolog will output in response to each of the following goals,
and then try them.

?-write(hello).
?-write(Hello).
?-write('Hello!').
?-write('Hello!'),nl.
?-100D100.
?-100D1000/10.
?-100 is 1000/10.
?-1000 is 100*10.
?-2 is (5C7)/6.
?-74 is (5C7)*6.

http://dx.doi.org/10.1007/978-1-4471-5487-7_10
http://dx.doi.org/10.1007/978-1-4471-5487-7_BM1

Chapter 2
Clauses and Predicates

Chapter Aims

After reading this chapter you should be able to:

• Identify the components of rules and facts
• Explain the meaning of the term predicate
• Make correct use of variables in goals and clauses.

2.1 Clauses

Apart from comments and blank lines, which are ignored, a Prolog program consists
of a succession of clauses. A clause can run over more than one line or there may
be several on the same line. A clause is terminated by a dot character, followed by
at least one 'white space' character, e.g. a space or a carriage return.

There are two types of clause: facts and rules. Facts are of the form

head.

head is called the head of the clause. It takes the same form as a goal entered by
the user at the prompt, i.e. it must be an atom or a compound term. Atoms and
compound terms are known collectively as call terms. The significance of call terms
will be explained in Chapter 3.

Some examples of facts are:

christmas.
likes(john,mary).
likes(X,prolog).
dog(fido).

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__2,
© Springer-Verlag London 2013

13

http://dx.doi.org/10.1007/978-1-4471-5487-7_3

14 2 Clauses and Predicates

Rules are of the form:

head:-t1,t2, : : : , tk. (k>D1)

head is called the head of the clause (or the head of the rule) and, as for facts,
must be a call term, i.e. an atom or a compound term.

:- is called the neck of the clause (or the 'neck operator'). It is read as 'if'.
t1,t2, : : : , tk is called the body of the clause (or the body of the rule). It specifies

the conditions that must be met in order for the conclusion, represented by the head,
to be satisfied. The body consists of one or more components, separated by commas.
The components are goals and the commas are read as 'and'.

Each goal must be a call term, i.e. an atom or a compound term. A rule can be
read as 'head is true if t1, t2, : : : , tk are all true'.

The head of a rule can also be viewed as a goal with the components of its body
viewed as subgoals. Thus another reading of a rule is 'to achieve goal head, it is
necessary to achieve subgoals t1, t2, : : : , tk in turn'.

Some examples of rules are:

large_animal(X):-animal(X),large(X).
grandparent(X,Y):-father(X,Z),parent(Z,Y).
go:-write('hello world'),nl.

Here is another version of the animals program, which includes both facts and
rules.

/* Animals Program 2*/
dog(fido). large(fido).
cat(mary). large(mary).
dog(rover). dog(jane).
dog(tom). large(tom). cat(harry).
dog(fred). dog(henry).
cat(bill). cat(steve).
small(henry). large(fred).
large(steve). large(jim).
large(mike).
large_animal(X):- dog(X),large(X).
large_animal(Z):- cat(Z),large(Z).

fido, mary, jane etc. are atoms, i.e. constants, indicated by their initial lower case
letters. X and Y are variables, indicated by their initial capital letters.

The first 18 clauses are facts. The final two clauses are rules.

2.2 Predicates 15

2.2 Predicates

The following simple program has five clauses. For each of the first three clauses,
the head is a compound term with functor parent and arity 2 (i.e. two arguments).

parent(victoria,albert).
parent(X,Y):-father(X,Y).
parent(X,Y):-mother(X,Y).
father(john,henry).
mother(jane,henry).

It is possible (although likely to cause confusion) for the program also to include
clauses for which the head has functor parent, but a different arity, for example

parent(john).
parent(X):-son(X,Y).
/* X is a parent if X has a son Y */

It is also possible for parent to be used as an atom in the same program, for
example in the fact

animal(parent).

but this too is likely to cause confusion.
All the clauses (facts and rules) for which the head has a given combination of

functor and arity comprise a definition of a predicate. The clauses do not have to
appear as consecutive lines of a program but it makes programs easier to read if
they do.

The clauses given above define two predicates with the name parent, one with
arity two and the other with arity one. These can be written (in textbooks, reference
manuals etc., not in programs) as parent/2 and parent/1, to distinguish between
them. When there is no risk of ambiguity, it is customary to refer to a predicate as
just dog, large_animal etc.

Note that a query such as

?-listing(mypred).

gives a listing of all the clauses for predicate mypred whatever the arity.
An atom appearing as a fact or as the head of a rule, e.g.

16 2 Clauses and Predicates

christmas.
go:-parent(john,B),

write('john has a child named '),
write(B),nl.

can be regarded as a predicate with no arguments, e.g. go/0.
There are five predicates defined in Animals Program 2: dog/1, cat/1, large/1,

small/1 and large_animal/1. The first 18 clauses are facts defining the predicates
dog/1, cat/1, large/1 and small/1 (6, 4, 7 and 1 clauses, respectively). The final two
clauses are rules, which together define the predicate large_animal/1.

Declarative and Procedural Interpretations of Rules

Rules have both a declarative and a procedural interpretation. For example, the
declarative interpretation of the rule

chases(X,Y):-dog(X),cat(Y),write(X),
write(' chases '),write(Y),nl.

is: 'chases (X,Y) is true if dog(X) is true and cat(Y) is true and write(X) is true,
etc.'

The procedural interpretation is 'To satisfy chases(X,Y), first satisfy dog(X), then
satisfy cat(Y), then satisfy write(X), etc.'

Facts are generally interpreted declaratively, e.g.

dog(fido).

is read as 'fido is a dog'.
The order of the clauses defining a predicate and the order of the goals in the body

of each rule are irrelevant to the declarative interpretation but of vital importance to
the procedural interpretation and thus to determining whether or not the sequence
of goals entered by the user at the system prompt is satisfied. When evaluating a
goal, the clauses in the database are examined from top to bottom. Where necessary,
the goals in the body of a rule are examined from left to right. This topic will be
discussed in detail in Chapter 3.

A user's program comprises facts and rules that define new predicates. These are
called user-defined predicates. In addition there are standard predicates predefined
by the Prolog system. These are known as built-in predicates (BIPs) and may
not be redefined by a user program. Some examples are: write/1, nl/0, repeat/0,
member/2, append/3, consult/1, halt/0. Some BIPs are common to all versions of
Prolog. Others are version-dependent.

http://dx.doi.org/10.1007/978-1-4471-5487-7_3

2.2 Predicates 17

Two of the most commonly used built-in predicates are write/1 and nl/0.
The write/1 predicate takes a term as its argument, e.g.

write(hello)
write(X)
write('hello world')

Providing its argument is a valid term, the write predicate always succeeds and
as a side effect writes the value of the term to the user's screen. To be more precise
it is output to the current output stream, which by default will be assumed to be the
user's screen. Information about output to other devices is given in Chapter 5. If the
argument is a quoted atom, e.g. 'hello world', the quotes are not output.

The nl/0 predicate is an atom, i.e. a predicate that takes no arguments. The
predicate always succeeds and as a side effect starts a new line on the user's screen.

The name of a user-defined predicate (the functor) can be any atom, with a few
exceptions, except that you may not redefine any of the Prolog system's built-in
predicates. You are most unlikely to want to redefine the write/1 predicate by putting
a clause such as

write(27).

or

write(X):-dog(X).

in your programs, but if you do the system will give an error message such as 'illegal
attempt to redefine a built-in predicate'.

The most important built-in predicates are described in Appendix 1. Each version
of Prolog is likely to have others – sometimes many others – and if you accidentally
use one of the same name and arity for one of your own predicates you will get
an error message such as 'illegal attempt to redefine a built-in predicate' or 'no
permission to modify procedure', which can be very puzzling.

In some versions of Prolog it may be permitted to define a predicate with the
same functor and a different arity, e.g. write/3 but this is definitely best avoided.

Simplifying Entry of Goals

In developing or testing programs it can be tedious to enter repeatedly at the system
prompt a lengthy sequence of goals such as

?-dog(X),large(X),write(X),write(' is a large dog'),nl.

A commonly used programming technique is to define a predicate such as go/0
or start/0, with the above sequence of goals as the right-hand side of a rule, e.g.

http://dx.doi.org/10.1007/978-1-4471-5487-7_5
http://dx.doi.org/10.1007/978-1-4471-5487-7_BM1

18 2 Clauses and Predicates

go:-dog(X),large(X),write(X),
write(' is a large dog'),nl.

This enables goals entered at the prompt to be kept brief, e.g.

?-go.

Recursion

An important technique for defining predicates, which will be used frequently later
in this book, is to define them in terms of themselves. This is known as a recursive
definition. There are two forms of recursion.

(a) Direct recursion. Predicate pred1 is defined in terms of itself.
(b) Indirect recursion. Predicate pred1 is defined using pred2, which is defined

using pred3, : : : , which is defined using pred1.

The first form is more common. An example of it is

likes(john,X):-likes(X,Y),dog(Y).

which can be interpreted as 'john likes anyone who likes at least one dog'.

Predicates and Functions

The use of the term 'predicate' in Prolog is closely related to its use in mathematics.
Without going into technical details (this is not a book on mathematics) a predicate
can be thought of as a relationship between a number of values (its arguments) such
as likes(henry,mary) or XDY, which can be either true or false.

This contrasts with a function, such as 6C4, the square root of 64 or the first three
characters of 'hello world', which can evaluate to a number, a string of characters
or some other value as well as true and false. Prolog does not make use of functions
except in arithmetic expressions (see Chapter 4).

2.3 Loading Clauses

Using the built-in predicate consult/1 causes the clauses contained in a text file to
be loaded into the database as a side effect. A Prolog program is just a collection of
clauses (rules and facts) so we will refer to a file used this way as a program file.

A common method of program development is to load an entire program (set of
clauses) as a single file, test it, then make changes, save the changes in a new version
of the file, consult the file again to load the clauses from the new version of the file,
and so on until a 'perfect' version of the program is achieved.

http://dx.doi.org/10.1007/978-1-4471-5487-7_4

2.3 Loading Clauses 19

We will show how repeated use of consult/1 in this way works using a file that
contains only facts (not rules) in the interest of simplicity.

Say that file testfile.pl contains the lines

alpha.
beta.

dog(fido).
dog(misty).
dog(harry).

cat(jane).
cat(mary).

then the query

?-consult('testfile.pl').

puts all seven of the above clauses into the database.

If we now change file testfile.pl to

gamma.

dog(patch).

elephant(dumbo).
elephant(fred).

then after a further

?-consult('testfile.pl').

query the database contains the clauses

gamma.

dog(patch).

elephant(dumbo).
elephant(fred).

All the clauses placed in the database by the first consult have been removed and
have been replaced by the contents of the second version of testfile.pl. The two cat
clauses are amongst those removed, which may not have been the user's intention.

20 2 Clauses and Predicates

Consulting a file is done so often that there is a simplified notation available for it.

?-['testfile.pl'].

is equivalent to

?-consult('testfile.pl').

Filenames are considered to be relative to the directory from which Prolog started
up. To consult a file in another directory, the usual file naming conventions are
available, e.g.

?-consult('/mydir/testfile.pl').

or

?-['../../mydir/testfile.pl'].

Windows used are advised that the usual backslash character in file names should
be replaced by a forward slash.

It is sometimes preferable to break a program (set of clauses) into several files and
load them separately. The next example shows the effect of consulting files with
different names.

Suppose that the first and second versions of testfile.pl above are placed in two files
with different names, so that file testfile1.pl contains the lines

alpha.
beta.

dog(fido).
dog(misty).
dog(harry).

cat(jane).
cat(mary).

and testfile2. pl contains the lines

gamma.

dog(patch).

elephant(dumbo).
elephant(fred).

then the query

2.3 Loading Clauses 21

?-consult('testfile1.pl'), consult('testfile2.pl').

places the following clauses in the database

gamma.
alpha.
beta.

dog(patch).

cat(jane).
cat(mary).

elephant(dumbo).
elephant(fred).

We can see that

• The atom gamma from testfile2.pl has been added to the database to join the two
atoms already there from testfile1.pl.

• The two clauses for cat/1 loaded from testfile1.pl remain in the database.
• The two clauses for elephant/1 have been loaded into the database from

testfile2.pl.
• In the case of the dog/1 predicate, for which there are clauses in both files,

the effect of consulting them in the order given is that the three dog/1 clauses
in testfile1.pl have been deleted and replaced by the single dog/1 clause in
testfile2.pl.

The last of these may well not be what was intended. It also means that the queries

?-consult('testfile1.pl'), consult('testfile2.pl').

and

?-consult('testfile2.pl'), consult('testfile1.pl').

would give different results as far as the dog/1 predicate is concerned. It seems
a good practical policy when using multiple files to keep the predicates in them
separate.

The simplified notation can also be used when consulting multiple files, so for
example

?-['myfilea.pl', 'myfileb.pl', 'myfilec.pl'].

has the same effect as

?-consult('myfilea.pl'), consult('myfileb.pl'),consult('myfilec.pl').

22 2 Clauses and Predicates

2.4 Variables

Variables can be used in the head or body of a clause and in goals entered at the
system prompt. However, their interpretation depends on where they are used.

Variables in Goals

Variables in goals can be interpreted as meaning 'find values of the variables that
make the goal satisfied'. For example, the goal

?-large_animal(A).

can be read as 'find a value of A such that large_animal(A) is satisfied'.
A third version of the Animals Program is given below (only the clauses

additional to those in Animals Program 2 in Section 2.1 are shown).

/* Animals Program 3 */
/* As Animals Program 2 but with the additional
rules given below */
chases(X,Y):-
dog(X),cat(Y),
write(X),write(' chases '),write(Y),nl.

/* chases is a predicate with two arguments*/
go:-chases(A,B).
/* go is a predicate with no arguments */

A goal such as

?-chases(X,Y).

means find values of variables X and Y to satisfy chases(X,Y).
To do this, Prolog searches through all the clauses defining the predicate chases

(there is only one in this case) from top to bottom until a matching clause is found.
It then works through the goals in the body of that clause one by one, working from
left to right, attempting to satisfy each one in turn. This process is described in more
detail in Chapter 3.

The output produced by loading Animals Program 3 and entering some typical
goals at the prompt is as follows.

?-consult('animals3.pl'). System prompt
% animals3.pl compiled 0.02 sec. animals3.pl loaded

?- chases(X,Y). User backtracks to find first two solutions only.
fido chases mary
X D fido ,

http://dx.doi.org/10.1007/978-1-4471-5487-7_3

2.4 Variables 23

Y D mary ; Note use of write and nl predicates

fido chases harry
X D fido ,
Y D harry
?-chases(D,henry). Nothing chases henry
false.

?-go. Note that no variable values are output. (The output is from the write
and nl predicates, followed by the word 'true'.) In some versions of
Prolog, the user is given the opportunity to backtrack, as here. In
others they are not.

fido chases mary
true;
fido chases harry
true;
fido chases bill
true

It should be noted that there is nothing to prevent the same answer being
generated more than once by backtracking. For example if the program is

chases(fido,mary):-fchasesm.
chases(fido,john).
chases(fido,mary):-freallychasesm.
fchasesm.
freallychasesm.

The query ?-chases(fido,X) will produce two identical answers out of three by
backtracking.

?- chases(fido,X).
X D mary ;
X D john ;
X D mary
?-

Binding Variables

Initially all variables used in a clause are said to be unbound, meaning that they do
not have values. When the Prolog system evaluates a goal some variables may be
given values such as dog, -6.4 etc. This is known as binding the variables. A variable
that has been bound may become unbound again and possibly then bound to a
different value by the process of backtracking, which will be described in Chapter 3.

http://dx.doi.org/10.1007/978-1-4471-5487-7_3

24 2 Clauses and Predicates

Lexical Scope of Variables

In a clause such as

parent(X,Y):-father(X,Y).

the variables X and Y are entirely unrelated to any other variables with the
same name used elsewhere. All occurrences of variables X and Y in the clause
can be replaced consistently by any other variables, e.g. by First_person and
Second_person giving

parent(First_person,Second_person):-
father(First_person,Second_person).

This does not change the meaning of the clause (or the user's program) in any
way. This is often expressed by saying that the lexical scope of a variable is the
clause in which it appears.

Universally Quantified Variables

If a variable appears in the head of a rule or fact it is taken to indicate that the rule
or fact applies for all possible values of the variable. For example, the rule

large_animal(X):-dog(X),large(X).

can be read as 'for all values of X, X is a large animal if X is a dog and X is large'.
Variable X is said to be universally quantified.

Existentially Quantified Variables

Suppose now that the database contains the following clauses:

person(frances,wilson,female,28,architect).
person(fred,jones,male,62,doctor).
person(paul,smith,male,45,plumber).
person(martin,williams,male,23,chemist).
person(mary,jones,female,24,programmer).
person(martin,johnson,male,47,solicitor).
man(A):-person(A,B,male,C,D).

2.4 Variables 25

The first six clauses (all facts) comprise the definition of predicate person/5,
which has five arguments with obvious interpretations, i.e. the forename, surname,
sex, age and occupation of the person represented by the corresponding fact.

The last clause is a rule, defined using the person predicate, which also
has a natural interpretation, i.e. 'for all A, A is a man if A is a person whose
sex is male'. As explained previously, the variable A in the head of the clause
(representing forename in this case) stands for 'for all A' and is said to be universally
quantified.

What about variables B, C and D? It would be a very bad idea for them to be
taken to mean 'for all values of B, C and D'. In order to show that, say, paul is a man,
there would then need to be person clauses with the forename paul for all possible
surnames, ages and occupations, which is clearly not a reasonable requirement. A
far more helpful interpretation would be to take variable B to mean 'for at least one
value of B' and similarly for variables C and D.

This is the convention used by the Prolog system. Thus the final clause in the
database means 'for all A, A is a man if there a person with forename A, surname B,
sex male, age C and occupation D, for at least one value of B, C and D'.

By virtue of the third person clause, paul qualifies as a man, with values smith,
45 and plumber for variables B, C and D respectively.

?- man(paul).
true.

The key distinction between variable A and variables B, C and D in the definition
of predicate man is that B, C and D do not appear in the head of the clause.

The convention used by Prolog is that if a variable, say Y, appears in the body
of a clause but not in its head it is taken to mean 'there is (or there exists) at
least one value of Y'. Such variables are said to be existentially quantified. Thus
the rule

dogowner(X):-dog(Y),owns(X,Y).

can be interpreted as meaning 'for all values of X, X is a dog owner if there is some
Y such that Y is a dog and X owns Y'.

The Anonymous Variable

In order to find whether there is a clause corresponding to anyone called paul in the
database, it is only necessary to enter a goal such as:

?- person(paul,Surname,Sex,Age,Occupation).

at the prompt. Prolog replies as follows:

26 2 Clauses and Predicates

Surname D smith ,
Sex D male ,
Age D 45 ,
Occupation D plumber

In many cases it may be that knowing the values of some or all of the last four
variables is of no importance. If it is only important to establish whether there is
someone with forename paul in the database an easier way is to use the goal:

?- person(paul,_,_,_,_).
true.

The underscore character _ denotes a special variable, called the anonymous
variable. This is used when the user does not care about the value of the variable.

If only the surname of any people named paul is of interest, this can be found by
making the other three variables anonymous in a goal, e.g.

?- person(paul,Surname,_,_,_).
Surname D smith

Similarly, if only the ages of all the people named martin in the database are of
interest, it would be simplest to enter the goal:

?- person(martin,_,_,Age,_).

This will give two answers by backtracking.

Age D 23;
Age D 47

The three anonymous variables are not bound, i.e. given values, as would
normally be expected.

Note that there is no assumption that all the anonymous variables have the same
value (in the above examples they do not). Entering the alternative goal

?- person(martin,X,X,Age,X).

with variable X instead of underscore each time, would produce the answer

false.

as there are no clauses with first argument martin where the second, third and fifth
arguments are identical.

Chapter Summary

This chapter introduces the two types of Prolog clause, namely facts and rules
and their components. It also introduces the concept of a predicate and describes
different features of variables.

Practical Exercise 2 27

Practical Exercise 2

(1) Type the following program into a file and load it into Prolog.

/* Animals Database */
animal(mammal,tiger,carnivore,stripes).
animal(mammal,hyena,carnivore,ugly).
animal(mammal,lion,carnivore,mane).
animal(mammal,zebra,herbivore,stripes).
animal(bird,eagle,carnivore,large).
animal(bird,sparrow,scavenger,small).
animal(reptile,snake,carnivore,long).
animal(reptile,lizard,scavenger,small).

Devise and test goals to find (a) all the mammals, (b) all the carnivores that are
mammals, (c) all the mammals with stripes, (d) whether there is a reptile that has a
mane.

(2) Type the following program into a file

/* Dating Agency Database */
person(bill,male).
person(george,male).
person(alfred,male).
person(carol,female).
person(margaret,female).
person(jane,female).

Extend the program with a rule that defines a predicate couple with two
arguments, the first being the name of a man and the second the name of a woman.
Load your revised program into Prolog and test it.

Chapter 3
Satisfying Goals

Chapter Aims

After reading this chapter you should be able to:

• Determine whether two call terms unify and thus whether a goal can be matched
with a clause in the database

• Understand how Prolog uses unification and backtracking to evaluate a sequence
of goals entered by the user.

3.1 Introduction

We can now look more closely at how Prolog satisfies goals. A general understand-
ing of this is essential for any non-trivial use of the language. A good understanding
can often enable the user to write powerful programs in a very compact way,
frequently using just a few clauses.

The process begins when the user enters a sequence of goals at the system
prompt, for example

?- owns(X,Y),dog(Y),write(X),nl.

The Prolog system attempts to satisfy each goal in turn, working from left to
right. When the goal involves variables, e.g. owns(X,Y), this generally involves
binding them to values, e.g. X to john and Y to fido. If all the goals succeed in turn,
the whole sequence of goals succeeds. The system will output the values of all the
variables that are used in the sequence of goals and any other text output as a side
effect by goals such as write(X) and nl.

?- owns(X,Y),dog(Y),write(X),nl.
john
X D john,
Y D fido

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__3,
© Springer-Verlag London 2013

29

30 3 Satisfying Goals

If it is not possible to satisfy all the goals (simultaneously), the sequence of goals
will fail.

?- owns(X,Y),dog(Y),write(X),nl.
false.

We will defer until Section 3.4 the issue of precisely what Prolog does if, say, the
first goal succeeds and the second fails.

Call Terms

Every goal must be a Prolog term, as defined in Chapter 1, but not any kind of term.
It may only be an atom or a compound term, not a number, variable, list or any other
type of term provided by some particular implementation of Prolog. This restricted
type of term is called a call term. Heads of clauses and goals in the bodies of rules
must also be call terms. The need for all three to take the same (restricted) form is
essential for what follows.

Every goal such as write('Hello World'), nl, dog(X) and go has a corresponding
predicate, in this case write/1, nl/0, dog/1 and go/0 respectively. The name of the
predicate (write, nl etc.) is called the functor. The number of arguments it has is
called the arity.

Goals relating to built-in predicates are evaluated in a way pre-defined by the
Prolog system, as was discussed for write/1 and nl/0 in Chapter 2. Goals relating to
user-defined predicates are evaluated by examining the database of rules and facts
loaded by the user.

Prolog attempts to satisfy a goal by matching it with the heads of clauses in the
database, working from top to bottom.

For example, the goal

?-dog(X).

might be matched with the fact

dog(fido).

to give the output

XDfido

A fundamental principle of evaluating user-defined goals in Prolog is that any
goal that cannot be satisfied using the facts and rules in the database fails. There is no
intermediate position, such as 'unknown' or 'not proven'. This is equivalent to making
a very strong assumption about the database called the closed world assumption: any
conclusion that cannot be proved to follow from the facts and rules in the database
is false. There is no other information.

http://dx.doi.org/10.1007/978-1-4471-5487-7_1
http://dx.doi.org/10.1007/978-1-4471-5487-7_2

3.2 Unification 31

3.2 Unification

Given a goal to evaluate, Prolog works through the clauses in the database trying to
match the goal with each clause in turn, working from top to bottom until a match
is found. If no match is found the goal fails. The action taken if a match is found is
described in Section 3.3.

Prolog uses a very general form of matching known as unification, which
generally involves one or more variables being given values in order to make two
call terms identical. This is known as binding the variables to values. For example,
the terms dog(X) and dog(fido) can be unified by binding variable X to atom fido,
i.e. giving X the value fido. The terms owns(john,fido) and owns(P,Q) can be
unified by binding variables P and Q to atoms john and fido, respectively.

Initially all variables are unbound, i.e. do not have any value. Unlike for most
other programming languages, once a variable has been bound it can be made
unbound again and then perhaps be bound to a new value by backtracking, which
will be explained in Section 3.4.

The process of unifying a goal with the head of a clause is explained first. After
that unification will be used to explain how Prolog satisfies goals.

Warning: A Note on Terminology

The words unified, unify etc. are used in two different ways, which can sometimes
cause confusion.

When we say that 'two call terms are unified' we strictly mean that an
attempt is made to make the call terms identical (which generally involves binding
variables to values). This attempt may succeed or fail.

For example, the call terms likes(X,mary) and likes(john,Y) can be made
identical by binding variable X to atom john and variable Y to atom mary.
In this case we say that the unification succeeds. However there is no way of
binding variables to values that will make the call terms likes(X,mary) and dog(Z)
identical. In this case we say that the unification fails or that the call terms fail to
unify.

Expressions such as 'the unification of the two call terms succeeds' are often
abbreviated to just 'the two call terms are unified' or 'the two call terms unify'. The
intended meaning (the attempt or the successful attempt) is usually obvious from
the context, but it is a potential trap for the inexperienced!

3.2.1 Unifying Call Terms

The process is summarised in the following flowchart (Figure 3.1).

32 3 Satisfying Goals

Succeeds if they are
the same constant,

otherwise fails.

Yes

No

No

Are call terms both
constants?

Are call terms both
compound terms?

No

Yes

Same functor and
arity?

No

Yes

Do arguments unify
pairwise?

Yes

Succeeds

Fails

Fig. 3.1 Unifying Two Call Terms

There are three cases to consider. The simplest is when an atom is unified with
another atom. This succeeds if and only if the two atoms are the same, so

• unifying atoms fido and fido succeeds
• unifying atoms fido and 'fido' also succeeds, as the surrounding quotes are not

considered part of the atom itself
• unifying atoms fido and rover fails.

A second possibility is that an atom is unified with a compound term, e.g. fido with
likes(john,mary). This always fails.

The third and by far the most common case is that two compound terms
are unified, e.g. likes(X,Y) with likes(john,mary) or dog(X) with likes(john,Y).
Unification fails unless the two compound terms have the same functor and the same
arity, i.e. the predicate is the same, so unifying dog(X) and likes(john,Y) inevitably
fails.

Unifying two compound terms with the same functor and arity, e.g. the goal
person(X,Y,Z) with the head person(john,smith,27), requires the arguments of the
head and clause to be unified 'pairwise', working from left to right, i.e. the first
arguments of the two compound terms are unified, then their second arguments are
unified, and so on. So X is unified with john, then Y with smith, then Z with 27. If
all the pairs of arguments can be unified (as they can in this case) the unification of
the two compound terms succeeds. If not, it fails.

The arguments of a compound term can be terms of any kind, i.e. numbers,
variables and lists as well as atoms and compound terms. Unifying two terms of
this unrestricted kind involves considering more possibilities than unifying two call
terms (Figure 3.2).

3.2 Unification 33

Two atoms unify if and only if they are the same.

Two compound terms unify if and only if they have the same
functor and the same arity (i.e. the predicate is the same) and their
arguments can be unified pairwise, working from left to right.

Two numbers unify if and only if they are the same, so 7 unifies
with 7, but not with 6.9.

Two unbound variables, say X and Y always unify, with the two
variables bound to each other.

An unbound variable and a term that is not a variable always unify,
with the variable bound to the term.

• X and fido unify, with variable X bound to the atom fido
X and [a,b,c] unify, with X bound to list [a,b,c]
X and mypred(a,b,P,Q,R) unify, with X bound to
mypred(a,b,P,Q,R)

•
•

A bound variable is treated as the value to which it is bound.

Two lists unify if and only if they have the same number of elements
and their elements can be unified pairwise, working from left to
right.

• [a,b,c] can be unified with [X,Y,c], with X bound to a andY
bound to b

• [a,b,c] cannot be unified with [a,b,d]
• [a,mypred(X,Y),K] can be unified with [P,Z,third], with

variables P,Z and K bound to atom a, compound term
mypred(X,Y) and atom third, respectively.

All other combinations of terms fail to unify.

Fig. 3.2 Unifying Two Terms

Unification is probably easiest to understand if illustrated visually, to show the
related pairs of arguments. Some typical unifications are shown below.

person(X,Y,Z)

person(john,smith,27)
Succeeds with variables X, Y and Z bound to john, smith and 27,
respectively

34 3 Satisfying Goals

person(john,Y,23)

person(X,smith,27)
Fails because 23 cannot be unified with 27

pred1(X,Y,[a,b,c])

pred1(A,prolog,B)
Succeeds with variables X and A bound to each other, Y bound to atom
prolog and B bound to list [a,b,c]

Repeated Variables

A slightly more complicated case arises when a variable appears more than once in
a compound term.

pred2(X,X,man)

pred2(london,dog,A)
?

Here the first arguments of the two compound terms are unified successfully,
with X bound to the atom london. All other values of X in the first compound term
are also bound to the atom london and so are effectively replaced by that value
before any subsequent unification takes place. When Prolog comes to examine the
two second arguments, they are no longer X and dog but london and dog. These are
different atoms and so fail to unify.

pred2(X,X,man)

pred2(london,dog,A)
Fails because X cannot unify with both the atoms london and dog

In general, after any pair of arguments are unified, all bound variables are
replaced by their values.

The next example shows a successful unification involving repeated variables.

pred3(X,X,man)

pred3(london,london,A)

Succeeds with variables X and A bound to atoms london and man, respectively

3.3 Evaluating Goals 35

This example shows a repeated variable in one of the arguments of a compound
term.

pred(alpha,beta,mypred(X,X,Y))

pred(P,Q,mypred(no,yes,maybe))

Fails

P successfully unifies with alpha. Next Q unifies with beta. Then
Prolog attempts to unify the two third arguments, i.e. mypred(X,X,Y) and
mypred(no,yes,maybe). The first step is to unify variable X with the atom no.
This succeeds with X bound to no. Next the two second arguments are compared.
As X is bound to no, instead of X and yes the second arguments are now no and
yes, so the unification fails.

In this example, the second mypred argument is now no rather than yes, so
unification succeeds.

pred(alpha,beta,mypred(X,X,Y))

pred(P,Q,mypred(no,no,maybe))

Succeeds with variables P, Q, X andY bound to atoms
alpha, beta, no and maybe, respectively

3.3 Evaluating Goals

Given a goal such as go or dog(X) Prolog searches through the database from top to
bottom examining those clauses that have heads with the same functor and arity until
it finds the first one for which the head unifies with the goal. If there are none the
goal fails. If it does make a successful unification, the outcome depends on whether
the clause is a rule or a fact.

If the clause is a fact the goal succeeds immediately. If it is a rule, Prolog
evaluates the goals in the body of the rule one by one, from left to right. If they
all succeed, the original goal succeeds. (The case where they do not all succeed will
be covered in Section 3.4.)

We will use the phrase 'a goal matches a clause' to mean that it unifies with the
head of the clause.

Example

In this example, the goal is

?-pred(london,A).

36 3 Satisfying Goals

It is assumed that the first clause in the database with predicate pred/2 and a head
that unifies with this goal is the following rule, which we will call Rule 1 for ease
of reference.

pred(X,'european capital'):-
capital(X,Y),european(Y),write(X),nl.

The unification binds X to the atom london and A to the atom 'european capital'.
The binding of X to london affects all occurrences of X in the rule. We can show
this diagrammatically as:

?-pred(london,A).

pred(london,'european capital'):-capital(london,Y),european(Y),write(london),nl.
X is bound to london, A is bound to 'european capital'.

Next Prolog examines the goals in the body of Rule 1 one by one, working from
left to right. All of them have to be satisfied in order for the original goal to succeed.

Evaluating each of these goals is carried out in precisely the same way as
evaluating the user's original goal. If a goal unifies with the head of a rule, this
will involve evaluation of the goals in the body of that rule, and so on.

We will assume that the first clause matched by goal capital(london,Y) is the
fact capital(london,england). The first goal in the body of Rule 1 is thus satisfied,
with Y bound to the atom england. This binding affects all occurrences of Y in the
body of Rule 1, not just the first one, so we now have

?-pred(london,A).

pred(london,'european capital'):-
capital(london,england),european(england),write(london),nl.

capital(london,england).
X is bound to london. A is bound to 'european capital'. Y is bound to england.

It is now necessary to try to satisfy the second goal in the body of Rule 1, which
in rewritten form is european(england).

This time we shall assume that the first clause in the database that has a head that
unifies with the goal is the rule

european(england):-write('God Save the Queen!'),nl.

We will call this Rule 2.

3.3 Evaluating Goals 37

Prolog now tries to satisfy the goals in the body of Rule 2: write('God Save the
Queen!') and nl. It does this successfully, in the process outputting the line of text

God Save the Queen!

as a side effect.
The first two goals in the body of Rule 1 have now been satisfied. There are

two more goals, which in rewritten form are write(london) and nl. Both of these
succeed, in the process outputting the line of text

london

as a side effect.
All the goals in the body of Rule 1 have now succeeded, so the goal that forms

its head succeeds, i.e. pred(london,'european capital').
This in turn means that the original goal entered by the user

?-pred(london,A).

succeeds, with A bound to 'european capital'.
The output produced by the Prolog system would be:

?- pred(london,A).
God Save the Queen!
london
A D 'european capital'

We can now see why output from write/1 and nl/0 goals is referred to by the
slightly dismissive term 'side effect'. The principal focus of the Prolog system is
the evaluation of goals (either entered by the user or in the bodies of rules), by
unification with the heads of clauses. Everything else is incidental. Of course, it is
frequently the side effects that are of most interest to the user.

This process of satisfying the user's goal creates linkages between the goal, the
heads of clauses and the goals in the bodies of rules. Although the process is lengthy
to describe, it is usually quite easy to visualise the linkages.

?-pred(london,A).

pred(london,'european capital'):-capital(london,england),european(england),write(london),nl.

capital(london,england).

european(england):-write('God Save the Queen!'),nl.
X is bound to london. A is bound to 'european capital '.Y is bound to england.

Note that the user's goal

?-pred(london,A).

38 3 Satisfying Goals

Yes

Sequence of goals
succeeds

NoAre there more
goals?

Evaluate next goal

Fails

See Section 3.4

Succeeds

Fig. 3.3 Evaluating a Sequence of Goals

Succeeds

Yes

No

Goal is evaluated as
predefined by system
(may succeed or fail).

Yes
Is predicate a BIP?

Are there more
clauses in the

database?

Yes

Can the goal be
unified with head of

next clause?

No

Evaluate body of
clause (a sequence

of goals)

Goal succeeds

Goal fails

No

Fails

Fig. 3.4 Evaluating a Goal

has been placed to the right in the above diagram. That is because it has much in
common with a goal in the body of a rule. A sequence of goals entered by the user
at the prompt, for example

?- owns(X,Y),dog(Y),write(X),nl.

is treated in the same way as a sequence of goals in the body of an imaginary rule,
say succeed:-owns(X,Y),dog(Y),write(X),nl.

The process of evaluating a goal is summarised (in much simplified form) in
Figures 3.3 and 3.4. Note that the flowchart for evaluating a sequence of goals refers
to the one for evaluating a (single) goal, and vice versa (Figures 3.3 and 3.4).

3.4 Backtracking 39

The principal issue that has been left unconsidered in this account is what
happens if evaluation of any of the goals fails. If it does, the Prolog system tries
to find another way of satisfying the most recently satisfied previous goal. This
is known as backtracking and is the topic of the next section. Unification and
backtracking together comprise the mechanism that Prolog uses to evaluate all goals,
whether entered by the user at the prompt or in the body of a rule.

3.4 Backtracking

Backtracking is the process of going back to a previous goal and trying to resatisfy
it, i.e. to find another way of satisfying it.

This section gives two very detailed accounts of the way that Prolog tries to
satisfy a sequence of goals using unification and backtracking. With practice it
is quite easy to work out the sequence of operations by visual inspection of the
database. However, it may be helpful to have a detailed account available for
reference.

The Family Relationships Example

This example is concerned with family relationships amongst a group of people.
The clauses shown below comprise 10 facts defining the mother/2 predicate, 9 facts
defining the father/2 predicate and 6 clauses defining the parent/2 predicate.

[M1] mother(ann,henry).
[M2] mother(ann,mary).
[M3] mother(jane,mark).
[M4] mother(jane,francis).
[M5] mother(annette,jonathan).
[M6] mother(mary,bill).
[M7] mother(janice,louise).
[M8] mother(lucy,janet).
[M9] mother(louise,caroline).
[M10] mother(louise,martin).
[F1] father(henry,jonathan).
[F2] father(john,mary).
[F3] father(francis,william).
[F4] father(francis,louise).
[F5] father(john,mark).
[F6] father(gavin,lucy).
[F7] father(john,francis).
[F8] father(martin,david).
[F9] father(martin,janet).

40 3 Satisfying Goals

[P1] parent(victoria,george).
[P2] parent(victoria,edward).
[P3] parent(X,Y):-write('mother?'),nl,mother(X,Y),

write('mother!'),nl.
[P4] parent(A,B):-write('father?'),nl,father(A,B),

write('father!'),nl.
[P5] parent(elizabeth,charles).
[P6] parent(elizabeth,andrew).

Facts such as

mother(jane,mark).
father(john,mark).

can be interpreted as meaning 'jane is the mother of mark' and 'john is the father of
mark', respectively.

Note that labels such as [M1] have been added here for reference purposes only.
They are not part of the clauses and must not be included in any program files.
The facts relevant to the following examples can be shown diagrammatically as
follows (with 'f' standing for 'father').

f
f

f

mary francis

john

mark

Example 1

Given the query

?-parent(john,Child),write('The child is '),write(Child),nl.

Prolog attempts to satisfy all the goals in the sequence (simultaneously) and in doing
so will find one or more possible values for variable Child. It starts with the first goal
parent(john,Child) and attempts to unify it with the head of each of the clauses
defining the predicate parent/2 in turn, working from top to bottom. It first comes
to clauses [P1] and [P2] but fails to match the goal with (i.e. unify the goal with
the head of) either of them. It next comes to clause [P3] and this time the goal is
successfully unified with the head of the clause, with X bound to john and variables
Y and Child bound to each other.

The system now works through the goals in the body of rule [P3] trying to make
each one succeed in turn. It successfully evaluates the goals write('mother?') and
nl, outputting the line of text

3.4 Backtracking 41

?-parent(john,Child),write(‘The child is’),write(Child),nl.

[P3] parent(john,Y):-write('mother?'),nl,mother(john,Y),write(‘mother!’),nl.
X is bound to john. Variables Y and Child are bound to each other.

mother?

as a side effect.
It then comes to the third of the goals, i.e. mother(john,Y). This does not unify

with the head of any of the clauses [M1] to [M10] which define the mother/2
predicate, so the goal fails.

The system now backtracks. It goes back to the most recently satisfied goal in
the body of [P3], moving from right to left, which is nl, and tries to resatisfy it, i.e.
to find another way of satisfying it.

Like many (but not all) built-in predicates, nl/0 is unresatisfiable, meaning that it
always fails when evaluated during backtracking.

Prolog now moves one further position to the left in the body of [P3], to the goal
write('mother?'). The predicate write/1 is also unresatisfiable, so this goal also
fails.

There are no further goals in the body of rule [P3], working from right to left, so
the system rejects rule [P3]. We now have simply

?-parent(john,Child),write('The child is '),write(Child),nl.

Variable Child is unbound.

with variable Child unbound.
Prolog now goes back to the most recently evaluated previous goal, which in

this case is parent(john,Child), and tries to resatisfy it. It continues searching
through the database for clauses defining the parent/2 predicate from the point it had
previously reached, i.e. clause [P3]. It first examines clause [P4] and successfully
unifies the goal with its head, with variable A bound to john and variables B and
Child bound to each other.

?-parent(john,Child),write(‘The child is ’),write(Child),nl.

[P4] parent(john,B):-write('father?'),nl,father(john,B),write(‘father!’),nl.
A is bound to john. Variables B and Child are bound to each other.

The system now works through the goals in the body of the rule [P4] trying to
make each succeed in turn. The first two goals succeed, with the line of text

father?

output as a side effect.

42 3 Satisfying Goals

The system now tries to satisfy the third goal, i.e. father(john,B). It searches
through the clauses defining the father/2 predicate in turn, from top to bottom.

The first clause it matches is [F2], which is a fact. This causes variable B to be
bound to atom mary. This in turn causes variable Child (which is bound to variable
B) to be bound to atom mary.

?-parent(john,Child),write(‘The child is ’),write(Child),nl.

[P4] parent(john,mary):-write('father?'),nl,father(john,mary),write(‘father!’),nl.

[F2] father(john,mary).
A is bound to john. Variables B and Child are bound to each other and to atom
mary

There are two further goals in the body of rule [P4], i.e. write('father!') and nl.
These both succeed with the line of text

father!

output as a side effect. All the goals in the body of [P4] have now succeeded, so the
head of the clause, which in rewritten form is parent(john,mary), succeeds. The
goal parent(john,Child) in the user's query therefore succeeds.

The first of the goals in the sequence entered by the user has now been satisfied.
There are three more goals in the sequence: write('The child is '), write(Child) and
nl. They all succeed, as a side effect outputting the line of text

The child is mary

All the goals in the user's query have now been satisfied. The Prolog system
outputs the value of all the variables used in the query. In this case, the only one is
Child.

?- parent(john,Child),write('The child is '),write(Child),nl.
mother?
father?
father!
The child is mary
Child D mary

Forcing the System to Backtrack to Find Further Solutions

The user can now force the system to backtrack to find a further solution or solutions
by entering a semicolon character. This works by forcing the most recently satisfied
goal, i.e. nl (the last goal in the user's query) to fail. The system now backtracks to
the previous goal in the sequence, i.e. write(Child). This too fails on backtracking,
as does the previous goal, i.e. write('The child is '). The system backtracks a further
step, to the first goal in the query, which is parent(john,Child).

3.4 Backtracking 43

The system attempts to find another way of satisfying it, beginning by trying to
find another way of satisfying the last goal in the body of [P4]. This is nl, which
fails on backtracking. So too does the previous goal write('father!').

?-parent(john,Child),write(‘The child is ’),write(Child),nl.

[P4] parent(john,mary):-write('father?'),nl,father(john,mary),write(‘father!’),nl.

[F2] father(john,mary).
A is bound to john. Variables B and Child are bound to each other and to atom
mary

It now attempts to resatisfy the previous goal in the body of [P4], working
from right to left, which is father(john,B). This process begins by rejecting
the unification with the head of [F2]. Prolog now continues to search through
the clauses defining the father/2 predicate for further unifications. The next
successful unification is with the head of clause [F5]. The terms father(john,B) and
father(john,mark) are unified with variable B bound to mark. This causes variable
Child also to be bound to mark.

?-parent(john,Child),write(‘The child is ’),write(Child),nl.

[P4] parent(john,mark):-write('father!'),nl,father(john,mark) write(‘father!’),nl.

[F5] father(john,mark).
A is bound to john. Variables B and Child are bound to each other and to atom
mark.

This gives a second solution to the user's goal, i.e. a second way of satisfying it.
Further backtracking will find a third solution, using clause [F7].

?-parent(john,Child)),write(‘The child is ’),write(Child),nl.

[P4] parent(john,francis):-write('father!'),nl,father(john,francis).

[F7] father(john,francis).
A is bound to john. Variables B and Child are bound to each other and to atom
francis.

?- parent(john,Child),write('The child is '),write(Child),nl.
mother?
father?
father!
The child is mary

44 3 Satisfying Goals

Child D mary ;
father!
The child is mark
Child D mark ;
father!
The child is francis
Child D francis

If the user again enters a semicolon to force the system to backtrack, the system
will again go through the backtracking sequence described above, until it reaches the
stage of attempting to resatisfy father(john,B), by rejecting the unification with the
head of clause [F7] previously found and continuing to search through the clauses
defining the father/2 predicate for further matches. As no further unifications are
found, the goal father(john,B) in the body of rule [P4] will now fail.

The system now attempts to resatisfy the goal to the left of it in the body of
rule [P4]. This is nl, which always fails on backtracking. The next goal, again
moving to the left, is write('father?'), which also fails. There are no further goals
in the body of [P4], moving from right to left, so the system rejects rule [P4]. This
brings it back to the original goal parent(john,Child), which it tries to resatisfy.
It continues to search through the clauses defining the parent/2 predicate from the
point it previously reached ([P4]), but finds no further matches, so the goal fails. As
this is the first in the sequence of goals entered by the user, no further backtracking
is possible and the user's query finally fails.

?- parent(john,Child),write('The child is '),write(Child),nl.
mother?
father?
father!
The child is mary
Child D mary ;
father!
The child is mark
Child D mark ;
father!
The child is francis
Child D francis
?-

The system prompt is displayed to indicate that there are no more solutions
available by backtracking.

Example 2

In the following example the clauses in the database are as before, with the addition
of the clauses

3.4 Backtracking 45

[R1] rich(jane).
[R2] rich(john).
[R3] rich(gavin).
[RF1] rich_father(X,Y):-rich(X),father(X,Y).

Labels such as [R1] have again been added for ease of reference. They are not
part of the clauses.

Given the goal

?-rich_father(A,B).

Prolog starts by trying to unify the goal with the heads of all the clauses defining
the rich_father/2 predicate. There is only one, i.e. clause [RF1]. Unification
succeeds and variables A and X are bound to each other. Variables B and Y are
also bound to each other.

?-rich_father(A,B).

[RF1] rich_father(X,Y):-rich(X),father(X,Y).
Variables A and X are bound to each other. Variables B andY are bound to each other.

Next Prolog tries to find a value of A satisfying the first goal in the body of rule
[RF1]. It does this by searching through the clauses defining the rich/1 predicate.
The first unification it finds is with the head of [R1], i.e. rich(jane). X is bound to
jane.

?-rich_father(A,B).

[RF1] rich_father(jane,Y):-rich(jane),father(jane,Y).

[R1] rich(jane).
Variables A and X are bound to each other and to atom jane. Variables B andY are
bound to each other.

The system now tries to satisfy the goal father(jane,Y) by examining the clauses
defining the father/2 predicate, i.e. [F1] to [F9]. None of them unify with the goal,
so the system backtracks and attempts to resatisfy (i.e. find another solution to)
the most recently satisfied goal, which is rich(X). It continues searching through
the clauses defining the rich/1 predicate, the next unification found being with
rich(john) (clause [R2]). Now X is bound to john, which in turn causes A to be
bound to john.

 ?-rich_father(A,B).

[RF1] rich_father(john,Y):-rich(john),father(john,Y).

[R2] rich(john).
Variables A and X are bound to each other and to atom john. Variables B andY are
bound to each other.

46 3 Satisfying Goals

The system now tries to satisfy the goal father(john,Y) by examining the clauses
defining the father/2 predicate, i.e. [F1] to [F9]. The first unification found is with
[F2], i.e. father(john,mary). Y is bound to mary.

?-rich_father(A,B).

[RF1] rich_father(john,mary):-rich(john),father(john,mary).

[R2] rich(john).

[F2] father(john,mary).
Variables A and X are bound to each other and to atom john. Variables B andY are
bound to each other and to atom mary.

There are no more goals in the body of [RF1], so the rule succeeds. This in turn
causes the goal rich_father(A,B) to succeed, with A and B bound to john and mary,
respectively.

?- rich_father(A,B).
A D john ,
B D mary

The user can now force the system to backtrack to find further solutions by
entering a semicolon character. If so, it attempts to resatisfy the most recently
matched goal, i.e. father(john,Y) by rejecting the match with [F2] previously
found. This causes B and Y no longer to be bound to mary (they are still bound
to each other).

The system continues to search the clauses defining the father/2 predicate for
further matches. The next unification found is with the head of clause [F5]. Variable
Y is bound to mark.

?-rich_father(A,B).

[RF1] rich_father(john,mark): -rich(john),father(john,mark).

[R2] rich(john).

[F5] father(john,mark).
Variables A and X are bound to each other and to atom john . Variables B andY are
bound to each other and to atom mark.

This gives a second solution to the user's goal. If the user forces the system to
backtrack again, it will find a third solution using clause [F7] father(john,francis).

3.4 Backtracking 47

?-rich_father(A,B).

[RF1] rich_father(john,francis):-rich(john),father(john,francis).

[R2] rich(john).

[F7] father(john,francis).
Variables A and X are bound to each other and to atom john. Variables B andY are
bound to each other and to atom francis.

If the user forces the system to backtrack again, it will start by deeming that the
most recently satisfied goal, i.e. father(john,Y) has failed. This causes B and Y no
longer to be bound to francis (they are still bound to each other).

?-rich_father(A,B).

[RF1] rich_father(john,Y):-rich(john),father(john,Y).

[R2] rich(john).
Variables A and X are bound to each other and to atom john. Variables B and Y are
bound to each other.

The system will fail to find any further matches for the goal father(john,Y). It
will next attempt to find further solutions to the most recently satisfied previous goal
in [RF1], working from right to left. This is rich(X). This will succeed with X now
bound to gavin (clause [R3]).

?-rich_father(A,B).

[RF1] rich_father(gavin,Y):-rich(gavin),father(gavin,Y).

[R3] rich(gavin).
Variables A and X are bound to each other and to atom gavin. Variables B and Y are
bound to each other.

Working from left to right again, the system will now try to satisfy the goal
father(gavin,Y). This will unify with the head of just one of the father/2 clauses,
namely with clause [F6] father(gavin,lucy), with variable Y bound to lucy.

?-rich_father(A,B).

[RF1] rich_father(gavin,lucy):-rich(gavin),father(gavin,lucy).

[R3] rich(gavin).

[F6] father(gavin,lucy).
Variables A and X are bound to each other and to atom gavin. Variables B and Y are
bound to each other and to atom lucy.

48 3 Satisfying Goals

All the goals in the body of [RF1] have now succeeded, so the head
rich_father(gavin,lucy) succeeds, and in turn rich_father(A,B) succeeds with
A and B bound to gavin and lucy, respectively.

Forcing the system to backtrack again will lead to the same sequence of
operations as above, right up to the attempt to find further matches for the goal
rich(X) in the body of [PF1]. This will fail, which will in turn cause [RF1] to fail.
This will make the Prolog system go back a further step to try to find another match
for the original goal rich_father(A,B) with clauses defining the rich_father/2
predicate. Since there is only one such clause, no more matches will be found and
the user's goal will finally fail.

?- rich_father(A,B).
A D john ,
B D mary ;
A D john ,
B D mark ;
A D john ,
B D francis ;
A D gavin ,
B D lucy ;
?-

3.5 Satisfying Goals: A Summary

The method described in the previous sections is shown in diagrammatic form in
Figures 3.5 and 3.6. Note how the two flowcharts refer to each other.

Evaluating a Sequence of Goals: Summary

Evaluate the goals in turn, working from left to right. If they all succeed, the whole
sequence of goals succeeds. If one fails, go back through the previous goals in the
sequence one by one from right to left trying to resatisfy them. If they all fail, the
whole sequence fails. As soon as one succeeds, start working through the goals from
left to right again.

Evaluating/Re-evaluating a Goal: Summary

Search through the clauses in the database, working from top to bottom1 until one is
found, the head of which matches with the goal. If the matching clause is a fact,
the goal succeeds. If it is a rule, evaluate the sequence of goals in its body. If
the sequence succeeds, the goal succeeds. If not, continue searching through the
database for further matches. If the end of the database is reached, the goal fails.

1Start at the top (for evaluation) or after the clause matched when the goal was last satisfied (for
re-evaluation).

* Some variables may have become bound.
** Some variables may have become bound to other values (or unbound).

Yes

Yes

Sequence of goals
succeeds *

NoAre there more
goals?

Evaluate next goal

Fails

Are there any
previous goals?

No

Re-evaluate
previous goal

Succeeds **

Sequence of goals
fails

Succeeds *

Fails

Fig. 3.5 Evaluating a Sequence of Goals

* Evaluation: Start at top of database.
 Re-evaluation: Start after clause matched when goal last satisfied.
** Some variables may have become bound.
*** If the clause is a fact there is no body, so the goal succeeds immediately.

Yes

Yes **

No

Goal is evaluated as
predefined by system
(may succeed or fail).

Yes
Is predicate a BIP?

Are there more
clauses in the
database? *

Can the goal be
unified with head of

next clause?

No

Evaluate body of
clause (a sequence

of goals) ***

Succeeds **

Goal succeeds **

Goal fails

No

Fails

Fig. 3.6 Evaluating/Re-evaluating a Goal

50 3 Satisfying Goals

3.6 Removing Common Variables

When unifying a goal with a head of a clause, there is an important complication,
which all the examples in this chapter so far have been carefully designed to avoid:
what happens if the goal and the head have one or more variables in common?

Suppose that the goal is mypred(tuesday,likes(Z,Y),X) and the head is
mypred(X,Y,Z). The variables X, Y and Z in the former appear to be the same
as the variables X, Y and Z in the latter, but in fact there is no connection between
them. The clause of which mypred(X,Y,Z) is the head may be, for example,

mypred(X,Y,Z):-pred2(X,Q),pred3(Q,Y,Z).

The variables in this rule are just 'placeholders'. They can be replaced consistently
by any other variables without any change in the meaning of the clause, as explained
in Chapter 2, so it would not be sensible to consider X, Y and Z in the clause to be
the same variables as in the goal mypred(tuesday,likes(Z,Y),X).

Before attempting to unify the goal and the head of the clause, it is first necessary
to rewrite the clause to ensure that it has no variables in common with the goal. To
be precise the clause must not have any variables in common with any of the goals
in the sequence of which the goal currently under consideration is part.

Prolog automatically replaces variables X, Y and Z in the clause systematically
by other variables that do not appear in the sequence of goals (or elsewhere in the
clause). For example they may be replaced by X1, Y1 and Z1.

mypred(X1,Y1,Z1):-pred2(X1,Q),pred3(Q,Y1,Z1).

After this rewriting it is only necessary to unify the head mypred(X1,Y1,Z1)
and the goal mypred(tuesday,likes(Z,Y),X), which have no variable in common.
The unification succeeds.

mypred(tuesday,likes(Z,Y),X)

mypred(X1,Y1,Z1):-pred2(X1,Q),pred3(Q,Y1,Z1).
Succeeds with variable X1 bound to atom tuesday , variable Y1 bound to
compound term likes(Z,Y) and variables Z1 and X bound to each other.
VariablesY and Z are unbound.

http://dx.doi.org/10.1007/978-1-4471-5487-7_2

3.7 A Note on Declarative Programming 51

3.7 A Note on Declarative Programming

From this chapter it is clear that the order in which the clauses defining a predicate
occur in the database and the order of the goals in the body of a rule are of vital
importance when evaluating a user's query.

It is part of the philosophy of logic programming that programs should be written
to minimize the effect of these two factors as far as possible. Programs that do so
are called fully or partly declarative.

An example of a fully declarative program is the following, based on Animals
Program 2 in Chapter 2.

dog(fido). dog(rover). dog(jane). dog(tom). dog(fred).
dog(henry).

cat(bill). cat(steve). cat(mary). cat(harry).

large(rover). large(william). large(martin).
large(tom). large(steve).
large(jim). large(mike).

large_animal(X):- dog(X),large(X).
large_animal(Z):- cat(Z),large(Z).

The query

?- large_animal(X).

will produce three possible values of X by backtracking

X D rover ;
X D tom ;
X D steve ;
false.

Rearranging the clauses in the program in any order will produce the same three
answers but possibly in a different order (try it!).

Rearranging the order of the goals in the bodies of the two rules defining
large_animal/1, for example to

large_animal(X):- large(X),dog(X).
large_animal(Z):- large(Z),cat(Z).

will also give the same three answers.

http://dx.doi.org/10.1007/978-1-4471-5487-7_2

52 3 Satisfying Goals

It is often very difficult or impossible to define a predicate in such a way that the
order of the goals in the body of each rule is irrelevant, especially when built-in
predicates such as write/1 are involved. However, with a little effort it is frequently
possible to write the clauses defining a predicate in such a way that if the order
were changed the answers to any query (including those produced by backtracking)
would be the same. For example if we wish to test whether a number is positive,
negative or zero, we could define a predicate test/1 like this

test(X):-X>0,write(positive),nl.
test(0):-write(zero),nl.
test(X):-write(negative),nl.

This relies on the third clause only being reached when the value of X is negative.
A more declarative (and better) way of defining test/1 would be

test(X):-X>0,write(positive),nl.
test(0):-write(zero),nl.
test(X):-X<0,write(negative),nl.

where the test for X being negative in the third clause is made explicit.
Not only is it considered good Prolog programming style to make programs as

declarative as possible, it can greatly reduce the likelihood of making errors that
are hard to detect, particularly when backtracking is used. Chapter 7 gives some
examples of this.

3.8 Important Note on User-Controlled Backtracking

The use of 'user-controlled' backtracking to find more solutions to a query was
illustrated in previous chapters and was explained in detail earlier in this chapter.

The use of backtracking 'behind the scenes' is fundamental to any Prolog system and
user-controlled backtracking can certainly be valuable in some situations. However
there are other situations where the facility should not be used.

For many of the examples given in this book executing a query produces a solution
after which the system pauses to allow the user to attempt to backtrack. In some
cases there are no more solutions to be found and if the user enters a semicolon
character the system will simply reply

false.

In other cases the system will attempt to find an alternative solution even though
no other meaningful solution would be possible, such as finding the larger of two

http://dx.doi.org/10.1007/978-1-4471-5487-7_7

Practical Exercise 3 53

numbers or combining the contents of two text files into a single file. Often the
effect of doing so will be to produce output that is 'mysterious' or obviously wrong.
In some cases the system will go into an infinite loop and/or crash as the available
memory fills up.

The solution to these problems is simply for the user to press the 'return' key to
suppress backtracking on all occasions except where there is a good reason to
believe that there may be additional solutions available. That is the policy followed
in this book, usually without drawing attention to it.

Problems relating to backtracking and how to deal with them will be discussed
further in Chapter 7.

Chapter Summary

This chapter demonstrates how Prolog uses unification to match goals with the
heads of clauses and how it uses the combination of unification and backtracking
to evaluate goals entered by the user and to find multiple solutions if required. The
chapter ends with a warning about the use of 'user-controlled' backtracking.

Practical Exercise 3

The program below is a variant of the family relationships program used in
Section 3.4. As before, [M1] etc. are labels added to make it easier to refer to the
clauses.

[M1] mother(ann,henry).
[M2] mother(ann,mary).
[M3] mother(jane,mark).
[M4] mother(jane,francis).
[M5] mother(annette,jonathan).
[M6] mother(mary,bill).
[M7] mother(janice,louise).
[M8] mother(lucy,janet).
[M9] mother(louise,caroline).
[M10] mother(caroline,david).
[M11] mother(caroline,janet).
[F1] father(henry,jonathan).

http://dx.doi.org/10.1007/978-1-4471-5487-7_7

54 3 Satisfying Goals

[F2] father(john,mary).
[F3] father(francis,william).
[F4] father(francis,louise).
[F5] father(john,mark).
[F6] father(gavin,lucy).
[F7] father(john,francis).
[P1] parent(victoria,george).
[P2] parent(victoria,edward).
[P3] parent(X,Y):-mother(X,Y).
[P4] parent(X,Y):-father(X,Y).
[P5] parent(elizabeth,charles).
[P6] parent(elizabeth,andrew).
[A1] ancestor(X,Y):-parent(X,Y).
[A2] ancestor(X,Y):-parent(X,Z),ancestor(Z,Y).

The most important change is the addition of two clauses defining the ancestor/2
predicate. Clause [A1] simply states that X is an ancestor of Y if X is a parent of
Y. Clause [A2] is a recursive definition of more distant ancestor relationships which
can be read as 'X is the ancestor of Y if there is some person Z such that X is the
parent of Z and Z is the ancestor of Y '.

(1) Extend the program above by devising rules to define each of the following.
Load your extended program and test it.

(a) child_of(A,B)
(b) grandfather_of(A,B)
(c) grandmother_of(A,B)
(d) great_grandfather_of(A,B)

(2) Construct a sequence of diagrams similar to those in Section 3.4 to show the
sequence of events when the Prolog system attempts to satisfy the goal

?-ancestor(louise,Desc).

Find (using backtracking) the first two people the Prolog system will identify as
louise's descendants.

Predict the output that will be produced if the user repeatedly forces the system to
backtrack. Verify your prediction by loading the program and testing it.

Chapter 4
Operators and Arithmetic

Chapter Aims

After reading this chapter you should be able to:

• Convert unary and binary predicates to operators
• Evaluate arithmetic expressions and compare their values
• Test for equality of arithmetic expressions and terms
• Use the ‘not’ and disjunction operators.

4.1 Operators

Up to now, the notation used for predicates in this book is the standard one of a
functor followed by a number of arguments in parentheses, e.g. likes(john,mary).

As an alternative, any user-defined predicate with two arguments (a binary
predicate) can be converted to an infix operator. This enables the functor (predicate
name) to be written between the two arguments with no parentheses, e.g.

john likes mary

Some Prolog users may find this easier to read. Others may prefer the standard
notation.

Any user-defined predicate with one argument (a unary predicate) can be
converted to a prefix operator. This enables the functor to be written before the
argument with no parentheses, e.g.

isa_dog fred

instead of

isa_dog(fred)

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__4,
© Springer-Verlag London 2013

55

56 4 Operators and Arithmetic

Alternatively, a unary predicate can be converted to a postfix operator. This
enables the functor to be written after the argument, e.g.

fred isa_dog

Operator notation can also be used with rules to aid readability. Some people
may find a rule such as

likes(john,X):-is_female(X),owns(X,Y),isa_cat(Y).

easier to understand if it is written as

john likes X:- X is_female, X owns Y, Y isa_cat.

The standard bracketed ‘functor and arguments’ notation, e.g. likes(john,X) can
still be used with operators if preferred. ‘Mixed’ notation is also permitted, e.g. if
likes/2, is_female/1, owns/2 and isa_cat/1 are all operators

likes(john,X):-is_female(X),X owns Y,isa_cat(Y).

is a valid form of the previous rule.
Any user-defined predicate with one or two arguments can be converted to an

operator by entering a goal using the op/3 predicate at the system prompt. This
predicate takes three arguments, for example

?-op(150,xfy,likes).

The first argument is the ‘operator precedence’, which is an integer from 0
upwards. The range of numbers used depends on the particular implementation.
The lower the number is, the higher the precedence. Operator precedence values are
used to determine the order in which operators will be applied when more than one
is used in a term. The most important practical use of this is for operators used for
arithmetic, as will be explained later. In most other cases it will suffice to use an
arbitrary value such as 150.

The second argument should normally be one of the following atoms:

xfx, xfy or yfx meaning that the predicate is binary and is to be converted to an infix
operator

fx or fy meaning that the predicate is unary and is to be converted to an prefix
operator

xf or yf meaning that the predicate is unary and is to be converted to a postfix
operator.

4.1 Operators 57

(The difference between the alternatives available for each type will be explained
in Section 4.5.)

The third argument specifies the name of the predicate that is to be converted to
an operator.

A predicate can also be converted to an operator by placing a line such as

?-op(150,xfy,likes).

in a Prolog program file to be loaded using consult. Note that the prompt (the two
characters ?-) must be included. When a goal is used in this way, the entire line is
known as a directive. In this case, the directive must be placed in the file before the
first clause that uses the operator likes.
If a program file containing

?-op(150,xfy,likes).
?-op(150,xf,is_female).
?-op(150,xf,isa_cat).
?-op(150,xfy,owns).

john likes X:- X is_female, X owns Y, Y isa_cat.

is_female(mary).
owns(mary,fido).
isa_cat(fido).

is loaded using consult some possible queries are:

?- john likes mary.
true.

?- john likes X.
X D mary.

?- X likes mary.
X D john.

?- X likes Y.
X D john,
Y D mary.

?- is_female(X).
X D mary.

Several built-in predicates have been pre-defined as operators. These include
relational operators for comparing numerical values, including < denoting ‘less
than’ and > denoting ‘greater than’.

58 4 Operators and Arithmetic

Thus the following are valid terms, which may be included in the body of a rule:

X>4
Y<Z
ADB

Bracketed notation may also be used with built-in predicates that are defined as
operators, e.g. >(X,4) instead of X>4.

A list of the principal built-in operators is given in Appendix 2 for ease of
reference.

4.2 Arithmetic

Although the examples used in previous chapters of this book are non-numerical
(animals which are mammals etc.), Prolog also provides facilities for doing
arithmetic using a notation similar to that which will already be familiar to many
users from basic algebra.

This is achieved using the built-in predicate is/2, which is predefined as an infix
operator and thus is written between its two arguments.

The most common way of using is/2 is where the first argument is an unbound
variable. Evaluating the goal X is �6.5 will cause X to be bound to the number �6.5
and the goal to succeed.

The second argument can be either a number or an arithmetic expression e.g.

X is 6*YCZ-3.2CP-Q/4 (* denotes multiplication).

Any variables appearing in an arithmetic expression must already be bound (as
a result of evaluating a previous goal) and their values must be numerical. Provided
they are, the goal will always succeed and the variable that forms the first argument
will be bound to the value of the arithmetic expression. If not, an error message will
result.

?- X is 10.5C4.7*2.
X D 19.9

?- Y is 10,Z is YC1.
Y D 10,
Z D 11

Symbols such as C - * / in arithmetic expressions are a special type of infix
operator known as arithmetic operators. Unlike operators used elsewhere in Prolog
they are not predicates but functions, which return a numerical value.

As well as numbers, variables and operators, arithmetic expressions can include
arithmetic functions, written with their arguments in parentheses (i.e. not as
operators). Like arithmetic operators these return numerical values, e.g. to find the
square root of 36:

http://dx.doi.org/10.1007/978-1-4471-5487-7_BM1

4.2 Arithmetic 59

?- X is sqrt(36).
X D 6

The arithmetic operator - can be used not only as a binary infix operator to denote
the difference of two numerical values, e.g. X-6, but also as a unary prefix operator
to denote the negative of a numerical value, e.g.

?- X is 10,Y is -X-2.
X D 10,
YD�12

The table below shows some of the arithmetic operators and arithmetic functions
available in Prolog.

XCY The sum of X and Y
X-Y The difference of X and Y
X*Y The product of X and Y
X/Y The quotient of X and Y
X//Y The ‘integer quotient’ of X and Y (the result is

truncated to the nearest integer between it and zero)
X mod Y The remainder when X is divided by Y
X^Y The value of X to the power of Y
-X The negative of X
abs(X) The absolute value of X
sin(X) The sine of X (for X measured in radians)
cos(X) The cosine of X (for X measured in radians)
max(X,Y) The larger of X and Y
round(X) The value of X rounded to the nearest integer
sqrt(X) The square root of X

Example

?- X is 30,Y is 5,Z is XCYCX*Y.
X D 30,
Y D 5,
Z D 185.

Although the is predicate is normally used in the way described here, the first
argument can also be a number or a bound variable with a numerical value. In this
case, the numerical values of the two arguments are calculated. The goal succeeds
if these are equal. If not, it fails.

?- X is 7,X is 6C1.
X D 7

60 4 Operators and Arithmetic

?- 10 is 7C13-11C9.
false.

?- 18 is 7C13-11C9.
true.

Unification

The previous description can be simplified by saying that the second argument of
the is/2 operator is evaluated and this value is then unified with the first argument.
This illustrates the flexibility of the concept of unification.

(a) If the first argument is an unbound variable, it is bound to the value of the
second argument (as a side effect) and the is goal succeeds.

(b) If the first argument is a number, or a bound variable with a numerical value,
it is compared with the value of the second argument. If they are the same, the
is goal succeeds, otherwise it fails.

If the first argument is an atom, a compound term, a list, or a variable bound
to one of these (none of which should happen), the outcome is implementation-
dependent. It is likely that an error will occur.

Note that a goal such as X is XC1 will always fail, whether or not X is bound.

?- X is 10,X is XC1.
false.

To increase a value by one requires a different approach.

/* Incorrect version */
increase(N):-N is NC1.

?- increase(4).
false.

/*Correct version */
increase(N,M):-M is NC1.

?- increase(4,X).
X D 5

4.3 Equality Operators 61

Operator Precedence in Arithmetic Expressions

When there is more than one operator in an arithmetic expression, e.g. ACB*C-D,
Prolog needs a means of deciding the order in which the operators will be applied.

For the basic operators such as C � * and / it is highly desirable that this
is the customary ‘mathematical’ order, i.e. the expression ACB*C-D should be
interpreted as ‘calculate the product of B and C, add it to A and then subtract D’,
not as ‘add A and B, then multiply by C and subtract D’. Prolog achieves this by
giving each operator a numerical precedence value. Operators with relatively high
precedence such as * and / are applied before those with lower precedence such as
C and -. Operators with the same precedence (e.g. C and -, * and /) are applied from
left to right. The effect is to give an expression such as ACB*C-D the meaning that
a user who is familiar with algebra would expect it to have, i.e. AC(B*C)-D.

If a different order of evaluation is required this can be achieved by the use of
brackets, e.g. X is (ACB)*(C-D). Bracketed expressions are always evaluated first.

Relational Operators

The infix operators D:D D\D > >D < D< are a special type known as relational
operators. They are used to compare the value of two arithmetic expressions. The
goal succeeds if the value of the first expression is equal to, not equal to, greater
than, greater than or equal to, less than or less than or equal to the value of the
second expression, respectively. Both arguments must be numbers, bound variables
or arithmetic expressions (in which any variables are bound to numerical values).

?- 88C15-3D:D110-5*2.
true.

?- 100D\D99.
true.

4.3 Equality Operators

There are three types of relational operator for testing equality and inequality
available in Prolog. The first type is used to compare the values of arithmetic
expressions. The other two types are used to compare terms.

Arithmetic Expression Equality D:D

E1D:DE2 succeeds if the arithmetic expressions E1 and E2 evaluate to the same
value.

?- 6C4D:D6*3-8.
true.

62 4 Operators and Arithmetic

?- sqrt(36)C4D:D5*11-45.
true.

To check whether an integer is odd or even we can use the checkeven/1 predicate
defined below.

checkeven(N):-M is N//2,ND:D2*M.

?- checkeven(12).
true.

?- checkeven(23).
false.

?- checkeven(-11).
false.

?- checkeven(-30).
true.

The integer quotient operator // divides its first argument by its second and
truncates the result to the nearest integer between it and zero. So 12//2 is 6, 23//2 is
11, -11//2 is -5 and -30//2 is -15. Dividing an integer by 2 using // and multiplying
it by 2 again will give the original integer if it is even, but not otherwise.

Arithmetic Expression Inequality D\D

E1D\DE2 succeeds if the arithmetic expressions E1 and E2 do not evaluate to the
same value

?- 10D\D8C3.
true.

Terms Identical DD

Both arguments of the infix operator DD must be terms. The goal Term1DDTerm2
succeeds if and only if Term1 is identical to Term2. Any variables used in the terms
may or may not already be bound, but no variables are bound as a result of evaluating
the goal.

?- likes(X,prolog)DDlikes(X,prolog).
true.

?- likes(X,prolog)DDlikes(Y,prolog).
false.

(X and Y are different variables)

?- X is 10,pred1(X)DDpred1(10).

4.3 Equality Operators 63

X D 10

?- XDD0.
false.

?- 6C4DD3C7.
false.

The value of an arithmetic expression is only evaluated when used with the is/2
operator. Here 6C4 is simply a term with functor C and arguments 6 and 4. This is
entirely different from the term 3C7.

Terms Not Identical \ DD

Term1\DDTem2 tests whether Term1 is not identical to Term2. The goal succeeds if
Term1DDTerm2 fails. Otherwise it fails.

?- pred1(X)\DDpred1(Y).
true.

(The output signifies that both X and Y are unbound and are different variables.)

Terms Identical With Unification D

The term equality operator D is similar to DD with one vital (and often very useful)
difference. The goal Term1DTerm2 succeeds if terms Term1 and Term2 unify, i.e.
there is some way of binding variables to values which would make the terms
identical. If the goal succeeds, such binding actually takes place. Unification is
discussed in detail in Chapter 3.

?- pred1(X)Dpred1(10).
X D 10

(Variable X is bound to 10, which makes the two terms identical.)

?- likes(X,prolog)Dlikes(john,Y).
X D john ,
Y D prolog

(Binding X to the atom john and Y to the atom prolog makes the two terms
identical.)

?- XD0,XD:D0.
X D 0

(XD0 causes X to be bound to 0. The goal XD:D0 succeeds, which confirms that
X now has the value zero.)

?- 6C4D3C7.
false.

(For the reason explained under DD.)

http://dx.doi.org/10.1007/978-1-4471-5487-7_3

64 4 Operators and Arithmetic

?- 6CXD6C3.
X D 3

(Binding X to 3 makes the two terms identical. They are both 6C3, not the
number 9.)

?- likes(X,prolog)Dlikes(Y,prolog).
X D Y.

(Binding X and Y makes the terms identical.)

?- likes(X,prolog)Dlikes(Y,ada).
false.

(No unification can make the atoms prolog and ada identical.)

Non-Unification Between Two Terms \D

The goal Term1\DTerm2 succeeds if Term1DTerm2 fails, i.e. the two terms cannot
be unified. Otherwise it fails.

?- 6C4\D3C7.
true.

?- likes(X,prolog)\Dlikes(john,Y).
false.

(Because binding X to john and Y to prolog will make the terms identical.)

?- likes(X,prolog)\Dlikes(X,ada).
true.

4.4 Logical Operators

This section gives a brief description of two operators that take arguments that are
call terms, i.e. terms that can be regarded as goals.

The not Operator

Note: in some versions of Prolog not/1 is defined as an operator. In others it is
simply defined as a predicate with one argument. If your Prolog system is one of the
latter, you can make it into an operator by means of a directive such as

?-op(1000,fy,not).

For the purposes of this book we will treat not/1 as a prefix operator.

The prefix operator not/1 can be placed before any goal to give its negation. The
negated goal succeeds if the original goal fails and fails if the original goal succeeds.

4.5 More About Operator Precedence 65

The following examples illustrate the use of not/1. It is assumed that the database
contains the single clause

dog(fido).

?- not dog(fido).
false.

?- dog(fred).
false.

?- not dog(fred).
true.

?- XD0,X is 0.
X D 0

?- XD0,not X is 0.
false.

The Disjunction Operator

The disjunction operator ;/2 (written as a semicolon character) is used to represent
‘or’. It is an infix operator that takes two arguments, both of which are goals.
Goal1;Goal2 succeeds if either Goal1 or Goal2 succeeds.

?- 6<3;7 is 5C2.
true.

?- 6*6D:D36;10D8C3.
true.

4.5 More About Operator Precedence

The op/3 predicate was introduced in Section 4.1. For the purposes of this book, the
operators introduced in this chapter are assumed to be automatically declared by the
Prolog system with the following values:

Precedence Type Operator(s)

1100 xfy ;
1000 fy not
700 xfx is < > D< >D D:D D\D D \D DD \DD
500 yfx C -
400 yfx * / //
200 xfy ^
200 fy C -

66 4 Operators and Arithmetic

These precedence values vary from one Prolog system to another as does the highest
precedence value permitted. The lowest precedence value is always zero. Rather
confusingly, the lower the precedence value the higher the precedence.

In Section 4.2 it was stated that ''operators with relatively high precedence such as
* and / are applied before those with lower precedence such as C and -. Operators
with the same precedence (e.g. C and -, * and /) are applied from left to right''.
From the table we can see that the precedence values of the infix operators * and /
are both 400 and the precedence value of C and – (when used as infix operators)
is 500. When the Prolog system evaluates the expression ACB*C-D the operator
of highest precedence (lowest value) is * so the product of B and C is formed first.
Next there is a choice whether to apply the C operator or the – operator. As both of
these operators have precedence 500, they are applied from left to right, so the value
of A is added to the value of B*C and then the value of D is subtracted.

Other principles relating to precedence are:

• A term enclosed in parentheses has precedence zero.
• The precedence of a term is zero, unless its principal functor is an operator.
• The precedence of a term for which the principal functor is an operator is the

precedence of the operator.

This explains what happens when the Prolog system evaluates the expression
(ACB)*C-D. The bracketed expression (ACB) has precedence zero, the highest
possible precedence, so it is evaluated first. The resulting value is then multiplied
by C, as * has the next highest precedence value (400) and the result then has D
subtracted from it as the remaining operator – has the lowest precedence (500).

The operators C and – both appear twice in the table. The infix versions, as in ACB
or A-B have precedence 400 and the prefix versions as in –A*B or CA*B have
precedence 200. This is helpful as it ensures the expression –ACB is interpreted as
(-A)CB rather than –(ACB), which seems desirable.

?- X is 10, Y is 25, Z is -XCY.
X D 10,
Y D 25,
Z D 15.

As previously noted, there are three types of infix operator xfx, xfy and yfx. There
are also two types of prefix operator fx and fy and two types of postfix operator xf
and yf.

In all cases the f indicates the position of the operator when it is used in an
expression (f stands for functor). For infix operators it is between the two arguments
etc. The letters x and y indicate the position of the arguments to one or both sides of
the operator.

4.5 More About Operator Precedence 67

The difference between x and y is the precedence that the arguments of the operator
need to have:

• x denotes an argument that has a precedence strictly lower than that of the
operator

• y denotes an argument that has a precedence less than or equal to that of the
operator.

The difference between these is often unimportant but in some cases it matters. If
in Section 4.4 the not operator had wrongly been declared as of type fx, and the
database contained the single clause

dog(fido).

then using not would still have been possible

?- dog(fido).
true.

?- not dog(fido).
false.

However a double negation such as

?- not not dog(fido).

would have generated a syntax error.

With not properly declared as of type fy a sequence of two or more not operators is
permitted:

?- dog(fido).
true.

?- not dog(fido).
false.

?- not not dog(fido).
true.

?- not not not dog(fido).
false.

?- not not not not dog(fido).
true.

68 4 Operators and Arithmetic

Chapter Summary

This chapter introduces operator notation for predicates and describes the opera-
tors provided for evaluating and comparing the values of arithmetic expressions,
for testing for equality of either arithmetic expressions or terms and for testing for
the negation of a goal or the disjunction of two goals.

Practical Exercise 4

(1) This program is based on Animals Program 3, given in Chapter 2.

dog(fido). large(fido).
cat(mary). large(mary).
dog(rover). small(rover).
cat(jane). small(jane).
dog(tom). small(tom).
cat(harry).
dog(fred). large(fred).
cat(henry). large(henry).
cat(bill).
cat(steve). large(steve).
large(jim).
large(mike).
large_dog(X):- dog(X),large(X).
small_animal(A):- dog(A),small(A).
small_animal(B):- cat(B),small(B).
chases(X,Y):-

large_dog(X),small_animal(Y),
write(X),write(' chases '),write(Y),nl.

Convert the seven predicates used to operator form and test your revised program.
The output should be the same as the output from the program above. Include
directives to define the operators in your program.

(2) Define and test a predicate which takes two arguments, both numbers, and
calculates and outputs the following values: (a) their average, (b) the square
root of their product and (c) the larger of (a) and (b).

http://dx.doi.org/10.1007/978-1-4471-5487-7_2

Chapter 5
Input and Output

Chapter Aims

After reading this chapter you should be able to:

• Use the built-in predicates that read from and write to either the user's terminal
(keyboard and screen) or a file, both term by term and character-by-character in
your own programs

• Use ASCII values to manipulate strings of characters.

5.1 Introduction

Prolog has facilities to enable input and output either of terms or of characters.
Using terms is simpler and will be described first. Initially, it will be assumed that
all output is to the user's screen and all input is from the user's keyboard. Input and
output using external files, e.g. on a hard disk or CD-ROM, will be described in
Section 5.8 onwards. Note that, like many other built-in predicates, those for input
and output described in this chapter are all unresatisfiable, i.e. they always fail when
backtracking.

5.2 Outputting Terms

The main built-in predicate provided for outputting terms is write/1, which has
already been used many times in this book.

The write/1 predicate takes a single argument, which must be a valid Prolog
term. Evaluating the predicate causes the term to be written to the current output
stream, which by default is the user's screen. (The meaning of current output stream
will be explained in Sections 5.8 and 5.9. At present it can simply be taken to mean
the user's screen.)

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__5,
© Springer-Verlag London 2013

69

70 5 Input and Output

The built-in predicate nl/0 has also been used many times previously in this book.
It takes no arguments. Evaluating a nl goal causes a new line to be output to the
current output stream.

Examples

?- write(26),nl.
26
true.

?- write('a string of characters'),nl.
a string of characters
true.

?- write([a,b,c,d,[x,y,z]]),nl.
[a,b,c,d,[x,y,z]]
true.

?- write(mypred(a,b,c)),nl.
mypred(a,b,c)
true.

?- write('Example of use of nl'),nl,nl,write('end of example'),nl.
Example of use of nl

end of example
true.

Note that atoms that have to be quoted on input (e.g. 'Paul', 'hello world') are not
quoted when output using write. If it is important to output the quotes, the writeq/1
predicate can be used. It is identical to write/1 except that atoms that need quotes
for input are output between quotes (other atoms are not).

?- writeq('a string of characters'),nl.
'a string of characters'
true.

?-writeq(dog),nl.
dog
true.

?- writeq('dog'),nl.
dog
true.

5.3 Inputting Terms 71

5.3 Inputting Terms

The built-in predicate read/1 is provided to input terms. It takes a single argument,
which must be a variable.

Evaluating it causes the next term to be read from the current input stream, which
by default is the user's keyboard. (The meaning of current input stream will be
explained in Sections 5.8 and 5.10. At present it can simply be taken to mean the
user's keyboard.)

In the input stream, the term must be followed by a dot ('.') and at least one white
space character, such as space or newline. The dot and white space characters are
read in but are not considered part of the term.

Note that for input from the keyboard a 'prompt' such as j: (a vertical bar followed
by a colon) will usually be displayed to indicate that user input is required. The
input term has to be followed by a full stop. It will probably also be necessary to
press the 'return' key before Prolog will accept the input.

When a read goal is evaluated, the input term is unified with the argument
variable. If the variable is unbound (which is usually the case) it is bound to the
input value.

?- read(X).
j:jim.
X D jim

?- read(X).
j:26.
X D 26

?- read(X).
j:mypred(a,b,c).
X D mypred(a,b,c)

?- read(Z).
j: [a,b,mypred(p,q,r),[z,y,x]].
Z D [a,b,mypred(p,q,r),[z,y,x]]

?- read(Y).
j: 'a string of characters'.
Y D 'a string of characters'

If the argument variable is already bound (which for most users is far more likely
to occur by mistake than by design), the goal succeeds if and only if the input term
is identical to the previously bound value.

72 5 Input and Output

?- XDfred,read(X).
j:jim.
false.

?- XDfred,read(X).
j:fred.
X D fred

5.4 Input and Output Using Characters

Although input and output of terms is straightforward, the use of quotes and full
stops can be cumbersome and is not always suitable. For example, it would be
tedious to define a predicate (using read) which would read a series of characters
from the keyboard and count the number of vowels. A much better approach for
problems of this kind is to input a character at a time. To do this it is first necessary
to know about the ASCII value of a character.

All printing characters and many non-printing characters (such as space and tab)
have a corresponding ASCII (American Standard Code for Information Interchange)
value, which is an integer from 0 to 255.

The table below gives the numerical ASCII values corresponding to the main
printable characters and some others.

9 tab 40 (59 ; 94 ^
10 end of record 41) 60 < 95 _
32 space 42 * 61 D 96 J
33 ! 43 C 62 > 97–122 a to z
34 '' 44 , 63 ?
35 # 45 - 64 @ 123 f
36 $ 46 . 65-90 A to Z 124 j
37 % 47 / 91 [125 g
38 & 48-57 0 to 9 92 \ 126 �
39 ' 58 : 93]

Characters whose ASCII value is less than or equal to 32 are known as white
space characters.

5.5 Outputting Characters

Characters are output using the built-in predicate put/1. The predicate takes a single
argument, which must be a number from 0 to 255 or an expression that evaluates to
an integer in that range.

5.6 Inputting Characters 73

Evaluating a put goal causes a single character to be output to the current output
stream. This is the character corresponding to the numerical value (ASCII value) of
its argument, for example

?- put(97),nl.
a
true.

?- put(122),nl.
z
true.

?- put(64),nl.
@
true.

5.6 Inputting Characters

Two built-in predicates are provided to input a single character: get0/1 and get/1.
The get0 predicate takes a single argument, which must be a variable. Evaluating a
get0 goal causes a character to be read from the current input stream. The variable
is then unified with the ASCII value of this character.

Note that for input from the keyboard a 'prompt' such as j: (a vertical bar followed
by a colon) will usually be displayed to indicate that user input is required. It will
probably also be necessary to press the 'return' key before Prolog will accept the
input. This also applies to the get predicate described below.

Assuming the argument variable is unbound (which will usually be the case), it
is bound to the ASCII value of the input character.

?- get0(N).
j: a
N D 97

?- get0(N).
j: Z
N D 90

?- get0(M)
j:)
M D 41

74 5 Input and Output

If the argument variable is already bound, the goal succeeds if and only if it has
a numerical value that is equal to the ASCII value of the input character.

?- M is 41,get0(M).
j:)
M D 41

?- M is 50,get0(M).
j:)
false.

The get predicate takes a single argument, which must be a variable. Evaluating
a get goal causes the next non-white-space character (i.e. character with an ASCII
value less than or equal to 32) to be read from the current input stream. The variable
is then unified with the ASCII value of this character in the same way as for get0.

?- get(X).
j: Z
X D 90

?- get(M).
j: Z
M D 90

5.7 Using Characters: Examples

The first example shows how to read in a series of characters from the keyboard
finishing with * and to output their corresponding ASCII values one per line (for all
characters excluding *).

The predicate readin is defined recursively. It causes a single character to be
input and variable X to be bound to its (numerical) ASCII value. The action taken
(the process(X) goal) depends on whether or not X has the value 42 signifying a *
character. If it has, the evaluation of the goal stops. If not, the value of X is output,
followed by a new line, followed by a further call to readin. This process goes on
indefinitely until a * character is read. (In the example below, the ASCII values of
characters P, r, o etc. are correctly shown to be 80, 114, 111 etc.)

readin:-get0(X),process(X).
process(42).
process(X):-XD\D42,write(X),nl,readin.

?- readin.
j: Prolog Example*
80

5.7 Using Characters: Examples 75

114
111
108
111
103
32
69
120
97
109
112
108
101
true.

The next example is an extended version of the one above. This time the ASCII
values of the input characters are not output, but the number of characters (excluding
the *) is output. The count predicate is defined with two arguments which can be
read as 'the number of characters counted so far' and 'the total number of characters
before the *'.

go(Total):-count(0,Total).
count(Oldcount,Result):-

get0(X),process(X,Oldcount,Result).
process(42,Oldcount,Oldcount).
process(X,Oldcount,Result):-

XD\D42,New is OldcountC1,count(New,Result).

?- go(T).
j: The time has come the walrus said*
T D 33

?- go(T)
j:*
T D 0

The final example is a recursive program, based on the previous two, which
shows how to read in a series of characters ending with * and count the number
of vowels. Characters are read in one by one until a character with ASCII value 42
(signifying *) is encountered.

Here the two arguments of the count predicate can be interpreted as 'the number
of vowels so far' and 'the total number of vowels'. The three arguments of the
process predicate can be read as 'the ASCII value of an input character', 'the number
of vowels up to but not including that character' and 'the total number of vowels',
respectively.

76 5 Input and Output

The first two arguments of the processChar predicate can be interpreted in the
same way as for process, but the third argument is 'the number of vowels up to and
including the character (first argument)'.

Predicate vowel tests for one of the 10 possible vowels (five upper case and five
lower case), using their ASCII values.

go(Vowels):-count(0,Vowels).
count(Oldvowels,Totvowels):-

get0(X),process(X,Oldvowels,Totvowels).
process(42,Oldvowels,Oldvowels).
process(X,Oldvowels,Totalvowels):-

XD\D42,processChar(X,Oldvowels,New),
count(New,Totalvowels).

processChar(X,Oldvowels,New):-vowel(X),
New is OldvowelsC1.

processChar(X,Oldvowels,Oldvowels).
vowel(65)./* A */
vowel(69)./* E */
vowel(73)./* I */
vowel(79)./* O */
vowel(85)./* U */
vowel(97)./* a */
vowel(101)./* e */
vowel(105)./* i */
vowel(111)./* o */
vowel(117)./* u */

?- go(Vowels).
j: In the beginning was the word*
Vowels D 8

?- go(Vowels).
j: pqrst*
Vowels D 0

5.8 Input and Output Using Files

Prolog takes all input from the current input stream and writes all output to the
current output stream. By default both of these are the stream named user, denoting
the user's terminal, i.e. keyboard for input and screen for output.

The same facilities available for input and output from and to the user's terminal
either term by term or character by character are also available for input and output
from and to files (e.g. files on a hard disk or a CD-ROM).

5.10 File Input: Changing the Current Input Stream 77

The user may open and close input and output streams associated with any
number of named files but there can only be one current input stream and one current
output stream at any time. Note that no file can be open for both input and output
at the same time (except user) and that the user input and output streams cannot be
closed.

5.9 File Output: Changing the Current Output Stream

The current output stream can be changed using the tell/1 predicate. This takes
a single argument, which is an atom or variable representing a file name, e.g.
tell('outfile.txt').

Evaluating a tell goal causes the named file to become the current output stream.
If the file is not already open, a file with the specified name is first created (any
existing file with the same name is deleted).

Note that the file corresponding to the previous current output stream remains
open when a new current output stream is selected. Only the current output stream
can be closed (using the told predicate described below).

The default current output stream is user, i.e. the user's terminal. This value can
be restored either by using the told predicate or by tell(user).

The built-in predicate told/0 takes no arguments. Evaluating a told goal causes
the current output file to be closed and the current output stream to be reset to user,
i.e. the user's terminal.

The built-in predicate telling/1 takes one argument, which must be a variable and
will normally be unbound. Evaluating a telling goal causes the variable to be bound
to the name of the current output stream.

Output to a File

Although the above definition of tell states that 'any existing file with the same
name is deleted', there is another possible requirement, which is important for
some applications, namely that the file is not deleted and any output is placed after
the end of the existing contents of the file. Both the 'overwrite' and the 'append'
options are likely to be available in any practical implementation of Prolog but
may involve using a different predicate (e.g. append/1) instead of tell. See the
documentation of your version of Prolog for details.

5.10 File Input: Changing the Current Input Stream

The current input stream can be changed using the see/1 predicate. This takes
a single argument, which is an atom or variable representing a file name, e.g.
see('myfile.txt').

78 5 Input and Output

Evaluating a see goal causes the named file to become the current input stream.
If the file is not already open it is first opened (for read access only). If it is not
possible to open a file with the given name, an error will be generated.

Note that the file corresponding to the previous current input stream remains open
when a new current input stream is selected. Only the current input stream can be
closed (using the seen predicate described below).

The default current input stream is user, i.e. the user's terminal. This value can
be restored either by using the seen predicate or by see(user).

The built-in predicate seen/0 takes no arguments. Evaluating a seen goal causes
the current input file to be closed and the current input stream to be reset to user, i.e.
the user's terminal.

The built-in predicate seeing/1 takes one argument, which must be a variable and
will normally be unbound. Evaluating a seeing goal causes the variable to be bound
to the name of the current input stream.

5.10.1 Reading from Files: End of File

If the end of file is encountered when evaluating the goal read(X), variable X will
be bound to the atom end_of_file.

If the end of file is encountered while evaluating the goal get(X) or get0(X),
variable X will be bound to a 'special' numerical value. As ASCII values must be
in the range 0 to 255 inclusive, this will typically be �1, but may vary from one
implementation of Prolog to another.

5.10.2 Reading from Files: End of Record

The end of a line of input at the user's terminal and the end of a record in a file
will typically both be indicated by the ASCII value 10 and that is the assumption
we will make in this book. In some Prolog systems different values are used. (For
example the end of a line of input at the user's terminal is sometimes represented by
13 and the end of a record in a file is sometimes represented by two ASCII values:
13 followed by 10.)

The following program shows how to read in a series of characters from the
keyboard and print them out, one per line.

readline:-get0(X),process(X).
process(10).
process(X):-XD\D10,put(X),nl,readline.

5.11 Using Files: Examples 79

Note the use of put rather than write and that the test for ASCII value 10 avoids
the need for a character such as * to indicate 'end of input'.

?- readline.
j: Prolog test
P
r
o
l
o
g

t
e
s
t

5.11 Using Files: Examples

Example 1

Adapt the final program given in Section 5.7 to read the characters in a text file
myfile.txt until a * character is reached and output the number of vowels to the
user's terminal (i.e. the screen).

Only the first line of the previous program needs to be changed, to:

go(Vowels):-see('myfile.txt'),count(0,Vowels),seen.

Example 2

Define a predicate readterms to read the first four terms from a specified file and
output them to another specified file, one per line.

A suitable definition is given below.

readterms(Infile,Outfile):-
see(Infile),tell(Outfile),
read(T1),write(T1),nl,read(T2),write(T2),nl,
read(T3),write(T3),nl,read(T4),write(T4),nl,
seen,told.

80 5 Input and Output

Assuming the contents of file textfile.txt are the three lines:

'first term'. 'second term'.
'third term'.
'fourth term'. 'fifth term'.

using readterms gives the following brief output:

?- readterms('textfile.txt','outfile.txt').
true.

and creates a file with four lines of text

first term
second term
third term
fourth term

Although the definition of readterms above is correct as far as it goes, the final
two terms (seen and told) will cause the current input and output streams to be set
to user. This could cause problems if readterms were used as a subgoal in a larger
program where the current input and output streams were not necessarily both user
when it was called.

It is good programming practice to restore the original input and output streams
as the final steps when a goal such as readterms is evaluated. This can be achieved
for input by placing the goals seeing(S) and see(S) before and after the other terms
in the body of a rule. The former binds S to the name of the current input stream;
the latter resets the current input stream to S.

A similar effect can achieved for output by placing the goals telling(T) and
tell(T) before and after the other terms in the body of a rule. The former binds T
to the name of the current output stream; the latter resets the current output stream
to T.

Using these conventions, the revised definition of readterms is as follows:

readterms(Infile,Outfile):-
seeing(S),see(Infile),telling(T),tell(Outfile),
read(T1),write(T1),nl,read(T2),write(T2),nl,
read(T3),write(T3),nl,read(T4),write(T4),nl,
seen,see(S),told,tell(T).

Practical Exercise 5 81

Example 3

Define a predicate copychars to copy characters input (as a single line) at the user's
terminal to a specified file, until the character ! is entered (this character should not
be copied).

In the program below, copychars mainly saves and restores the values of the
current input and output streams. The rest of the task is left to copy_characters,
which is defined recursively in a similar way to readin in the first example in
Section 5.7.

copychars(Outfile):- telling(T),tell(Outfile),
copy_characters,told,tell(T).

copy_characters:-get0(N),process(N).
/* 33 is ASCII value of character ! */
process(33).
process(N):-ND\D33,put(N),copy_characters.

Using copychars as follows

?- copychars('myfile.txt').
j: abxyz!
true.

will place the characters abxyz in file myfile.txt.

Chapter Summary

Describes the principal built-in predicates available for both term by term and
character by character input and output and for reading and writing files. Also
introduces the notion of the ASCII value of a character.

Practical Exercise 5

(1) Define a predicate makelower/0 which reads in a line of characters from the
keyboard and outputs it again as a single line with any upper case letters
converted to lower case. (The ASCII values of the characters a, z, A and Z are
97, 122, 65 and 90, respectively.)

82 5 Input and Output

Thus the following would be a typical use of makelower:

?- makelower.
j: This is an Example 123 inCLUDing numbers and symbols C�*/@[] XYz
this is an example 123 including numbers and symbols C�*/@[] xyz

(2) Define a predicate copyterms which reads all the terms in a text file and outputs
them as terms to another text file one by one on separate lines.

The output file should be in a format suitable for use as the input file in a
subsequent call of copyterms. Thus for example if the input file contained

'first term'. 'second term'.
'third term'.

fourth. 'fifth term'.
sixth.

The output file would contain

'first term'.
'second term'.
'third term'.
fourth.
'fifth term'.
sixth.

(3) Create a text file testa.txt containing two lines, each of five characters followed
by a new line, e.g.

abcde
fghij

Define a predicate readfile that will read thirteen characters from this file one by
one and output the ASCII value of each character. Use this to establish whether the
representations of 'end of file' and 'end of record' for your version of Prolog are as
suggested in Sections 5.10.1 and 5.10.2, respectively.

(4) Using a text editor, create two text files in1.txt and in2.txt, each comprising a
number of terms terminated by end.

Practical Exercise 5 83

Define and test a predicate combine that takes the names of two input files as
its first two arguments and the name of an output file as its third argument. The
output file should contain the terms in the first input file followed by the terms in
the second, one per line and terminated by end.

(5) Define and test a predicate compare that reads in two text files term by term
and for each pair of corresponding terms outputs a message either saying that
they are the same or that they are different. Assume that both files contain the
same number of terms and that the final term in each is end.

Chapter 6
Loops

Chapter Aims

After reading this chapter you should be able to:

• Define a predicate which causes a sequence of goals to be evaluated repeatedly,
either a fixed number of times or until a specified condition is satisfied

• Define a predicate which searches a database to find all the clauses with a
specified property.

6.1 Introduction

Most conventional programming languages have a looping facility that enables a
set of instructions to be executed repeatedly either a fixed number of times or until
a given condition is met. Although, as was pointed out in the introduction to this
book, Prolog has no looping facilities, similar effects can be obtained that enable a
sequence of goals to be evaluated repeatedly. This can be done in a variety of ways,
using backtracking, recursion, built-in predicates, or a combination of these.

6.2 Looping a Fixed Number of Times

Many programming languages provide 'for loops' which enable a set of instructions
to be executed a fixed number of times. No such facility is available in Prolog
(directly), but a similar effect can be obtained using recursion, as shown in the
example programs below.

Example 1

The following program outputs integers from a specified value down to 1.

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__6,
© Springer-Verlag London 2013

85

86 6 Loops

loop(0).

loop(N):-N>0,write('The value is: '),write(N),nl,
M is N-1,loop(M).

The loop predicate is defined in terms of itself. The second clause can be thought
of as: 'to loop from N, first write the value of N, then subtract one to give M, then
loop from M'. This process clearly needs to be terminated and this is achieved by
the first clause: 'when the argument is zero, do nothing (and hence stop)'. The first
clause can be regarded as a terminating condition for the recursion.

?- loop(6).
The value is: 6
The value is: 5
The value is: 4
The value is: 3
The value is: 2
The value is: 1
true.

Note the use of the two goals M is N-1,loop(M) in the second clause for the
loop predicate. The obvious alternative of loop(N-1) will not work. Prolog only
evaluates expressions such as N-1 when evaluating goals with functor is or one of
the relational operators, as described in Chapter 4. If N-1 is used as an argument of
a predicate it is taken to mean the term with infix operator - (i.e. a minus sign) and
arguments N and 1. This is most unlikely to be what is intended!

Example 2

The next program outputs integers from First to Last inclusive.

/* output integers from First to Last inclusive */
output_values(Last,Last):- write(Last),nl,

write('end of example'),nl.

output_values(First,Last):-FirstD\DLast,write
(First),nl,N is FirstC1,output_values(N,Last).

Here output_values has two arguments, which can be read as 'output the integers
from First to Last inclusive'. The loop terminates when both arguments are the same.

?- output_values(5,12).
5
6

http://dx.doi.org/10.1007/978-1-4471-5487-7_4

6.2 Looping a Fixed Number of Times 87

7
8
9
10
11
12
end of example
true.

Example 3

Define a predicate to find the sum of the integers from 1 to N (say for N D 100).
It is natural to think of this procedurally, i.e. start with 1, then add 2, then add 3,

then add 4, : : : , then add 100. However the process is much easier to program if
re-expressed declaratively in terms of itself.

The sum of the first 100 integers is the sum of the first 99 integers, plus 100.
The sum of the first 99 integers is the sum of the first 98 integers, plus 99.
The sum of the first 98 integers is the sum of the first 97 integers, plus 98.
...
The sum of the first 3 integers is the sum of the first 2 integers, plus 3.
The sum of the first 2 integers is the sum of the first 1 integers, plus 2.
The sum of the first 1 integers is one.

There are two distinct cases to consider: the general case: 'the sum of the first N
integers is the sum of the first N-1 integers, plus N' and the terminating case: 'the
sum of the first 1 integers is 1'. This leads directly to the recursive definition:

/* sum the integers from 1 to N (the first argument)
inclusive */
sumto(1,1).

sumto(N,S):-N>1,N1 is N-1,sumto(N1,S1),S is S1CN.

?- sumto(100,N).
N D 5050

?- sumto(1,1).
true.

Note that using the additional variable N1 for holding the value of N-1 is
essential. Writing sumto(N-1,S1) etc. instead would not work correctly. N-1 is a
term, not a numerical value.

88 6 Loops

Example 4

Define a predicate to output the squares of the first N integers, one per line.
This can most easily be programmed if first recast in a recursive form, as follows.

To output the squares of the first N integers, output the squares of the first N-1 and
then output N2

To output the squares of the first N-1 integers, output the squares of the first N-2 and
then output (N-1)2

To output the squares of the first N-2 integers, output the squares of the first N-3 and
then output (N-2)2

...
To output the squares of the first 3 integers, output the squares of the first 2 and then

output 32

To output the squares of the first 2 integers, output the squares of the first 1 and then
output 22

To output the squares of the first 1 integers, output the number 1

Here the general case is 'to output the squares of the first N integers, output the
squares of the first N�1 and then output N2' and the terminating case is 'to output
the squares of the first 1 integers, output the number 1'. This leads to the following
two-clause program.

/* output the first N squares, one per line */
writesquares(1):-write(1),nl.

writesquares(N):-N>1,N1 is N-1,writesquares(N1),
Nsq is N*N,write(Nsq),nl.

?- writesquares(6).
1
4
9
16
25
36
true

Example 5

The following program reads the first 6 terms from a specified file and writes them
to the current output stream. It uses a 'counting down' method, in a similar way to
Example 1.

6.3 Looping Until a Condition Is Satisfied 89

read_six(Infile):-seeing(S),see(Infile),

process_terms(6),seen,see(S).
process_terms(0).
process_terms(N):-N>0,read(X),write(X),nl,N1 is N-1,
process_terms(N1).

6.3 Looping Until a Condition Is Satisfied

Many languages have an 'until loop' which enables a set of instructions to be
executed repeatedly until a given condition is met. Again, no such facility is
available directly in Prolog, but a similar effect can be obtained in several ways.

6.3.1 Recursion

The first example below shows the use of recursion to read terms entered by the user
from the keyboard and output them to the screen, until end is encountered.

go:-loop(start). /* start is a dummy value used to
get the looping process started.*/

loop(end).
loop(X):-X\Dend,write('Type end to end: '),read(Word),

write('Input was '),write(Word),nl,loop(Word).

?- go.
Type end to end: university.
Input was university
Type end to end: of.
Input was of
Type end to end: portsmouth.
Input was portsmouth
Type end to end: end.
Input was end
true.

90 6 Loops

Using the disjunction operator ;/2 which was defined in Section 4.4 the above
program can be rewritten as a single clause.

loop:-write('Type end to end: '),read(Word),
write('Input was '),write(Word),nl,
(WordDend;loop).

The 'disjunctive goal' (WordDend;loop) succeeds if variable Word is bound to
the atom end. If not, the system attempts to satisfy the goal loop recursively.

?- loop.
Type end to end: university.
Input was university
Type end to end: of.
Input was of
Type end to end: portsmouth.
Input was portsmouth
Type end to end: end.
Input was end
true.

This recursive program repeatedly prompts the user to enter a term until either
yes or no is entered.

get_answer(Ans):-write('Enter answer to question'),
nl,get_answer2(Ans).

get_answer2(Ans):-
write('answer yes or no: '),
read(A),
((valid(A),AnsDA,write('Answer is '),
write(A),nl);get_answer2(Ans)).
valid(yes). valid(no).

?- get_answer(Myanswer).
Enter answer to question
answer yes or no: maybe.
answer yes or no: possibly.
answer yes or no: yes.
Answer is yes
Myanswer D yes

http://dx.doi.org/10.1007/978-1-4471-5487-7_4

6.3 Looping Until a Condition Is Satisfied 91

6.3.2 Using the 'repeat' Predicate

Although it can often be used to great effect, recursion is not always the easiest way
to provide the types of looping required in Prolog programs. Another method that is
often used is based on the built-in predicate repeat.

The name of this predicate is really a misnomer. The goal repeat does not repeat
anything; it merely succeeds whenever it is called. The great value of repeat is that
it also succeeds (as many times as necessary) on backtracking. The effect of this, as
for any other goal succeeding, is to change the order of evaluating goals from 'right
to left' (i.e. backtracking) back to 'left-to-right'. This can be used to create a looping
effect, as shown in the examples below.

This program repeatedly prompts the user to enter a term until either yes or no is
entered. It is an alternative to the recursive program shown at the end of the previous
section. In this case it is debatable whether using repeat is an improvement on using
recursion, but the example is included for purposes of illustration.

get_answer(Ans):-
write('Enter answer to question'),nl,
repeat,write('answer yes or no: '),read(Ans),
valid(Ans),write('Answer is '),write(Ans),nl.

valid(yes). valid(no).

The first five goals in the body of get_answer will always succeed. Evaluating
the fifth goal: read(Ans) will prompt the user to enter a term. If the term input is
anything but yes or no, say unsure, the following goal valid(Ans) will fail. Prolog
will then backtrack over read(Ans) and write('answer yes or no'), both of which
are unresatisfiable, i.e. will always fail on backtracking.

Backtracking will then reach the predicate repeat and succeed, causing evalu-
ation to proceed forward (left-to-right) again, with write('answer yes or no') and
read(Ans) both succeeding, followed by a further evaluation of valid(Ans).

Depending on the value of Ans, i.e. the user's input, the valid(Ans) goal will
either fail, in which case Prolog will backtrack as far as repeat, as before, or it will
succeed in which case the final three goals write('Answer is'), write(Ans) and nl
will all succeed. The overall effect is that the two goals write('answer yes or no')
and read(Ans) are called repeatedly until the terminating condition valid(Ans) is
satisfied, effectively creating a loop between repeat and valid(Ans).

?- get_answer(X).
Enter answer to question
answer yes or no: unsure.
answer yes or no: possibly.
answer yes or no: no.
answer is no
X D no

92 6 Loops

Goals to the left of repeat in the body of a clause will never be reached on
backtracking.

The next program reads a sequence of terms from a specified file and outputs
them to the current output stream until the term end is encountered.

readterms(Infile):-
seeing(S),see(Infile),
repeat,read(X),write(X),nl,XDend,
seen,see(S).

In a similar way to the previous program, this effectively defines a loop between
the goals repeat and XDend.

If file myfile.txt contains the lines

'first term'. 'second term'.
'third term'. 'fourth term'.
'fifth term'. 'sixth term'.
'seventh term'.
'eighth term'.
end.

calling readterms will produce the following output

?- readterms('myfile.txt').
first term
second term
third term
fourth term
fifth term
sixth term
seventh term
eighth term
end
true.

This program shows how to implement a menu structure which loops back
repeatedly to request more input. Entering go at the prompt causes Prolog to output a
menu from which the user can choose activities one at a time until option d is chosen.
Note that all inputs are terms and so must be followed by a full stop character.

6.3 Looping Until a Condition Is Satisfied 93

go:- write('This shows how a repeated menu works'),
menu.

menu:-nl,write('MENU'),nl,
write('a. Activity A'),nl,write('b. Activity B'),nl,
write('c. Activity C'),nl,write('d. End'),nl,

read(Choice),nl,choice(Choice).

choice(a):-write('Activity A chosen'),menu.
choice(b):-write('Activity B chosen'),menu.
choice(c):-write('Activity C chosen'),menu.
choice(d):-write('Goodbye!'),nl.
choice(_):-write('Please try again!'),menu.

?- go.
This shows how a repeated menu works
MENU
a. Activity A
b. Activity B
c. Activity C
d. End
: b.

Activity B chosen
MENU
a. Activity A
b. Activity B
c. Activity C
d. End
: xxx.

Please try again!
MENU
a. Activity A
b. Activity B
c. Activity C
d. End
: d.

Goodbye!
true.

94 6 Loops

6.4 Backtracking with Failure

As the name implies, the predicate fail always fails, whether on 'standard' evaluation
left-to-right or on backtracking. Advantage can be taken of this, combined with
Prolog's automatic backtracking, to search through the database to find all the
clauses with a specified property.

6.4.1 Searching the Prolog Database

Supposing the database contains clauses such as

dog(fido).
dog(fred).
dog(jonathan).

Each dog clause can be processed in turn using the alldogs predicate defined
below.

alldogs:-dog(X),write(X),write(' is a dog'),nl,fail.
alldogs.

Calling alldogs will cause dog(X) to be matched with the dog clauses in the
database. Initially X will be bound to fido and 'fido is a dog' will be output. The
final goal in the first clause of the alldogs predicate will then cause evaluation to
fail. Prolog will then backtrack over nl and the two write goals (all of which are
unresatisfiable) until it reaches dog(X). This goal will succeed for a second time
causing X to be bound to fred.

This process will continue until fido, fred and jonathan have all been output,
when evaluation will again fail. This time the call to dog(X) will also fail as there
are no further dog clauses in the database. This will cause the first clause for alldogs
to fail and Prolog to examine the second clause of alldogs. This will succeed and
evaluation will stop.

The effect is to loop through the database finding all possible values of X that
satisfy the goal dog(X).

?- alldogs.
fido is a dog
fred is a dog
jonathan is a dog
true.

6.4 Backtracking with Failure 95

Note the importance of the second clause of the alldogs predicate. It is there to
ensure that, after the database has been searched, the goal succeeds. With only the
first line, any call to alldogs will eventually fail.

alldogs:-dog(X),write(X),write(' is a dog'),nl,fail.

?- alldogs.
fido is a dog
fred is a dog
jonathan is a dog
false.

The next program is designed to search a database containing clauses represent-
ing the name, age, place of residence and occupation of a number of people.

If the database contains these five clauses

person(john,smith,45,london,doctor).
person(martin,williams,33,birmingham,teacher).
person(henry,smith,26,manchester,plumber).
person(jane,wilson,62,london,teacher).
person(mary,smith,29,glasgow,surveyor).

The names of all the teachers can be found using the allteachers predicate.

allteachers:-person(Forename,Surname,_,_,teacher),
write(Forename),write(' '),write(Surname),nl,
fail.

allteachers.

The effect of using backtracking with failure in this case is to find all the teachers
in the database.

?- allteachers.
martin williams
jane wilson
true.

If the second clause of allteachers were omitted, both teachers would still be
found but the evaluation of allteachers would end with failure. This is of little or
no importance when a goal is entered at the system prompt, but if allteachers were
used as a goal in the body of a rule it would obviously be desirable to ensure that it
always succeeded.

96 6 Loops

It should be noted that it is not always necessary to use 'backtracking with failure'
to search the database. For example, the predicate somepeople/0 defined below will
find all the people in the database given previously, down to williams, using only
standard backtracking.

somepeople:-person(Forename,Surname,_,_,_),
write(Forename),write(' '),write(Surname),nl,
SurnameDwilliams.

somepeople.

The goal SurnameDwilliams succeeds if the variable Surname is bound to
williams. If not, it fails. The effect is to search the database down to and including
the person clause with second argument williams.

?- somepeople.
john smith
martin williams
true.

6.4.2 Finding Multiple Solutions

Backtracking with failure can also be used to find all the ways of satisfying a
goal. Suppose that a predicate findroute(Town1,Town2,Route) finds a route Route
between two towns Town1 and Town2. The details of this predicate are irrelevant
here. It may be assumed that Town1 and Town2 are atoms and that Route is a list.

Backtracking with failure can then be used to find all possible routes between
Town1 and Town2 and write out each one on a separate line, as follows:

find_all_routes(Town1,Town2):-
findroute(Town1,Town2,Route),
write('Possible route: '),write(Route),nl,fail.

find_all_routes(_,_).

Chapter Summary

This chapter describes how a set of goals can be evaluated repeatedly in Prolog,
either a fixed number of times or until a specified condition is met, and how
multiple solutions can be arrived at using the technique of 'backtracking with
failure'.

Practical Exercise 6 97

Practical Exercise 6

(1) Define a predicate to output the values of the squares of the integers from N1 to
N2 inclusive and test it with N1 D 6 and N2 D 12.

(2) Define and test a predicate to read in a series of characters input by the user and
output all of those before the first new line or ? character.

(3) Using the person clauses given in Section 6.4.1, find the professions of all those
over 40.

Chapter 7
Preventing Backtracking

Chapter Aims

After reading this chapter you should be able to:

• Use the cut predicate to prevent unwanted backtracking
• Use ‘cut with failure’ to specify exceptions to general rules.

7.1 Introduction

Backtracking (as described in Chapter 3) is a fundamental part of the process by
which the Prolog system satisfies goals. However, it can sometimes be too powerful
and lead to inappropriate results. This chapter is about preventing the Prolog system
from backtracking using a built-in predicate called cut, which is written as an
exclamation mark ! character.

Before going on, it is worth issuing a warning. Many Prolog users see preventing
backtracking using ‘cut’ as being ‘against the spirit of the language’ and some would
even like to see it banned altogether! It is included in the language (and in this book)
because it can sometimes be very useful. When used badly, it can also be a cause of
programming errors that are very hard to find. The best advice is probably to use it
only sparingly and with care.

7.2 The Cut Predicate

We start by giving two examples of predicate definitions that appear correct but give
erroneous results when used with backtracking.

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__7,
© Springer-Verlag London 2013

99

http://dx.doi.org/10.1007/978-1-4471-5487-7_3

100 7 Preventing Backtracking

Example 1

The larger predicate takes the value of the larger of its first two arguments (which
are assumed to be numbers) and returns it as the value of the third.

larger(A,B,A):-A>B.
larger(A,B,B).

With the usual ‘top to bottom’ searching of clauses, the second clause can
reasonably be assumed to apply only when A is less than or equal to B. Testing
the definition with 8 and 6 as the first two arguments gives the correct answer.

?- larger(8,6,X).
X D 8

However, if the user forces the system to backtrack at this stage, it will go on to
examine the second clause for larger and generate an incorrect second answer.

?- larger(8,6,X).
X D 8;
X D 6
?-

Example 2

The definition of predicate sumto/2 given below is a slightly modified version of
the one given in Chapter 6. It still appears to be correct, but has a serious flaw.

The goal sumto(N,S) causes the sum of the integers from 1 to N to be calculated
and returns the answer as the value of S.

sumto(1,1).
sumto(N,S):-N1 is N-1,sumto(N1,S1),

S is S1CN.

?- sumto(3,S).
S D 6

However, forcing backtracking will now cause the system to crash with a cryptic
error message, such as ‘stack overflow’. Whilst evaluating the goal sumto(3,S) the
Prolog system will try to find a solution for the goal sumto(1,S). The first time it
does this the first clause is used and the second argument is correctly bound to 1. On
backtracking the first clause is rejected and the system attempts to satisfy the goal
using the second clause. This causes it to subtract one from one and then evaluate
the goal sumto(0,S). Doing this will in turn require it to evaluate sumto(�1,S1),
then sumto(�2,S1) and so on, until eventually the system runs out of memory.

http://dx.doi.org/10.1007/978-1-4471-5487-7_6

7.2 The Cut Predicate 101

Examples 1 and 2 could both be remedied by using additional goals in the
definition of the predicates, e.g. by changing the second clause of the definition
of larger to

larger(A,B,B):-AD<B.

and the second clause in the definition of sumto to

sumto(N,S):-N>1,N1 is N-1,sumto(N1,S1),S is S1CN.

However, in other cases identifying such additional terms can be considerably
more difficult.

A more general way to avoid unwanted backtracking is to use a cut. The goal !
(pronounced ‘cut’) in the body of a rule always succeeds when first evaluated. On
backtracking it always fails and prevents any further evaluation of the current goal,
which therefore fails.

Example 1 (revised)

larger(A,B,A):-A>B,!.
larger(A,B,B).

?- larger(8,6,X).
X D 8
?-

Example 2 (revised)

sumto(1,1):-!.
sumto(N,S):-N1 is N-1,sumto(N1,S1),

S is S1CN.

?- sumto(6,S).
S D 21
?-

Note that backtracking over a cut not only causes the evaluation of the current
clause of larger or sumto to be abandoned but also prevents the evaluation of any
other clauses for that predicate.

102 7 Preventing Backtracking

Example 3

The following incorrect program defines a predicate classify/2 that classifies a
number (its first argument) as either positive, negative or zero. The first clause deals
explicitly with the case where the first argument is zero. The second deals with a
negative value, leaving the third to deal with positive values.

/* classify a number as positive, negative or zero */
classify(0,zero).
classify(N,negative):-N<0.
classify(N,positive).

However, as before, the absence of a specific test for a positive argument causes
problems when the user forces the system to backtrack.

?- classify(0,N).
N D zero;
N D positive

?- classify(�4,X).
X D negative;
X D positive
?-

This can be rectified either by changing the third clause to

classify(N,positive):-N>0.

or by using cuts.

Example 3 (revised)

classify(0,zero):-!.
classify(N,negative):-N<0,!.
classify(N,positive).

?- classify(0,N).
N D zero

?- classify(�4,N).
N D negative
?-

7.2 The Cut Predicate 103

So far all the incorrect programs could have been rectified by adding an additional
goal to one of the clauses rather than using cuts, and that would probably have been
the better approach. The following example shows a more difficult case.

Example 4

A very common requirement is to prompt the user for an answer to a question
until a valid answer (e.g. yes or no) is entered. The following program does this
using a repeat loop, but unhelpfully will continue to prompt for valid answers on
backtracking.

get_answer(Ans):-
write('Enter answer to question'),nl,
repeat,write('answer yes or no: '),read(Ans),
valid(Ans),write('Answer is '),write(Ans),nl.

valid(yes).
valid(no).

?- get_answer(X).
Enter answer to question
answer yes or no: maybe.
answer yes or no: yes.
Answer is yes
X D yes;
answer yes or no: no.
Answer is no
X D no;
answer yes or no: unsure.
answer yes or no: yes.
Answer is yes
X D yes

(and so on indefinitely).

Example 4 (revised)

Adding a final cut to the definition of get_answer will prevent the unwanted
backtracking.

get_answer(Ans):-
write('Enter answer to question'),nl.
repeat,write('answer yes or no: '),read(Ans),
valid(Ans),write('Answer is '),write(Ans),nl,!.

valid(yes).
valid(no).

104 7 Preventing Backtracking

?- get_answer(X).
Enter answer to question
answer yes or no: maybe.
answer yes or no: unsure.
answer yes or no: yes.
Answer is yes
X D yes
?-

The above example, like all the other examples in this chapter so far, illustrates
the solution to a problem that could have been avoided if the user had not chosen
to force the system to backtrack. In practice, it is most unlikely that anyone would
want to do so. The prevention of unwanted backtracking is of much more practical
importance when one predicate ‘calls’ another (i.e. makes use of another as a goal
in the body of one of its clauses). This can lead to apparently inexplicable results.

Example 5

The go predicate in the following program uses a repeat loop to prompt the user for
input until a positive number is entered. However, the lack of cuts in the definition
of the classify predicate leads to incorrect answers.

classify(0,zero).
classify(N,negative):-N<0.
classify(N,positive).
go:-write(start),nl,
repeat,write('enter a positive value'),read(N),
classify(N,Type),TypeDpositive,
write('positive value is '),write(N),nl.

?- go.
start
enter a positive value: 28.
positive value is 28
true.

?- go.
start
enter a positive value: -6.
positive value is �6
true.

?- go.
start
enter a positive value: 0.

7.3 Cut with Failure 105

positive value is 0
true.

(In each case the system gives the user the option to backtrack to find more
possible solutions. It is assumed that the user presses the 'return' key to suppress
backtracking.)

Changing the definition of classify to the one given in Example 3 (revised) above
and placing a cut at the end of the final clause gives the expected behaviour for go.

Example 5 (revised)

classify(0,zero):-!.
classify(N,negative):-N<0,!.
classify(N,positive).
go:-write(start),nl,
repeat,
write('enter a positive value: '),read(N),
classify(N,Type),
TypeDpositive,
write('positive value is '),write(N),nl,!.

?- go.
start
enter a positive value: -6.
enter a positive value: -7.
enter a positive value: 0.
enter a positive value: 45.
positive value is 45
true.

7.3 Cut with Failure

Another use of ‘cut’ that can sometimes be helpful is to specify exceptions to general
rules.

Suppose that we have a database of the names of birds, such as

bird(sparrow).
bird(eagle).
bird(duck).
bird(crow).

106 7 Preventing Backtracking

bird(ostrich).
bird(puffin).
bird(swan).
bird(albatross).
bird(starling).
bird(owl).
bird(kingfisher).
bird(thrush).

A natural rule to add to this would be

can_fly(X):-bird(X).

corresponding to ‘all birds can fly’.
Unfortunately this rule is over general. There are a few exceptions, notably that

ostriches cannot fly. How can we ensure that the goal can_fly(ostrich) will always
fail? The obvious approach is to change the definition of the can_fly predicate to

can_fly(ostrich):-fail.
can_fly(X):-bird(X).

However this does not give the desired result:

?- can_fly(duck).
true.

?- can_fly(ostrich).
true.

The can_fly(ostrich) goal is matched with the head of the first can_fly clause.
Attempting to satisfy the goal in the body of that clause (i.e. fail) obviously fails,
so the system next looks at the second can_fly clause. The goal matches with the
head, and the goal in the body of the clause, i.e. bird(X) is also satisfied, so the
can_fly(ostrich) goal succeeds. This is obviously not what was intended.

The desired effect can be achieved by replacing the can_fly clauses by

can_fly(ostrich):-!,fail.
can_fly(X):-bird(X).

?- can_fly(duck).
true.

?- can_fly(ostrich).
false.

Practical Exercise 7 107

As before, the can_fly(ostrich) goal is matched with the head of the first can_fly
clause. Attempting to satisfy the goal in the body of that clause (i.e. fail) fails, but
the cut prevents the system from backtracking and so the can_fly(ostrich) goal fails.

The combination of goals !,fail is known as cut with failure.

Chapter Summary

This chapter describes how the ‘cut’ predicate can be used to prevent undesirable
backtracking and how ‘cut’ can be used in conjunction with the ‘fail’ predicate to
specify exceptions to general rules.

Practical Exercise 7

(1) The predicate defined below is intended to correspond to the mathematical
function factorial. The factorial of a positive integer N is defined as the product
of all the integers from 1 to N inclusive, e.g. the factorial of 6 is 1 � 2 � 3 � 4
� 5 � 6 D 720.

factorial(1,1).
factorial(N,Nfact):-N1 is N-1,

factorial(N1,Nfact1),Nfact is N*Nfact1.

The definition of the factorial predicate is incorrect as given, and using it can
cause the system to crash.

Demonstrate that this definition is incorrect by entering a goal such as facto-
rial(6,N). Use backtracking to try to find more than one solution.

Correct the program and use it to find the factorials of 6 and 7.

(2) The following is part of a program that defines a predicate go which prompts
the user to input a series of numbers ending with 100 and outputs a message
saying whether each is odd or even.

go:-repeat,read_and_check(N,Type),
write(N),write(' is '),write(Type),nl,ND:D100.

Complete the program by defining the predicate read_and_check to obtain
output such as that given below. Your program should use at least one cut.

?- go.
Enter next number: 23.
23 is odd

108 7 Preventing Backtracking

Enter next number: -4.
-4 is even
Enter next number: 13.
13 is odd
Enter next number: 24.
24 is even
Enter next number: 100.
100 is even
true.

Chapter 8
Changing the Prolog Database

Chapter Aims

After reading this chapter you should be able to:

• Define a predicate which causes one or more clauses to be added to or deleted
from the Prolog database

• Define predicates to create and manipulate a database of related facts within the
Prolog database.

8.1 Changing the Database: Adding and Deleting Clauses

The normal way of placing clauses in the Prolog database is to consult a file. This
causes all the clauses in the file to be loaded into the database. Any existing clauses
for the same predicates are first deleted.

Clauses placed into the database this way normally stay there until replaced by a
subsequent consult, or until the user exits from the Prolog system when all clauses
are automatically deleted. For most purposes this is entirely sufficient. However
Prolog also has built-in predicates for adding clauses to and deleting clauses from
the database which can be useful for more advanced programming in the language.
Like many other advanced features, they need to be used with care. These built-in
predicates can be used either in the body of a rule or as directives entered at the
system prompt.

As the user’s program and the Prolog database are equivalent, using them in
the body of a rule can give the effect of modifying the user’s program while it is
executing.

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__8,
© Springer-Verlag London 2013

109

110 8 Changing the Prolog Database

Static and dynamic predicates

If one or more clauses for a predicate, say mypred/3, are loaded into the database
from a program file using the consult/1 predicate, the predicate is regarded as
static.

In this chapter facilities are described to add clauses to the database without using
consult/1 and also to remove predicates from the database. However if these are
to be applied to any predicates loaded using consult it is first necessary to tell the
system to treat the predicates as dynamic. This can be done using directives such
as

?-dynamic(mypred/3).

The directive should be added (including the ?- prompt) to the program file at or
near the start and certainly before the first clause for the mypred predicate.

If the dynamic directive is left out, attempts to modify the database using the
methods described below are likely to produce error messages such as ‘Predicate
Protected’ or ‘No permission to modify static procedure’.

(Note that if consult is used with one or more 'dynamic' directives in this way,
any existing clauses for the predicates specified as dynamic are not automatically
deleted when the new clauses are loaded. In this case the new clauses for the
'dynamic' predicates are placed after the existing ones in the database.)

8.2 Adding Clauses

Two main predicates are available for adding clauses to the database. Both take a
single argument, which must be a clause, i.e. a fact or a rule.

assertz(Clause)

The predicate assertz/1 causes Clause to be added to the database at the end of the
sequence of clauses that define the corresponding predicate.

The clause used for the first argument should be written without a terminating
full stop. Rules must be enclosed in an additional pair of parentheses, e.g.

?-assertz(dog(fido)).

?-assertz((go:-write('hello world'),nl)).

The clause may include one or more variables, e.g.

?-assertz(dog(X)).

?-assertz((go(X):-write('hello'),write(X),nl)).

8.3 Deleting Clauses 111

asserta(Clause)

The predicate asserta/1 causes Clause to be added to the database at the start of the
sequence of clauses that define the corresponding predicate.

The clause used for the first argument should be written without a terminating
full stop. Rules must be enclosed in an additional pair of parentheses, e.g.

?-asserta(dog(fido)).

?-asserta((go:-write('hello world'),nl)).

8.3 Deleting Clauses

Two main predicates are available for deleting clauses from the database.

retract(Clause)

The predicate retract/1 takes a single argument, which must be a clause, i.e. a fact
or a rule. It causes the first clause in the database that matches (i.e. unifies with)
Clause to be deleted.

If the user’s program file contains

?-dynamic(dog/1).
dog(jim).
dog(fido).
dog(henry).
dog(X).

consulting the file places the four dog clauses in the database and makes predicate
dog 'dynamic'. Now the query

?-retract(dog(fido)).

will delete the second clause and the further query

?-retract(dog(X)).

will delete the dog(jim) clause, which is the first one of the remaining clauses to
unify with the query. The system will pause to allow the user to force it to backtrack.
We will assume that the user presses the 'return' key to suppress backtracking at this
point.

112 8 Changing the Prolog Database

This will leave the dog(henry) and dog(X) clauses in the database. Although
unusual, the latter is a valid Prolog fact which signifies ‘everything is a dog’.

retractall(Head)

The predicate retractall/1 takes a single argument which must be the head of a
clause. It causes every clause in the database whose head matches Head to be
deleted. The retractall goal always succeeds even if no clauses are deleted.

Some examples are:

?-retractall(mypred(_,_,_)).

which deletes all the clauses for the mypred/3 predicate, and

?-retractall(parent(john,Y)).

which deletes all clauses for the parent/2 predicate which have the atom john as
their first argument.

Note that the query

?-retractall(mypred).

only removes the clauses for predicate mypred/0, i.e. the atom mypred. To delete
all the clauses for predicate mypred/3 it is necessary to use

?-retractall(mypred(_,_,_)).

with three anonymous variables.

8.4 Changing the Database: Example

The following example, which comprises a series of goals entered at the system
prompt, illustrates the use of the assertz, asserta, retract and retractall predicates
for changing the database.

?- assertz(mypred(first)). Four mypred clauses are added to
the database.

true.
?- assertz(mypred(second)).
true.
?- assertz(mypred(third)).
true.
?- assertz(mypred(fourth)).
true.
?- listing(mypred). The four mypred clauses are now in

the database.

8.4 Changing the Database: Example 113

/* mypred/1 */
mypred(first).
mypred(second).
mypred(third).
mypred(fourth).
true.
?- asserta(mypred(new1)). A new mypred clause is added to the

database, using the asserta
predicate.

true.

?- listing(mypred). This shows that asserta places the
new clause above the other mypred
clauses in the database.

:- dynamic mypred/1.
mypred(new1).
mypred(first).
mypred(second).

A message indicating that mypred/1 is
dynamic is also displayed. Any
predicate not already in the
database that is created using
assertz/1 or asserta/1 will auto-
matically be treated as dynamic.

mypred(third).
mypred(fourth).
true.

?- assertz(mypred(new2)). A further mypred clause is added to
the database using the assertz
predicate.

true.

?- listing(mypred). This shows that assertz places the
new clause below the other mypred
clauses in the database.

:- dynamic mypred/1.
mypred(new1).
mypred(first).
mypred(second).
mypred(third).
mypred(fourth).
mypred(new2).
true.

?- mypred(X). This shows that retrieving mypred
clauses from the database will
give the first one listed by the
listing predicate.

X D new1 ;
X D first ;
X D second ;

X D third ; Subsequent backtracking will obtain
the remaining clauses in top to
bottom order.

X D fourth ;
X D new2
?- retract(mypred(first)). One of the mypred clauses is removed

from the database using the
retract predicate.

true.

?- listing(mypred).
This shows that it has successfully

been removed.
:- dynamic mypred/1.
mypred(new1).
mypred(second).
mypred(third).
mypred(fourth).
mypred(new2).
true.

114 8 Changing the Prolog Database

?- retractall(mypred(_)). This is the correct way to remove all
mypred clauses with one argument
from the database.

true.

?- listing(mypred). This shows that all the
mypred clauses have
been removed.

:- dynamic mypred/1.
true.

8.5 Maintaining a Database of Facts

The predicates assertz, retract etc. can be used to create and maintain a database
of related facts within the full Prolog database of facts and rules.

Creating a Database

Assume file people.txt contains the six lines

john. smith. 45. london. doctor.
martin. williams. 33. birmingham. teacher.
henry. smith. 26. manchester. plumber.
jane. wilson. 62. london. teacher.
mary. smith. 29. glasgow. surveyor.
end.

Assume also that there is a program file containing the following.

setup:-seeing(S),see('people.txt'),
read_data,
write('Data read'),nl,
seen,see(S).

read_data:-
read(A),process(A).

process(end).
process(A):-
read(B),read(C),read(D),read(E),
assertz(person(A,B,C,D,E)),read_data.

8.5 Maintaining a Database of Facts 115

Consulting the program file and then entering the query

?-setup.

will cause the file people.txt to be read and five clauses such as

person(john,smith,45,london,doctor).

to be added to the Prolog database.

?- setup.
Data read
true.

The listing predicate can be used to show all the clauses defining the person
predicate.

?- listing(person).
:- dynamic person/5.

person(john, smith, 45, london, doctor).
person(martin, williams, 33, birmingham, teacher).
person(henry, smith, 26, manchester, plumber).
person(jane, wilson, 62, london, teacher).
person(mary, smith, 29, glasgow, surveyor).
true.

The effect is almost the same as if the five person clauses had been included in
the original program file. The only difference is that since the person clauses were
not (directly) loaded from a program file using consult but were read in from a data
file and entered into the database using the assertz predicate the system considers
the predicate person/5 to be dynamic not static.

Removing a Clause

Predicate remove will delete a single clause from the database.

remove(Forename,Surname):-
retract(person(Forename,Surname,_,_,_)).

?- remove(henry,smith).
true.

?- listing(person).

:- dynamic person/5.

person(john, smith, 45, london, doctor).

116 8 Changing the Prolog Database

person(martin, williams, 33, birmingham, teacher).
person(jane, wilson, 62, london, teacher).
person(mary, smith, 29, glasgow, surveyor).
true.

Changing a Clause

Predicate change will change a clause by retracting the old version and asserting a
new one.

change(Forename,Surname,New_Profession):-
person(Forename,Surname,Age,City,Profession),
retract(person(Forename,Surname,Age,City,Profession)),
assertz(person(Forename,Surname,Age,City,New_Profession)).

?- change(jane,wilson,architect).
true.

?- listing(person).

:- dynamic person/5.

person(john, smith, 45, london, doctor).
person(martin, williams, 33, birmingham, teacher).
person(mary, smith, 29, glasgow, surveyor).
person(jane, wilson, 62, london, architect).
true.

Outputting the Database to a File

Predicate output_data will write out the person clauses to a new file in the same
format as the original file.

output_data:-
telling(T),tell('people2.txt'),
write_data,told,tell(T),
write('Data written'),nl.

write_data:-person(A,B,C,D,E),
write(A),write('. '),
write(B),write('. '),

Practical Exercise 8 117

write(C),write('. '),
write(D),write('. '),
write(E),write('.'),nl,
fail.

write_data:-write('end.'),nl.

?- output_data.
Data written

true.

creates file people2.txt

john. smith. 45. london. doctor.
martin. williams. 33. birmingham. teacher.
mary. smith. 29. glasgow. surveyor.
jane. wilson. 62. london. architect.
end.

Chapter Summary

This chapter describes the built-in predicates for adding clauses to or deleting
clauses from the Prolog database and shows how to use them to create and
maintain a database of related facts within the overall Prolog database.

Practical Exercise 8

(1) Define and test a predicate add_data which reads a series of names of animals
(e.g. cat, dog, mouse) entered by the user, terminated by end. It should add a
corresponding series of facts, e.g. animal(dog) to the Prolog database, ignoring
any names that have already been entered.

(2) Define and test a predicate display_animals which lists the names of all the
animals in the database, one per line.

(3) Define and test a predicate remove2 which removes any clauses corresponding
to either a dog or a cat from the database, if they are present, and otherwise has
no effect.

Chapter 9
List Processing

Chapter Aims

After reading this chapter you should be able to:

• Represent data in the form of lists
• Use built-in predicates to manipulate lists
• Define predicates to work through a list element by element from left to right

using recursion.

9.1 Representing Data as Lists

Prolog’s compound terms give a flexible way of representing data, especially as the
arguments may be other terms of any complexity. For example, the following is a
valid term: mypred(a,-6.3,pred2(p,pred3(3,q,aaa),r)).

However, in common with most other programming languages, compound terms
suffer from the limitation that each predicate must have a fixed number of argu-
ments. It is possible to use mypred sometimes with three arguments and sometimes
with four, say, but Prolog regards these as two entirely different predicates.

To overcome this limitation, Prolog provides a very flexible type of data object
called a list. A list is written as a sequence of values, known as list elements,
separated by commas and enclosed in square brackets, e.g. [dog,cat,fish,man].

A list element does not have to be an atom. It can be any Prolog term, including
a bound or unbound variable or another list, so [X,Y,mypred(a,b,c),[p,q,r],z] is a
valid list. A list element that is itself a list is known as a sublist.

Lists can have any number of elements, including zero. The list with no elements
is known as the empty list and is written as [].

For non-empty lists, the first element is known as the head. The list remaining
after the first element is removed is called the tail. For example, the head of the list
[dog,cat,fish,man] is the atom dog and the tail is the list [cat,fish,man].

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__9,
© Springer-Verlag London 2013

119

120 9 List Processing

The head of list [x,y,mypred(a,b,c),[p,q,r],z] is the atom x. The tail is the list
[y,mypred(a,b,c),[p,q,r],z].

Some further examples of lists are:

[john,mary,10,robert,20,jane,X,bill]
[[john,28],[mary,56,teacher],robert,parent(victoria,albert),[a,b,[c,d,e],f],28]
[[portsmouth,london,glasgow],[portsmouth,london,edinburgh],[glasgow]]

9.2 Notation for Lists

Up to now lists have been written as a sequence of list elements written in order,
separated by commas and enclosed in square brackets. We will call this ‘standard
bracketed notation’.

Lists are generally, although not always, written in this notation in queries entered
by the user at the system prompt, for example

?- XDalpha,YD27,ZD[alpha,beta],write('List is: '),write([X,Y,Z]),nl.
List is: [alpha,27,[alpha,beta]]

However (with the exception of the empty list) lists are seldom written in this
way in a Prolog program. The explanation for this is that lists are most useful (and
generally only used) when the programmer does not know in advance how many
elements they will contain. If we know that a list will always contain three elements,
say a person's forename, surname and nationality, it would generally be better to use
a compound term with three arguments, such as person(john, smith, british).

Lists are most valuable when the number of elements needed cannot be known
in advance and would probably vary from one use of the program to another. For
example, we might want to define a predicate that reads in information about an
organisation's purchases in a given financial year and writes out a list of all the
items of computer hardware or software purchased in the months from March to
June inclusive that cost more than a certain amount. In this case we would certainly
not wish to build in any assumption that the list will always have fifteen or any other
fixed number of elements. It might potentially be any number, from zero upwards.

We need an alternative way of representing a list in a Prolog clause that does not
make any commitment to the number of elements it will have when the clause is
used. This is provided by the ‘cons’ (standing for list constructor) notation.

In this notation a list is written in a more complicated form than before, with
two parts joined together by the vertical bar character j which is known as the cons
character or simply as cons. Thus a list is represented by the notation [elements j
list].

The elements part is a sequence of one or more list elements, which may be any
Prolog terms. The list part (obviously) represents a list.

9.2 Notation for Lists 121

The list [elements j list] is an augmented version of the list list with the sequence
of elements indicated by elements inserted before any elements that are already
there.

For example, [onej[two,three]] represents [one,two,three].
The following shows some equivalent ways of writing the same list of four

elements. We will come on to lists of variable length after that.

[alpha,beta,gamma,delta]
[alphaj[beta,gamma,delta]]
[alpha,betaj[gamma,delta]]
[alpha,beta,gammaj[delta]]
[alpha,beta,gamma,deltaj[]]
[alpha,betaj[gammaj[deltaj[]]]]

The cons notation for a list can be used anywhere the ‘standard bracketed form’
would be valid, e.g.

?- write([alphaj[beta,gamma,delta]]),nl.
[alpha,beta,gamma,delta]
true.

?- write([alpha,beta,gammaj[delta]]),nl.
[alpha,beta,gamma,delta]
true.

?- write([alpha,beta,gamma,deltaj[]]),nl.
[alpha,beta,gamma,delta]
true.

?- write([alpha,betaj[gamma,delta]]),nl.
[alpha,beta,gamma,delta]
true.

?- write([alpha,betaj[gammaj[deltaj[]]]]),nl.
[alpha,beta,gamma,delta]
true.

In the common case where the elements part of [elements j list] consists of
just one term, the ‘cons’ notation can be used to construct a list from its head and
tail, which are the parts to the left and right of the vertical bar respectively. Thus
[aj[b,c,d]] denotes the list [a,b,c,d].

As illustrated so far, there would be no benefit gained by using the ‘cons’ notation
rather than the standard bracketed notation. The former is of most value when the
list part is a variable and/or the elements part contains one or more variables.

For example, if variable L is bound to a list, say [red,blue,green,yellow], we can
represent a new list with the atom brown inserted before the elements already there
by [brownjL].

122 9 List Processing

?- LD[red,blue,green,yellow],write([brownjL]),nl.
[brown,red,blue,green,yellow]

If variable A is bound to the list [brown,pink] and variable L is bound to the list
[red,blue,green,yellow], the list [A,A,blackjL] represents

[[brown,pink],[brown,pink],black,red,blue,green,yellow].

We are now in a position to write a clause or a query that makes use of a list
without knowing in advance how many elements it will have. This example shows
a new list L1 created from a list L input by the user.

?- write('Type a list: '),read(L),L1D[startjL],write('New list is '),write(L1),nl.
Type a list: [[london,paris],[x,y,z],27].
New list is [start,[london,paris],[x,y,z],27]

The ‘cons’ notation for lists is so much more flexible than the standard bracketed
notation that some would say that it is the ‘correct’ notation for lists, and that a list
written in the standard bracketed notation, such as [dog,cat,fish,man] is just a more
human-readable version of [dogj[catj[fishj[manj[]]]]].

9.3 Decomposing a List

A common requirement is to perform the same (or a similar) operation on every
element of a list. By far the best way of processing a list is to work through its
elements one by one from left to right. This can be achieved by breaking the list into
its head and tail and processing each separately in a recursive fashion. Paradoxically,
breaking a list into its head and tail is often done using the list constructor.

The predicate writeall defined below writes out the elements of a list, one per
line.

The second clause of writeall separates a list into its head A and tail L, writes out
A and then a newline, then calls itself again recursively. The first clause of writeall
ensures that evaluation terminates when no further elements of the list remain to be
output.

/* write out the elements of a list, one per line */
writeall([]).
writeall([AjL]):- write(A),nl,writeall(L).

?- writeall([alpha,'this is a string',20,[a,b,c]]).
alpha
this is a string
20
[a,b,c]
true.

9.3 Decomposing a List 123

This definition of writeall is typical of many user-defined predicates for list
processing. Note that although writeall takes a list as its argument, its definition
does not include a statement beginning

writeall(L):-

Instead, the main part of the definition begins

writeall([AjL]):-

This makes the definition of the predicate considerably easier.
When a goal such as writeall([a,b,c]) is evaluated, it is matched against (unified

with) the head of the second clause of writeall. As this is written as writeall([AjL])
the matching process causes A to be bound to atom a and L to be bound to list [b,c].
This makes it easy for the body of the rule to process the head and tail separately.

The recursive call to writeall with the tail of the original list, i.e. L, as its
argument is a standard programming technique used in list processing. As is
frequently the case, the empty list is treated separately, in this case by the first clause
of writeall.

The predicate write_english defined below takes as its argument a list such as

[[london,england],[paris,france],[berlin,germany],[portsmouth,england],
[bristol,england],[edinburgh,scotland]]

Each element is a sublist containing the name of a city and the name of the
country in which it is located. Calling write_english causes the names of all the
cities that are located in England to be output.

The second clause of write_english deals with those sublists that have the atom
england as their second element. In this case the first element is output, followed
by a new line and a recursive call to write_english, with the tail of the original
list as the argument. Sublists that do not have england as their second element are
dealt with by the final clause of write_english, which does nothing with the sublist
but makes a recursive call to write_english, with the tail of the original list as the
argument.

write_english([]).
write_english([[City,england]jL]):-
write(City),nl,
write_english(L).

124 9 List Processing

write_english([AjL]):-write_english(L).
go:- write_english([[london,england],[paris,france],
[berlin,germany],[portsmouth,england],
[bristol,england],
[edinburgh,scotland]]).

?- go.
london
portsmouth
bristol
true.

The predicate replace defined below takes as its first argument a list of at least
one element. If the second argument is an unbound variable, it is bound to the same
list with the first element replaced by the atom first. Using the ‘cons’ notation, the
definition takes only one clause.

replace([AjL],[firstjL]).

?- replace([1,2,3,4,5],L).
L D [first,2,3,4,5]

?- replace([[a,b,c],[d,e,f],[g,h,i]],L).
L D [first, [d,e,f],[g,h,i]]

9.4 Built-in Predicate: member

The ability to represent data in the form of lists is such a valuable feature of Prolog
that several built-in predicates have been provided for it. The most commonly used
of these are described in this and the following sections.

The member built-in predicate takes two arguments. If the first argument is any
term except a variable and the second argument is a list, member succeeds if the
first argument is a member of the list denoted by the second argument (i.e. one of
its list elements).

?- member(a,[a,b,c]).
true.

?- member(mypred(a,b,c),[q,r,s,mypred(a,b,c),w]).
true.

?- member(x,[]).
false.

9.5 Built-in Predicate: length 125

?- member([1,2,3],[a,b,[1,2,3],c]).
true.

If the first argument is an unbound variable, it is bound to an element of the list
working from left to right (thus if it is called only once it will be bound to the first
element). This can be used in conjunction with backtracking to find all the elements
of a list in turn from left to right, as follows.

?- member(X,[a,b,c]).
X D a ;
X D b ;
X D c ;
false.

Predicate get_answer2 defined below reads a term entered by the user. It loops
using repeat, until one of a list of permitted answers (yes, no or maybe) is entered
and the member goal is satisfied.

get_answer2(Ans):-repeat,
write('answer yes, no or maybe: '),read(Ans),
member(Ans,[yes,no,maybe]),
write('answer is '),write(Ans),nl,!.

?- get_answer2(X).
answer yes, no or maybe: possibly.
answer yes, no or maybe: unsure.
answer yes, no or maybe: maybe.
answer is maybe
X D maybe

9.5 Built-in Predicate: length

The length built-in predicate takes two arguments. The first is a list. If the second is
an unbound variable it is bound to the length of the list, i.e. the number of elements
it contains.

?- length([a,b,c,d],X).
X D 4
?- length([[a,b,c],[d,e,f],[g,h,i]],L).
L D 3
?- length([],L).
L D 0

126 9 List Processing

If the second argument is a number, or a variable bound to a number, its value is
compared with the length of the list.

?- length([a,b,c],3).
true.

?- length([a,b,c],4).
false.

?- N is 3,length([a,b,c],N).
N D 3

9.6 Built-in Predicate: reverse

The reverse built-in predicate takes two arguments. If the first is a list and the second
is an unbound variable (or vice versa), the variable will be bound to the value of the
list with the elements written in reverse order, e.g.

?- reverse([1,2,3,4],L).
L D [4,3,2,1]

?- reverse(L,[1,2,3,4]).
L D [4,3,2,1]

?- reverse([[dog,cat],[1,2],[bird,mouse],[3,4,5,6]],L).
L D [[3,4,5,6],[bird,mouse],[1,2],[dog,cat]]

Note that the order of the elements of the sublists [dog,cat] etc. is not reversed.
If both arguments are lists, reverse succeeds if one is the reverse of the other.

?- reverse([1,2,3,4],[4,3,2,1]).
true.

?- reverse([1,2,3,4],[3,2,1]).
false.

The predicate front/2 defined below takes a list as its first argument. If the second
argument is an unbound variable it is bound to a list which is the same as the first
list with the last element removed. For example if the first list is [a,b,c], the second
will be [a,b]. In the body of the rule the first list L1 is reversed to give L3. Its head
is then removed to give L4 and L4 is then reversed back again to give L2.

front(L1,L2):-
reverse(L1,L3),remove_head(L3,L4),reverse(L4,L2).

remove_head([AjL],L).

9.7 Built-in Predicate: append 127

?- front([a,b,c],L).
L D [a,b]

?- front([[a,b,c],[d,e,f],[g,h,i]],L).
L D [[a,b,c],[d,e,f]]

The front predicate can also be used with two lists as arguments. In this case
it tests whether the second list is the same as the first list with the last element
removed.

?- front([a,b,c],[a,b]).
true.

?- front([[a,b,c],[d,e,f],[g,h,i]],[[a,b,c],[d,e,f]]).
true.

?- front([a,b,c,d],[a,b,d]).
false.

9.7 Built-in Predicate: append

The term concatenating two lists means creating a new list, the elements of which
are those of the first list followed by those of the second list. Thus concatenating
[a,b,c] with [p,q,r,s] gives the list [a,b,c,p,q,r,s]. Concatenating [] with [x,y] gives
[x,y].

The append built-in predicate takes three arguments. If the first two arguments
are lists and the third argument is an unbound variable, the third argument is bound
to a list comprising the first two lists concatenated, e.g.

?- append([1,2,3,4],[5,6,7,8,9],L).
L D [1,2,3,4,5,6,7,8,9]

?- append([],[1,2,3],L).
L D [1,2,3]

?- append([[a,b,c],d,e,f],[g,h,[i,j,k]],L).
L D [[a,b,c],d,e,f,g,h,[i,j,k]]

The append predicate can also be used in other ways. When the first two
arguments are variables and the third is a list it can be used with backtracking to
find all possible pairs of lists which when concatenated give the third argument, as
follows.

?- append(L1,L2,[1,2,3,4,5]).
L1 D [] ,
L2 D [1,2,3,4,5] ;

L1 D [1] ,

128 9 List Processing

L2 D [2,3,4,5] ;

L1 D [1,2] ,
L2 D [3,4,5] ;

L1 D [1,2,3] ,
L2 D [4,5] ;

L1 D [1,2,3,4] ,
L2 D [5] ;

L1 D [1,2,3,4,5] ,
L2 D [] ;
false.

This example shows a list broken up in a more complex way.

?- append(X,[YjZ],[1,2,3,4,5,6]).
X D [] ,
Y D 1 ,
Z D [2,3,4,5,6] ;

X D [1] ,
Y D 2 ,
Z D [3,4,5,6] ;

X D [1,2] ,
Y D 3 ,
Z D [4,5,6] ;

X D [1,2,3] ,
Y D 4 ,
Z D [5,6] ;

X D [1,2,3,4] ,
Y D 5 ,
Z D [6] ;

X D [1,2,3,4,5] ,
Y D 6 ,
Z D [] ;

false.

9.8 List Processing: Examples

This section shows some examples of list processing, all of which illustrate the use
of recursion.

9.8 List Processing: Examples 129

Example 1

The predicate find_largest/2 takes a list of numbers as its first argument and assigns
the value of the largest element to its second argument (assumed to be an unbound
variable). It is assumed that the list contains at least one number.

find_largest([XjList],Maxval):-
find_biggest(List,Maxval,X).
find_biggest([],Currentlargest,Currentlargest).
find_biggest([AjL],Maxval,Currentlargest):-
A>Currentlargest,
find_biggest(L,Maxval,A).

find_biggest([AjL],Maxval,Currentlargest):-
AD<Currentlargest,
find_biggest(L,Maxval,Currentlargest).

Calling the find_largest goal with the list of numbers as its first argument causes
the first element of the list to be removed and passed to find_biggest as its third
argument (the largest number found so far). The remainder of the list is passed to
find_biggest as its first argument (a list of the numbers not yet examined). The
second argument of find_largest (Maxval) represents the overall largest number
and is unbound because the value is not yet known. It is passed to find_biggest as
its second argument.

The three arguments of find-biggest/3 represent in order:

• the list of numbers not so far examined
• the overall largest number (to be passed back to find_largest)
• the largest number found so far.

So the first clause of find_biggest can be read as: ‘if there are no more numbers
remaining unexamined, return the largest number so far (third argument) as the value
of the overall largest number (second argument)’. The second argument becomes
bound.

The second clause of find_biggest can be read as: ‘if the list of numbers so far
not examined begins with value A and A is larger than the largest so far found, call
find_biggest (recursively) with L, the tail of the (first argument) list, as the new first
argument (list of unexamined numbers) and with A as the third argument (largest
number so far)’. The second argument (Maxval) is unbound.

The final clause of find_biggest can be read as: ‘if the list of numbers so far not
examined begins with value A and A is not larger than the largest so far found, call
find_biggest (recursively) with L, the tail of the (first argument) list, as the new first
argument (list of unexamined numbers) and with the third argument (largest number
so far) unchanged’. The second argument (Maxval) is unbound.

130 9 List Processing

?- find_largest([10,20,678,-4,-12,102,-5],M).
M D 678

?- find_largest([30,10],M).
M D 30

?- find_largest([234],M).
M D 234

Example 2

The front/2 predicate was defined in Section 9.6 as an example of the use of the
reverse built-in predicate. It takes a list as its first argument. If the second argument
is an unbound variable it is bound to a list which is the same as the first list with the
last element removed. For example if the first list is [a,b,c], the second will be [a,b].

The predicate can be defined more efficiently using recursion as follows.

front([X],[]).
front([XjY],[XjZ]):-front(Y,Z).

The two clauses can be read as ‘the front of a list with just one element is the
empty list’ and ‘the front of a list with head X and tail Y is the list with head X and
tail Z where Z is the front of Y’, respectively.

?- front([alpha],L).
L D []

?- front([alpha,beta,gamma],LL).
LL D [alpha,beta]

?- front([[a,b],[c,d,e],[f,g,h]],L1).
L1 D [[a,b],[c,d,e]]

Example 3

One area in which different Prolog implementations can vary considerably is the
provision of built-in predicates for list processing. If your implementation does
not have member/2, reverse/2 or append/3 (described in Sections 9.4, 9.6 and 9.7
respectively) you can define your own with just a few clauses as shown below.

member(X,[XjL]).
member(X,[_jL]):-member(X,L).
reverse(L1,L2):-rev(L1,[],L2).
rev([],L,L).

9.8 List Processing: Examples 131

rev([AjL],L1,L2):-rev(L,[AjL1],L2).
append([],L,L).
append([AjL1],L2,[AjL3]):-append(L1,L2,L3).

The two clauses defining member/2 just state that X is a member of any list with
head X (i.e. that begins with X) and that X is a member of any list for which it is not
the head if it is a member of the tail.

The definitions of the other two predicates are slightly more complex and are left
without explanation.

If your implementation of Prolog has any or all these predicates built-in, it is still
possible to test the definitions above by renaming the predicates systematically as
mymember, myreverse and myappend, say, giving the following program.

mymember(X,[XjL]).
mymember(X,[_jL]):-mymember(X,L).
myreverse(L1,L2):-rev(L1,[],L2).
rev([],L,L).
rev([AjL],L1,L2):-rev(L,[AjL1],L2).
myappend([],L,L).
myappend([AjL1],L2,[AjL3]):-myappend(L1,L2,L3).

This can then be tested using some of the examples in Sections 9.4, 9.6 and 9.7,
for which it gives the same results in each case.

?- mymember(X,[a,b,c]).
X D a ;
X D b ;
X D c ;
false.

?- mymember(mypred(a,b,c),[q,r,s,mypred(a,b,c),w]).
true.

?- mymember(x,[]).
false.

?- myreverse([1,2,3,4],L).
L D [4,3,2,1]

?- myreverse([[dog,cat],[1,2],[bird,mouse],[3,4,5,6]],L).
L D [[3,4,5,6],[bird,mouse],[1,2],[dog,cat]]

132 9 List Processing

?- myappend([1,2,3,4],[5,6,7,8,9],L).
L D [1,2,3,4,5,6,7,8,9]

?- myappend([],[1,2,3],L).
L D [1,2,3]

9.9 Using findall/3 to Create a List

It would often be desirable to find all the values that would satisfy a goal, not just
one of them. The findall/3 predicate provides a powerful facility for creating lists
of all such values. It is particularly useful when used in conjunction with the Prolog
database.

If the database contains the five clauses

person(john,smith,45,london).
person(mary,jones,28,edinburgh).
person(michael,wilson,62,bristol).
person(mark,smith,37,cardiff).
person(henry,roberts,23,london).

a list of all the surnames (the second argument of person) can be obtained using
findall by entering the goal:

?- findall(S,person(_,S,_,_),L).

This returns

L D [smith,jones,wilson,smith,roberts]

L is a list of all the values of variable S which satisfy the goal person(_,S,_,_).
The predicate findall/3 has three arguments. The first is generally an unbound

variable, but can be any term with at least one unbound variable as an argument (or
equivalently any list with at least one unbound variable as a list element).

The second argument must be a goal, i.e. must be in a form that could appear on
the right-hand side of a rule or be entered at the system prompt.

The third argument should be an unbound variable. Evaluating findall will cause
this to be bound to a list of all the possible values of the term (first argument) that
satisfy the goal (second argument).

More complex lists can be constructed by making the first argument a term
involving several variables, rather than using a single variable. For example

?- findall([Forename,Surname],person(Forename,Surname,_,_),L).

returns the list

L D [[john,smith],[mary,jones],[michael,wilson],[mark,smith],[henry,roberts]]

9.9 Using findall/3 to Create a List 133

The term (first argument) can be embellished further, e.g.

?- findall([londoner,A,B],person(A,B,_,london),L).

returns the list

L D [[londoner,john,smith],[londoner,henry,roberts]]

Given a database containing clauses such as

age(john,45).
age(mary,28).
age(michael,62).
age(henry,23).
age(george,62).
age(bill,17).
age(martin,62).

the predicate oldest_list/1 defined below can be used to create a list of the names of
the oldest people in the database (in this case michael, george and martin, who are
all 62).

It begins by calling findall to find the ages of all the people in the database and
put them in a list Agelist.

It then uses the predicate find_largest (defined previously) to find the largest of
these values and bind variable Oldest to that value. Finally, it uses findall again to
create a list of the names of all the people of that age.

oldest_list(L):-
findall(A,age(_,A),Agelist),
find_largest(Agelist,Oldest),
findall(Name,age(Name,Oldest),L).

?- oldest_list(L).
L D [michael,george,martin]

The final example in this section shows a predicate find_under_30s used in
conjunction with the age predicate from the previous example to create a list of
the names of all those people under 30. This requires only one new clause.

find_under_30s(L):-findall(Name,(age(Name,A),A<30),L).

?- find_under_30s(L).
L D [mary,henry,bill]

The second argument of findall is the goal (age(Name,A),A<30). It is important
to place parentheses around it so that it is treated as a single (compound) goal with

134 9 List Processing

two component subgoals, not as two goals. Omitting the parentheses would give a
predicate named findall with four arguments. This would be an entirely different
predicate from findall/3 and one unknown to the Prolog system.

Chapter Summary

This chapter describes a flexible type of data object called a list. It shows how
to work through a list element by element from left to right using recursion to
perform the same or a similar operation on each element, how to manipulate lists
using built-in predicates and how to create a list containing all the possible values
that would satisfy a specified goal.

Practical Exercise 9

(1) Define and test a predicate pred1 that takes a list as its first argument and returns
the tail of the list as its second argument, e.g.

?- pred1([a,b,c],L).
L D [b,c]

(2) Define and test a predicate inc that takes a list of numbers as its first argument
and returns a list of the same numbers all increased by one as its second
argument, e.g.

?- inc([10,20,-7,0],L).
L D [11,21,-6,1]

(3) Define and test a predicate palindrome that checks whether a list reads the
same way forwards and backwards, e.g.

?- palindrome([a,b,c,b,a]).
true.

?- palindrome([a,b,c,d,e]).
false.

(4) Define and test a predicate putfirst that adds a specified term to the beginning
of a list, e.g.

?- putfirst(a,[b,c,d,e],L).
L D [a,b,c,d,e]

(5) Define and test a predicate putlast that adds a specified term to the end of a list,
e.g.

?- putlast(e,[a,b,c,d],L).
L D [a,b,c,d,e]

Practical Exercise 9 135

(6) Using findall define and test predicates pred2/2, pred3/2 and pred4/2 that
modify a list, as shown in the following examples:

?- pred2([a,b,c,d,e],L).
L D [[a],[b],[c],[d],[e]]

?- pred3([a,b,c,d,e],L).
L D [pred(a,a),pred(b,b),pred(c,c),pred(d,d),pred(e,e)]

?- pred4([a,b,c,d,e],L).
L D [[element,a],[element,b],[element,c],[element,d],[element,e]]

Chapter 10
String Processing

Chapter Aims

After reading this chapter you should be able to:

• Use a built-in predicate to convert strings of characters to lists and vice versa
• Define predicates for the most common types of string processing.

10.1 Converting Strings of Characters To and From Lists

An atom such as 'hello world' can be regarded as a string of characters. Prolog has
facilities to enable strings of this kind to be manipulated, e.g.

• To join two strings such as ' Today is' and ' Tuesday' to form ' Today is Tuesday'.
• To remove initial spaces, e.g. to replace ' hello world' by 'hello world'.
• To find the part of the string after (or before) a specified string, e.g. to find the

name in a string such as 'My name is John Smith'.

Prolog does this by converting strings to equivalent lists of numbers using the
name/2 predicate and then using list processing techniques such as those discussed
in Chapter 9, before (generally) converting the resulting lists back to strings.

The name/2 predicate takes two arguments. If the first is an atom and the second
is an unbound variable, evaluating a name goal will cause the variable to be bound
to a list of numbers equivalent to the string of characters that forms the atom, for
example:

?- name('Prolog Example',L).
L D [80,114,111,108,111,103,32,69,120,97,109,112,108,101]

As discussed in Chapter 5, each of the 256 possible characters has an equivalent
ASCII (American Standard Code for Information Interchange) value, which is an
integer from 0 to 255 inclusive.

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__10,
© Springer-Verlag London 2013

137

http://dx.doi.org/10.1007/978-1-4471-5487-7_9
http://dx.doi.org/10.1007/978-1-4471-5487-7_5

138 10 String Processing

9 tab 40 (59 ; 94 ^
10 end of record 41) 60 < 95 _
32 space 42 * 61 D 96 J
33 ! 43 C 62 > 97–122 a to z
34 '' 44 , 63 ?
35 # 45 - 64 @ 123 f
36 $ 46 . 65-90 A to Z 124 j
37 % 47 / 91 [125 g
38 & 48-57 0 to 9 92 \ 126 �
39 ' 58 : 93]

The table of ASCII values corresponding to the most commonly used characters
is reproduced here for convenience.

In the example above, 80 is the ASCII value corresponding to the character P,
114 corresponds to r etc., so the list

[80,114,111,108,111,103,32,69,120,97,109,112,108,101]

corresponds to 'Prolog Example'.
The name predicate can also be used to perform the conversion in the other

direction, i.e. from a list of ASCII values to an equivalent atom.

?-name(A,[80,114,111,108,111,103,32,69,120,97,109,112,108,101]).
A D 'Prolog Example'

Once a string has been converted to list form it can be manipulated using any of
the facilities available for list processing to produce a new list or lists, which can
then be converted back to strings, again using the name predicate.

The examples in the following sections illustrate some of the programming
techniques involved in processing strings.

10.2 Joining Two Strings

The predicate join2/3 defined below shows how to join two strings (the first two
arguments) to create a third string combining the two. The programming technique
used is a typical one in string processing: convert both strings to lists, concatenate
them using append and finally convert back the resulting list to a string.

/* Join two strings String1 and String2 to form a
new string Newstring */
join2(String1,String2,Newstring):-
name(String1,L1),name(String2,L2),
append(L1,L2,Newlist),
name(Newstring,Newlist).

10.3 Trimming a String 139

?- join2('prolog','example',S).
S D 'prolog example'

?- join2('','Prolog',S).
S D 'Prolog'

?- join2('Prolog','',S).
S D 'Prolog'

The predicate join3/4 defined below uses join2 twice to join three strings together.

/* Join three strings using the join2 predicate */
join3(String1,String2,String3,Newstring):-

join2(String1,String2,S),
join2(S,String3,Newstring).

?- join3('This is',' an',' example',Newstring).
Newstring D 'This is an example'

10.3 Trimming a String

This example shows how to define a predicate that will 'trim' a string, i.e. remove
any white space characters (spaces, tabs etc.) at the beginning or end. This will be
done in four stages.

Stage 1

Define and test a predicate trim/2 which takes a list of integers as its first argument
and an unbound variable as its second and binds the variable to the list with any
elements less than or equal to 32 at the left-hand end removed. This makes use of
the techniques described in Section 9.3, where the elements of a list are extracted
one by one using cons.

trim([AjL],L1):-AD<32,trim(L,L1).
trim([AjL],[AjL]):-A>32.

?- trim([26,32,17,45,18,27,94,18,16,9],X).
X D [45,18,27,94,18,16,9]

http://dx.doi.org/10.1007/978-1-4471-5487-7_9

140 10 String Processing

Stage 2

Define and test a predicate trim2/2 which takes a list of integers as its first argument
and an unbound variable as its second and binds the variable to the list with any
elements less than or equal to 32 at the right-hand end removed. This uses trim in
conjunction with the reverse predicate.

trim2(L,L1):-
reverse(L,Lrev),trim(Lrev,L2),reverse(L2,L1).

?- trim2([45,18,27,94,18,16,9],X).
X D [45,18,27,94]

Stage 3

Define and test a predicate trim3/2 which takes a list of integers as its first argument
and an unbound variable as its second and binds the variable to the list with any
elements less than or equal to 32 at the beginning and/or the end removed. This uses
trim to deal with the beginning of the list and trim2 to deal with the end.

trim3(L,L1):-trim(L,L2),trim2(L2,L1).

?- trim3([26,32,17,45,18,27,94,18,16,9],X).
X D [45,18,27,94]

Stage 4

Define and test a predicate trims/2 which takes an atom as its first argument and an
unbound variable as its second and binds the variable to the atom with any white
space characters at the beginning or end removed. Now that the list processing
predicates trim, trim2 and trim3 have been defined, trims only needs a one clause
definition.

trims(S,Snew):-name(S,L),trim3(L,L1),name(Snew,L1).

?- trims(' hello world ',X).
X D 'hello world'

10.4 Inputting a String of Characters 141

10.4 Inputting a String of Characters

A very common requirement is to read an entire line of input either from the user's
terminal or from a text file. The Prolog built-in predicates for input are rather limited.
The read/1 predicate will only read a single term, terminated by a full stop. The
get0/1 and get/1 predicates will only read a single character.

The predicate readline/1 defined below takes an unbound variable as its argu-
ment. Calling the predicate causes a line of input to be read from the user's terminal
and the variable to be bound to an atom comprising all the characters read in, up to
but not including a new line character (ASCII value 10).

Assume that the input is terminated by a character with ASCII value 10, which
is not included in the atom created.

readline(S):-readline1([],L),name(S,L),!.
readline1(Oldlist,L):-get0(X),process(Oldlist,X,L).
process(Oldlist,10,Oldlist).
process(Oldlist,X,L):-
append(Oldlist,[X],L1),readline1(L1,L).

?- readline(S).
: abcdefg
S D abcdefg

?- readline(S).
: this is an example ,.C-*/#@ - Note no quotes needed and no final full stop
S D ' this is an example ,.C-*/#@ - Note no quotes needed and no final full
stop'

The predicate readlineF/2 defined below is adapted from readline/1 to deal with
input taken from a text file. It is assumed that the end of each record is signified by
a character with ASCII Value 10.

/* readline adapted for input from text files */
readlineF(File,S):-
see(File),readline1([],L),name(S,L),!,seen.

If text file file1.txt contains the following four lines

This is an example of
a text file with four lines -
each is terminated by an invisible character
with ASCII value 10

142 10 String Processing

calling readfileF with first argument 'file1.txt' will cause the first line of the file to
be output.

?- readlineF('file1.txt',S).
S D 'This is an example of '

10.5 Searching a String

The predicate separate/3 defined below separates a list L into those elements before
and after the element 32.

separate(L,Before,After):-
append(Before,[32jAfter],L),!.

It does this using append with the second argument a list with head 32 – another
example of the value of using the cons notation to deconstruct a list.

?- separate([26,42,32,18,56,32,19,24],Before,After).
Before D [26,42] ,
After D [18,56,32,19,24]

?- separate([32,24,86],Before,After).
Before D [] ,
After D [24,86]

?- separate([24,86,32],Before,After).
Before D [24,86] ,
After D []

?- separate([24,98,45,72],Before,After).
false.

Predicate splitup/1 defined below starts by converting a string S to a list L, then calls
predicate findnext/1, which calls predicate proc/2 in a recursive fashion to isolate
the parts before and after each 32 element (corresponding to a space character) in
turn, convert it to a string and write it on a separate line.

separate(L,Before,After):-
append(Before,[32jAfter],L),!.

findnext(L):-
separate(L,Before,After),proc(Before,After).

10.5 Searching a String 143

findnext(L):-write('Last item is '),
name(S,L),write(S),nl.

proc(Before,After):-write('Next item is '),
name(S,Before),write(S),nl,findnext(After).

splitup(S):-name(S,L),findnext(L).

?- splitup('The time has come the walrus said').
Next item is The
Next item is time
Next item is has
Next item is come
Next item is the
Next item is walrus
Last item is said
true.

The predicate checkprolog/1, which takes an unbound variable as its argument,
causes a string of characters to be read from the user's terminal and the argument
to be bound to either the atom present or the atom absent, depending on whether or
not the input string includes the word Prolog.

The main predicate defined here is startList/2, which uses append to check
whether all the elements in list L1 appear at the beginning of list L2.

/* Uses predicate readline as defined previously */
startList(L1,L2):-append(L1,X,L2).

includedList(L1,[]):-!,fail.
includedList(L1,L2):-startList(L1,L2).
includedList(L1,[AjL2]):-includedList(L1,L2).

checkit(L,Plist,present):-includedList(Plist,L).
checkit(_,_,absent).

checkprolog(X):-readline(S),name(S,L),
name('Prolog',Plist),checkit(L,Plist,X),!.

?- checkprolog(X).
: Logic Programming with Prolog
X D present

144 10 String Processing

?- checkprolog(X).
: Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto
X D absent

10.6 Dividing a String into Its Component Parts

The predicate splits/4 divides a string into the substrings to the left and right
of another string called a separator. Its arguments correspond to the string, the
separator, the left part and the right part in turn. For example:

?- splits('In the beginning was the word','the',Left,Right).
Left D 'In ' ,
Right D ' beginning was the word'

?- splits('my name is John Smith','is',Left,Right).
Left D 'my name ' ,
Right D ' John Smith'

The definition of this predicate is quite complex. There are four special cases.

(1) The separator appears more than once in the string. As can be seen from the
first example above, the first (i.e. 'leftmost') occurrence is taken.

(2) The string begins with the separator. In this case the left part should be set to
the separator and the right part should be set to the remainder of the string.

(3) The string ends with the separator. In this case the right part should be set to the
separator and the left part should be set to the remainder of the string.

(4) The separator does not appear in the string. In this case the left part should be
set to the string and the right part should be set to ''.

The full definition is given below, followed by examples showing that cases (2),
(3) and (4) are dealt with correctly.

splits(S,Separator,Separator,R):-
name(Separator,L1),name(S,L3),
append(L1,L2,L3),name(R,L2),!.

splits(S,Separator,L,Separator):-
name(Separator,L2),name(S,L3),
append(L1,L2,L3),name(L,L1),!.

splits(S,Separator,Left,Right):-
name(S,L3),append(Lleft,Lrest,L3),
name(Separator,L4),append(L4,Lright,Lrest),
name(Left,Lleft),name(Right,Lright),!.

splits(S,_,S,''):-!.

10.6 Dividing a String into Its Component Parts 145

?- splits('my name is John Smith','my name is ',Left,Right).
Left D 'my name is ' ,
Right D 'John Smith'

?- splits('my name is John Smith','John Smith',Left,Right).
Left D 'my name is ' ,
Right D 'John Smith'

?-splits('my name is my name is John Smith','is',Left,Right).
Left D 'my name ' ,
Right D ' my name is John Smith'

?- splits('my name is John Smith','Bill Smith',Left, Right).
Left D 'my name is John Smith' ,
Right D ''

Predicate remove_spaces/2 defined below uses predicate splits/4 to remove
any initial spaces from a string. The key idea is to split the string using a string
containing a space, i.e. ' ', as the separator. If the left part becomes bound to ' ' it
implies that case (2) above has occurred, i.e. the string must have begun with the
separator. In this case (first clause of remove2), the remainder of the string (the
right part) is used and any further spaces are removed from it in the same way. If
not, the final string is the same as the original string (second clause of remove2).

remove_spaces(S,S1):-
splits(S,' ',Sleft,Sright),
remove2(S,Sleft,Sright,S1),!.

remove2(S,' ',Sright,S1):-remove_spaces(Sright,S1).
remove2(S,_,_,S).

?- remove_spaces('hello world',X).
X D 'hello world'

?- remove_spaces(' hello world',X).
X D 'hello world'

Chapter Summary

This chapter describes the principal techniques of string processing in Prolog,
based on converting from atoms to lists and vice versa. The techniques are
illustrated with examples of user-defined predicates to meet common string
processing requirements.

146 10 String Processing

Practical Exercise 10

(1) Define and test a predicate spalindrome to check whether a string is a
palindrome, e.g.

?- spalindrome('abcd dcba').
yes

?- spalindrome('xyz').
no

(2) Use the name predicate to define and test a predicate remove_final that
removes any final spaces from a string, e.g.

?- remove_final('hello world ',X).
X D 'hello world'

?- remove_final('hello world',X).
X D 'hello world'

(3) Define and test a predicate replace to replace the first character in a string by
the character ? (which has ASCII value 63), e.g.

?- replace('abcde',X).
X D '?bcde'

Chapter 11
More Advanced Features

Chapter Aims

After reading this chapter you should be able to:

• Define operators to extend the basic Prolog language
• Define basic operations on sets as well as numbers and strings
• Use built-in predicates to manipulate terms.

11.1 Introduction

This chapter looks at some of the more advanced features provided by Prolog: the
use of operators to extend the language (e.g. to provide new arithmetic operators,
improved facilities for processing strings or facilities for processing sets) and
facilities for processing terms, converting them to lists or evaluating them as goals.

11.2 Extending Prolog: Arithmetic

Although Prolog allows the standard arithmetic operators (such as C � * and /) to
be used in arithmetic expressions, there is no similar convenient notation for
calculating factorials or to perform other less common but sometimes useful
operations such as adding the squares of two numbers.

The built-in predicate is/2 is used for evaluating arithmetic expressions. It is not
permitted for the Prolog programmer to redefine this by adding new operators (or by
any other means) and any attempt to do so would lead to a system error. However, by
using the technique described in this section the programmer can get the same effect,
so that expressions involving new arithmetic operators such as 6! are permitted or
even so that the definitions of standard operators such as C and � are changed.

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__11,
© Springer-Verlag London 2013

147

148 11 More Advanced Features

The key to this is to define a replacement for the is/2 operator. This new operator
will be called iss/2. There are two steps involved.

Step 1: Define iss/2 to be an operator

This can be done by entering the goal

?- op(700,xfx,iss).

at the system prompt or as a directive at the beginning of a program.
The third argument of the op/3 goal is of course the name of the operator. The

first argument is called its precedence. The second argument takes the rather strange
form xfx, denoting that iss is an infix operator, which takes two arguments and will
be written between them.

Step 2: Define the iss/2 operator

The simplest definition of iss/2 would be

?- op(700,xfx,iss).

X iss Y:�X is Y.

(The op directive has been included in the program file.)
This would simply make the operator iss equivalent to the built-in operator is, so

for example:

?- Z iss 6Csqrt(25)�2.
Z D 9.0

This very simple definition would obviously not achieve much. An improved
(but not yet ideal) attempt at defining iss is as follows. The effect of using iss in
combination with the different types of arithmetic operator (C � * / etc.) is specified
explicitly in the first eight clauses. All other cases (e.g. expressions involving sqrt,
sin etc.) are dealt with by the final clause. With these definitions the operator iss still
has the same effect as is.

?- op(700,xfx,iss).

Y iss ACB:�Y is ACB,!.
Y iss A�B:�Y is A�B,!.
Y iss A*B:�Y is A*B,!.
Y iss A/B:�Y is A/B,!.
Y iss A//B:�Y is A//B,!.
Y iss AˆB:�Y is AˆB,!.
Y iss CA:�Y is A,!.
Y iss �A:�Y is �A,!.
Y iss X:� Y is X,!.

11.2 Extending Prolog: Arithmetic 149

?- Y iss 6C4*3�2.
Y D 16

?- X iss 3,Y iss XC5.6�3*10C100.5.
X D 3 ,
Y D 79.1

?-Y iss (8C4)/3�(6*7).
Y D �38

?- AD3,BD4,Y iss sqrt(A*ACB*B).
A D 3 ,
B D 4 ,
Y D 5.0

?- Y iss 6Csqrt(25).
Y D 11.0

?- Y iss 6Csqrt(10C15).
Y D 11.0

Defining! as a Factorial Operator

Starting from this more elaborate definition of iss, we can now add further operators.
The mathematical function factorial is defined only for integer arguments. The

value of 'factorial 6' is 6 � 5 � 4 � 3 � 2 � 1 and is written as 6! (i.e. the number 6
followed by an exclamation mark).

In general the value of N! is Nx(N�1)!. This leads to a two-line recursive
definition of a predicate factorial/2:

factorial(1,1):-!.
factorial(N,Y):�N1 is N�1,factorial(N1,Y1),

Y is N*Y1.

It is assumed that the first argument will always be an integer or a variable bound
to an integer and the second argument is an unbound variable. Then, for example,
the product 6 � 5 � 4 � 3 � 2 � 1 can be found by

?- factorial(6,Y).
Y D 720

This predicate can now be used to define a new arithmetic operator ! which will
enable terms such as 6! or N! to be written when evaluating an arithmetic expression
using the iss predicate. As usual, there are two actions required to do this.

150 11 More Advanced Features

Step 1: Define ! to be an operator

This can be done by entering the goal

?- op(150,xf,!).

The atom xf denotes that ! is a postfix operator, which will appear after its
argument, e.g. 6!. Its precedence is 150.

Step 2: Define the ! predicate

Using the definition of the factorial predicate already given, the ! operator (or rather
its effect when used together with the iss operator) can be defined by adding the
following clause to the definition of iss, say as the first line.

Y iss N!:�N1 iss N,factorial(N1,Y),!.

This allows the exclamation mark character to be used in a convenient way to
represent factorials.

?- Y iss 6!.
Y D 720

?- Y iss (3C2)!.
Y D 120

However, there is a flaw in the definition of iss. Entering a goal such as

?- Y iss 5!C6!.

will cause Prolog to crash with an error message such as 'Function Not Defined'.
The reason is that to evaluate this expression, Prolog makes use of the definition

of the C operator, which is

Y iss ACB:�Y is ACB,!.

This causes it to try to evaluate the goal

Y is 5!C6!

which causes an error as in this context 5! and 6! are not numbers. They have no
meaning at all outside their definition for the iss predicate.

The most satisfactory way of dealing with this problem is to modify the definition
of the iss operator so that its arguments are themselves evaluated using iss before
adding, multiplying etc. their values. This requires every clause in the definition of
iss/2 to be modified, expect for the last, and gives the following revised program.

11.2 Extending Prolog: Arithmetic 151

?- op(700,xfx,iss).
?- op(150,xf,!).
factorial(1,1):-!.
factorial(N,Y):�N1 is N�1,factorial(N1,Y1),Y is N*Y1.
Y iss N!:�N1 iss N,factorial(N1,Y),!.
Y iss ACB :�A1 iss A,B1 iss B,Y is A1CB1,!.
Y iss A�B :�A1 iss A,B1 iss B,Y is A1�B1,!.
Y iss A*B :�A1 iss A,B1 iss B,Y is A1*B1,!.
Y iss A/B :�A1 iss A,B1 iss B,Y is A1/B1,!.
Y iss A//B :�A1 iss A,B1 iss B,Y is A1//B1,!.
Y iss AˆB :�A1 iss A,B1 iss B,Y is A1ˆB1,!.
Y iss CA :�Y iss A,!.
Y iss �A :� A1 iss A,Y is �A1,!.
Y iss X :� Y is X,!.

With the new definition of the C operator, if either of its arguments is an
expression such as 5! it is converted to a number before it is used. If an argument is
a number, it is 'converted' to itself by the final clause.

The ! operator now works as expected. When the goal Y iss 5!C6! is evaluated,
the system first applies iss to 5! and to 6! producing the numbers 120 and 720,
respectively, and then adds them together.

?-Y iss 6!.
Y D 720

?-Y iss (3C2)!.
YD 120

?- Y iss 5!C6!.
Y D 840

?- Y iss 4C2,Z iss Y!C3!�4!.
Y D 6 ,
Z D 702

?- Y iss (3!)!.
Y D 720

?- Y iss �(3!).
Y D �6

Note that the above definition of iss is still not watertight. Expressions such as
sqrt(3!) will cause the system to crash. This can be overcome by adding additional
clauses such as

Y iss sqrt(A):�A1 iss A, Y is sqrt(A1),!.

152 11 More Advanced Features

for all the arithmetic functions, such as sqrt, abs and sin with which it is intended
to use the new operator.

Defining ** as a Sum of Squares Operator

As well as factorial, we can define new operators that perform any operations we
wish. For example we might want to have an infix operator ** that returns the sum
of the squares of its two arguments. This can be defined as follows.

Step 1: Define ** to be an operator

This can be done by entering the goal

?- op(120,yfx,**).

This specifies that ** is an infix operator, which will appear between its two
arguments, e.g. 3**4. Its precedence is 120.

Step 2: Define the ** operator

The ** operator can be defined by adding the following clause to the definition of
iss, anywhere except the final line (which is a 'catch all').

Y iss A**B:� A1 iss A, B1 iss B, Y is A1*A1CB1*B1,!.

?- Y iss 3**2.
Y D 13

?- Y iss (3**2)C2.
Y D 15

?- Y iss 6C3**4C8C1**2�10.
Y D 34

?- Y iss (3**1)**(2**1).
Y D 125

?- Y iss (3!)**(4!).
Y D 612.

Redefining Addition and Subtraction

Now that we have the iss predicate we can even use it to 'redefine' addition and
subtraction if we wish. If we change the following clauses in the definition of iss

11.3 Extending Prolog: Operations on Strings 153

Y iss ACB:� A1 iss A,B1 iss B,Y is A1CB1,!.
Y iss A�B:� A1 iss A,B1 iss B,Y is A1�B1,!.

to

Y iss ACB:� A1 iss A,B1 iss B,Y is A1�B1,!.
Y iss A�B:� A1 iss A,B1 iss B,Y is A1CB1,!.

The effect will be to cause C to subtract and � to add. For example

?- Y iss 6C4.
Y D 2

?- Y iss 6�4.
Y D 10

11.3 Extending Prolog: Operations on Strings

Now that we have this useful predicate iss/2 we do not have to restrict its use to
numbers. The join2/3 predicate was defined in Chapter 10. It takes three arguments,
the first two of which are atoms (or variables bound to atoms). These atoms are
regarded as strings.

Assuming the third argument is an unbound variable, evaluating a join2 goal will
cause it to be bound to another atom, which is the first two joined together.

For reference, the definition of the join2 predicate and some examples of its use
are repeated below.

/* Join two strings String1 and String2 to form a new
string Newstring */
join2(String1,String2,Newstring):-

name(String1,L1),name(String2,L2),
append(L1,L2,Newlist),
name(Newstring,Newlist).

?- join2('prolog',' example',S).
S D 'prolog example'

?- join2('','Prolog',S).
S D 'Prolog'

?- join2('Prolog','',S).
S D 'Prolog'

http://dx.doi.org/10.1007/978-1-4471-5487-7_10

154 11 More Advanced Features

Although this is fine as far as it goes, it would be more convenient to be able
to use an operator such as CC to join two strings. This can be achieved by first
defining the operator, by entering a goal such as

?- op(200,yfx,CC).

and then adding the following clause to the definition of the iss predicate:

S iss S1CCS2:-join2(S1,S2,S),!.

?- S iss 'hello'CC' world'.
S D 'hello world'

Joining more than two strings together using CC encounters problems similar to
those in the last section. Evaluating the sequence of goals

?- XD'United States', YD'of America',Z iss XCC' 'CCY.

will cause an error. The join2 predicate cannot deal with an argument such as
XCC' '.

As for factorial, we need to process the arguments on either side of CC to
ensure that they are strings (atoms), not expressions, before they are used. To do
this we define a predicate convert/2. If the first argument is an atom, it binds the
second argument to that value. If not, it must be an expression using CC, such
as 'hello'CC'world'. In this case iss is used to calculate the new string and this is
returned as the second argument.

The built-in predicate atom/1 tests whether or not a term is an atom. The goal
atom(X) succeeds if and only if X is an atom or a variable bound to an atom. Using
this we can define the convert/2 predicate as follows:

convert(X,X):-atom(X).
convert(X,X1):�X1 iss X.

The previous definition of CC can now be replaced by the clause:

S iss S1CCS2:-
convert(S1,A),convert(S2,B),join2(A,B,S),!.

With this new definition, CC can be used to join any number of strings together.

?- S iss 'hello'CC' world'.
S D 'hello world'

?- XD'United States', YD'of America',Z iss XCC' 'CCY.
X D 'United States' ,
Y D 'of America' ,

11.4 Extending Prolog: Sets 155

Z D 'United States of America'

?- XD'United States', YD'of America',Z iss 'This is the 'CCXCC' 'CCY.
X D 'United States' ,
Y D 'of America' ,
Z D 'This is the United States of America'

11.4 Extending Prolog: Sets

An important branch of mathematics is known as set theory. A detailed description
of this is outside the scope of this book, but essentially a set is similar to a list of
atoms, such as [a,b,c,d] but with two major differences: the order of the elements is
of no significance and no element may occur twice in a set.

Given two sets X and Y, a standard requirement is to produce any or all of three
new sets based on the first two:

• the intersection – those elements that are in both sets
• the union – those elements that are in either set (or both)
• the difference – those elements that are in the first set but not the second.

We will denote these by the expressions X and Y, X or Y and X�Y, respectively.
To define these set operations, we will start by defining a new predicate sis/2, in

the same way as iss/2 was defined previously, i.e. by entering a goal such as

?- op(710,xfx,sis).

We now need to define the and and or operators for intersection and union, which
we can do by entering goals such as:

?- op(200,yfx,and).
?-op(200,yfx,or).

There is no need to define the minus operator for difference, as it is already
defined.

We now need to define the meaning of and, or and - when used in conjunction
with sis. We do this using the predicate findall/3:

Y sis A and B :-
findall(X,(member(X,A),member(X,B)),Y),!.

Y sis A or B :-
findall(X,(member(X,A);member(X,B)),Y),!.

Y sis A�B :-
findall(X,(member(X,A),not(member(X,B))),Y),!.

156 11 More Advanced Features

corresponding to find all elements that are members of both A and B, members of
either A or B (or both) and members of A but not B, respectively. Unfortunately the
second clause is not quite correct.

?- XD[a,b,c,d],YD[e,b,f,c,g],A sis X and Y.
X D [a,b,c,d] ,
Y D [e,b,f,c,g] ,
A D [b,c]

?- XD[a,b,c,d],YD[e,b,f,c,g],A sis X or Y.
X D [a,b,c,d],
Y D [e,b,f,c,g],
A D [a,b,c,d,e,b,f,c,g]

?- XD[a,b,c,d],YD[e,b,f,c,g],A sis X�Y.
X D [a,b,c,d],
Y D [e,b,f,c,g],
A D [a,d]

The goal A sis X or Y causes variable A to be bound to a list containing all those
elements that are in either X or Y. However elements b and c occur in both X and
Y, and so appear twice in list A, which is therefore not a valid set.

To get around this, we can change the definition of the or operator to:

Y sis A or B:-
findall(X,(member(X,A);(member(X,B),

not(member(X,A)))),Y),!.

corresponding to: find all elements X that are members of A or are members of B
but not members of A.

With this new definition, the or operator gives the expected result.

?- XD[a,b,c,d],YD[e,b,f,c,g],A sis X or Y.
X D [a,b,c,d],
Y D [e,b,f,c,g],
A D [a,b,c,d,e,f,g]

If we want to combine several operators in a single expression, e.g. X and Y and
Z, we need to change the definitions of and, or and - when used with sis, to allow
for the possibility of an argument being an expression not a list.

We can do this by first applying sis to each argument, replacing it by a list if it
is an expression, or by itself if it is a list. This requires an additional final clause to
be added, specifying that applying sis to 'anything else' (i.e. a list) gives the same
value.

This gives a revised definition of sis/2 as follows:

11.5 Processing Terms 157

Y sis A and B :-
A1 sis A,B1 sis B,
findall(X,(member(X,A1),member(X,B1)),Y),!.

Y sis A or B:-
A1 sis A,B1 sis B,
findall(X,(member(X,A1);(member(X,B1),
not(member(X,A1)))),Y),!.

Y sis A�B :-
A1 sis A,B1 sis B,
findall(X,(member(X,A1),not(member(X,B1))),Y),
!.

A sis A:-!.

?- XD[a,b,c,d],YD[e,b,f,c,g],ZD[a,e,c,g,h],A sis X and Y and Z.
X D [a,b,c,d] ,
Y D [e,b,f,c,g] ,
Z D [a,e,c,g,h] ,
A D [c]

?- XD[a,b,c,d],YD[e,b,f,c,g],ZD[a,e,c,g,h],A sis X or Y or Z.
X D [a,b,c,d] ,
Y D [e,b,f,c,g] ,
Z D [a,e,c,g,h] ,
A D [a,b,c,d,e,f,g,h]

?- XD[a,b,c,d],YD[e,b,f,c,g],ZD[a,e,c,g,h],A sis X�Y�Z.
X D [a,b,c,d] ,
Y D [e,b,f,c,g] ,
Z D [a,e,c,g,h] ,
A D [d]

11.5 Processing Terms

Prolog has several facilities for processing terms, which can be useful for more
advanced applications. Terms can be decomposed into their functor and arity, a
specified argument can be extracted from a compound term, terms can be converted
to lists or vice versa and a term can be evaluated as a goal.

158 11 More Advanced Features

Using the univ Operator to Convert Lists to Terms

The built-in infix operator D.. is known (for obscure historical reasons) as 'univ'.
The operator is written as an D sign followed by two full stops, i.e. three characters.

Evaluating the goal

XD.. [member,A,L]

causes variable X to be bound to the term member(A,L).
Evaluating the goal

XD..[colour,red]

causes X to be bound to the term colour(red). X can then be used just like any other
term, so for example

?-XD..[colour,red],assertz(X).

would place the clause colour(red) in the database.

?- XD..[colour,red],assertz(X).
X D colour(red)

?- colour(red).
true.

It is also possible to go the other way. If the first argument of 'univ' is a term and
the second is an unbound variable, the latter is bound to a list that corresponds to the
term, with the first element the functor and the remaining elements the arguments
of the compound term in order. For example,

?- data(6,green,mypred(26,blue))D..L.

will bind the variable L to a list

L D [data,6,green,mypred(26,blue)]

The call/1 Predicate

The call/1 predicate takes a single argument, which must be a call term, i.e. an atom
or a compound term, or a variable bound to a call term. The term is evaluated as if
it were a goal.

?- call(write('hello world')).
hello world
true.

?- XDwrite('hello world'),call(X).
hello world
X D write('hello world')

11.5 Processing Terms 159

call/1 can be used to evaluate more than one goal if they are separated by commas
and enclosed in parentheses.

?- call((write('hello world'),nl,write('goodbye world'),nl)).
hello world
goodbye world
true.

?- XD(write('hello world'),nl),call(X).
hello world
X D (write('hello world'),nl)

In the above cases there is no benefit over entering the goal or goals directly.
However, if the value of X is not known in advance but is a calculated value or is
read from a file, being able to call X as a goal can be very useful.

The call predicate is sometimes used in conjunction with univ, for example:

?- XD..[write,'hello world'],call(X).
hello world
X D write('hello world')

If the database contains the clause

greet(Z):-write('Hello '),write(Z),nl,
write('How are you?'),nl.

we can cause a greet goal to be evaluated by:

?- XD..[greet,martin],call(X).
Hello martin
How are you?
X D greet(martin)

The functor/3 Predicate

The built-in predicate functor/3 takes three arguments. If the first argument is an
atom or a compound term or a variable bound to one of those, and the other two
arguments are unbound, the second argument will be bound to the functor of the
first argument and the third will be bound to its arity. For this purpose an atom is
considered to have arity zero.

?- functor(write('hello world'),A,B).
A D write ,
B D 1

?- functor(city(london,england,europe),Funct,Ar).
Funct D city ,
Ar D 3

160 11 More Advanced Features

?- ZDperson(a,b,c,d),functor(Z,F,A).
Z D person(a,b,c,d) ,
F D person ,
A D 4

?- functor(start,F,A).
F D start ,
A D 0

?- functor(aCb,F,A).
F D (C) ,
A D 2

If the first argument is an unbound variable, the second is an atom, and the third
is a positive integer, the variable is bound to a compound term with the given functor
and arity, with all its arguments unbound variables. If the third argument is zero, the
first argument is bound to an atom.

?- functor(T,person,4).
T D person(_42952,_42954,_42956,_42958)

?- functor(T,start,0).
T D start

The arg/3 Predicate

The built-in predicate arg/3 can be used to find a specified argument of a compound
term. The first two arguments must be bound to a positive integer and a compound
term, respectively. If the third argument is an unbound variable, it is bound to the
value of the specified argument of the compound term.

?- arg(3,person(mary,jones,doctor,london),X).
X D doctor

?- ND2,TDperson(mary,jones,doctor,london),arg(N,T,X).
N D 2 ,
T D person(mary,jones,doctor,london) ,
X D jones

We can use functor/3 and arg/3 to define a predicate to determine whether or not
two call terms will unify, as described in Section 3.2. The built-in operator D/2 can
be used for this, but we shall assume that it is not available. In summary, an atom
can only be unified with the same atom and a compound term can only be unified
with a compound term with the same functor and arity. Two compound terms with
the same functor and arity unify if and only if their arguments unify pairwise. A first
version of a unify/2 predicate embodying these rules is as follows.

http://dx.doi.org/10.1007/978-1-4471-5487-7_3

11.5 Processing Terms 161

unify(CT1,CT2):-
functor(CT1,Funct1,Arity1),
functor(CT2,Funct2,Arity2),
compare(Funct1,Arity1,Funct2,Arity2).

compare(F,0,F,0). /* Same atom*/
compare(F,0,F1,0):-fail.
/* Will not unify - different atoms */
compare(F,A,F,A):-write('May unify - check whether
arguments unify pairwise'),nl.
compare(_,_,_,_):-fail.

?- unify(person(a,b,c,d),person(a,b,c)).
false.

?- unify(person(a,b,c,d),person2(a,b,c,d)).
false.

?- unify(london,london).
true.

?- unify(london,washington).
false.

?- unify(dog,person(a,b)).
false.

?- unify(person(a,b,c,d),person(a,b,c,f)).
May unify - check whether arguments unify pairwise
true.

To extend this program we need to modify the penultimate compare clause. We
start by adding two additional arguments to predicate compare, so we can pass the
two call terms to it from unify. We then change the penultimate clause of compare
so that when the call terms are both compound terms with the same functor and
arity they are passed to a new predicate unify2, which examines their arguments
pairwise.

unify2 works by converting the two compound terms to lists using univ, then
removing the heads of the lists (the common functor) and passing them to predicate
paircheck/2, which succeeds if and only if the corresponding pairs of list elements
can be unified. The standard Prolog unification is used to check that each pair of
elements can be unified.

162 11 More Advanced Features

unify(CT1,CT2):-
functor(CT1,Funct1,Arity1),
functor(CT2,Funct2,Arity2),
compare(CT1,CT2,Funct1,Arity1,Funct2,Arity2).

compare(CT1,CT2,F,0,F,0). /* Same atom*/
compare(CT1,CT2,F,0,F1,0):-fail. /* Different atoms */
compare(CT1,CT2,F,A,F,A):-unify2(CT1,CT2),!.
compare(CT1,CT2,_,_,_,_):-fail.
unify2(CT1,CT2):-

CT1D..[FjL1],CT2D..[FjL2],!,paircheck(L1,L2).
paircheck([],[]).
paircheck([AjL1],[AjL2]):-paircheck(L1,L2).

?- unify(person(a,b,c,d),person(a,b,c,f)).
false.

?- unify(person(a,b,c,d),person(a,b,X,Y)).
X D c ,
YD d

?- unify(pred(6,A,[X,Y,[a,b,c]],pred2(p,q)),pred(P1,Q1,L,Z)).
A D Q1 ,
P1 D 6 ,
L D [X,Y,[a,b,c]] ,
Z D pred2(p,q)

?- unify(person(a,b,c,d),person(a,b,X,X)).
false.

Note that this definition of unify is a simplified one that does not ensure that
there are no common variables in the two compound terms. This needs to be dealt
with separately.

Chapter Summary

This chapter describes some of the more advanced features provided by Prolog:
the use of operators to extend the language (e.g. to provide new arithmetic
operators, improved facilities for processing strings or facilities for processing
sets) and facilities for processing terms, including finding their functors and arities,
extracting a specified argument of a term, converting terms to lists or evaluating
terms as goals. A user-defined predicate to unify two compound terms is given.

Practical Exercise 11 163

Practical Exercise 11

(1) Extend the definition of the iss/2 predicate with prefix operators for the head and
tail of a list that can be used in the following way:

?- Y iss head [a,b,c].
Y D a

?- Y iss tail [a,b,c].
Y D [b,c]

(2) Define and test a predicate addArg/3. Its first argument must be a compound
term or a variable bound to one. The second argument must be a term. The third
argument must be an unbound variable. Evaluating the goal should bind this variable
to a compound term that is the same as the original one, with the specified term
added as an additional final argument. Your definition should work however many
arguments the compound term used for the first argument has. For example, it should
produce the following output:

?- addArg(person(john,smith,25),london,T).
T D person(john,smith,25,london)

Chapter 12
Using Grammar Rules to Analyse
English Sentences

Chapter Aims

After reading this chapter you should be able to:

• Understand and use the special syntax provided in Prolog for analyzing grammar
rules.

• Define a simple grammar able to deal with basic sentences of English.
• Define predicates to enable the validity of sentences presented as lists of words

to be established and to extract important information such as the type of each
noun phrase from valid sentences.

• Define predicates to convert sentences in standard English into the 'list of words'
form required by Prolog grammar rules.

12.1 Introduction

In this and the next chapter we will end the book by illustrating some of the uses to
which Prolog can be put. We will focus on applications from the world of Artificial
Intelligence (AI) as that was the field in which Prolog was originally developed.

As this is not a textbook on AI, the examples chosen may seem quite rudimentary,
but do not be fooled by this. Prolog is a powerful language for AI projects in which
some very substantial systems have been written.

12.2 Parsing English Sentences

Processing natural language (particularly sentences in English) was one of the
earliest application areas for Prolog and no doubt largely because of this there is
a special syntax available to support it in most versions of the language.

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__12,
© Springer-Verlag London 2013

165

166 12 Using Grammar Rules to Analyse English Sentences

We start by looking at how Prolog can be used to break down sentences of
English into their component parts (nouns, verbs etc.), which is known as parsing.
Do not worry – this is not going to turn into a book on the grammar of English so
all the sentences we use for illustration will be very basic ones.

We can think of a simple English sentence having the form 'a noun, followed by
a verb, followed by a noun', or even simpler: 'a noun followed by a verb'. In Prolog
we can define a sentence this way by the two clauses:

sentence-->noun,verb,noun.
sentence-->noun,verb.

The –>/2 operator can be read as 'is a' or 'comprises' or 'is made up of'. So the first
clause indicates that a sentence can comprise a noun, followed by a verb, followed
by a noun. As usual in Prolog we place the more specific clause before the more
general one. (Note that the –> operator is three keystrokes: two hyphens followed
by a 'greater than' symbol.)

This would be a possible way of defining sentences, but is very limited. It
would allow 'man saw' and 'man saw dog' but not 'the man saw a dog'. Our
first improvement to the above prototype program will be to change noun to
'noun_phrase' which we will define as an optional determiner followed by a noun.
(The words 'the', 'a' and 'an' are called determiners.)

This change brings us closer to a usable definition of a sentence, but we also need
to define some nouns and verbs. Putting all these definitions together gives us a first
version of a Prolog program defining the grammar of a very restricted version of
English.

sentence-->noun_phrase,verb,noun_phrase.
sentence-->noun_phrase,verb.

noun_phrase-->determiner,noun.
noun_phrase-->noun.

verb-->[sat].
verb-->[saw].
verb-->[hears].
verb-->[took].
verb-->[sees].

determiner-->[the].
determiner-->[a].
determiner-->[an].

12.2 Parsing English Sentences 167

noun-->[cat].
noun-->[mat].
noun-->[man].
noun-->[boy].
noun-->[dog].

Terms such as sentence, noun_phrase and verb are called syntactic terms, to
indicate that they are part of the structure of the English language. The list brackets
around [mat] etc. are used to indicate that they are actual words in the language,
not syntactic terms. Such words are often called terminals. Terminals can also be
characters such as ',' or '?'.

The usual rules for Prolog atoms apply to syntactic terms such as sentence and
noun_phrase and terminals such as sat and took, i.e. if they comprise only lower
case letters, underscores and digits starting with a lower case letter they can be
written without surrounding quotes, but any that begin with a capital letter, a digit
or a symbol such as a question mark must be enclosed in quotes. This is why we
wrote '?' above. In practice it is easiest to keep to lower case words.

We can now check whether a sentence such as 'the cat saw the mat' is valid in our
restricted language. Prolog provides a special predicate phrase/2 to do this. It takes
two arguments: the first is a syntactic term such as sentence or noun_phrase (the left
hand side of one of the –> operators) and the second is a list of words. So to check
whether 'the cat saw the mat' is a valid sentence we can simply enter the query:

?- phrase(sentence,[the,cat,saw,the,mat]).
true .

The sequence of words 'the cat mat' is not a valid sentence, however.

?- phrase(sentence,[the,cat,mat]).
false.

A grammar such as the one above is called a 'definite clause grammar'. It is a
'context free' grammar, in the sense that it takes no account of the meaning of words,
just whether they match the structure of the language (its syntax). Thus 'the mat saw
the cat' is also a valid sentence.

?- phrase(sentence,[the,mat,saw,the,cat]).
true .

We can also test whether a sequence of words is a valid form of another syntactic
term, such as a noun_phrase, e.g.

?- phrase(noun_phrase,[a,cat]).
true .

168 12 Using Grammar Rules to Analyse English Sentences

As this is Prolog we can also enter more complex queries, such as which words
can validly come at the end of a sentence beginning 'the cat saw the':

?- phrase(sentence,[the,cat,saw,the,X]).
X D cat;
X D mat;
X D man;
X D boy;
X D dog;
false.

or which single word can end a sentence starting 'the cat saw'.

?- phrase(sentence,[the,cat,saw,X]).
X D cat;
X D mat;
X D man;
X D boy;
X D dog;
false.

or which two words can end a sentence beginning 'the cat saw':

?- phrase(sentence,[the,cat,saw,X,Y]).
X D the,
Y D cat;
X D the,
Y D mat;
X D the,
Y D man;
[etc.]

We can represent a compound verb such as 'will see' by a single word with an
embedded underscore.

verb-->[will_see].

?- phrase(sentence,[the,man,will_see,the,cat]).
true .

We can now elaborate our language by introducing adjectives between the
determiner and the noun in a noun_phrase, e.g. a large brown cat.

To allow for one adjective we can add an extra clause to the definition of
noun_phrase giving

12.2 Parsing English Sentences 169

noun_phrase-->determiner,adjective,noun.
noun_phrase-->determiner,noun.
noun_phrase-->noun.

and define some adjectives, e.g.

adjective-->[large].
adjective-->[small].
adjective-->[brown].
adjective-->[orange].
adjective-->[green].
adjective-->[blue].

With this improved grammar we can verify some more complex sentences, e.g.:

?- phrase(sentence,[the,blue,cat,saw,the,large,man]).
true .

If we want to allow for a sequence of adjectives rather than just one, we can
define an adjective_sequence which is either an adjective or an adjective followed
by an adjective_sequence.

To do this change the first line in the definition of noun_phrase to

noun_phrase-->determiner,adjective_sequence,noun.

and add the definition of adjective_sequence

adjective_sequence-->adjective,adjective_sequence.
adjective_sequence-->adjective.

We can then verify quite lengthy sentences such as

?- phrase(sentence,[the,large,orange,man,saw,the,small,brown,orange,green,
dog]).

true .

Before going any further, we need to step back and consider the clauses shown in
this section so far. Although they certainly have a resemblance to them, they are not
Prolog clauses (rules and facts) as defined and used elsewhere in this book. Clauses
using the –> operator may be mixed freely with 'regular' Prolog clauses in a Prolog
program and are essentially regular clauses 'in disguise'. For example the clause

170 12 Using Grammar Rules to Analyse English Sentences

verb-->[took].

is a 'disguised' form of the 'regular' Prolog clause (fact)

verb([tookjA], A).

The latest version of the program developed in this section is as follows:

sentence-->noun_phrase,verb,noun_phrase.
sentence-->noun_phrase,verb.

noun_phrase-->determiner,adjective_sequence,noun.
noun_phrase-->determiner,noun.
noun_phrase-->noun.

verb-->[sat].
verb-->[saw].
verb-->[hears].
verb-->[took].
verb-->[sees].
verb-->[will_see].

adjective_sequence-->adjective,adjective_sequence.
adjective_sequence-->adjective.

determiner-->[the].
determiner-->[a].
determiner-->[an].

noun-->[cat].
noun-->[mat].
noun-->[man].
noun-->[boy].
noun-->[dog].

adjective-->[large].
adjective-->[small].
adjective-->[brown].
adjective-->[orange].
adjective-->[green].
adjective-->[blue].

12.2 Parsing English Sentences 171

If we use the listing/1 predicate to see which rules and facts are in the database
for predicates sentence, noun_phrase, verb etc. in turn, we can see that the above
program is in fact stored as the 'regular' Prolog clauses:

sentence(A, D) :-
noun_phrase(A, B),
verb(B, C),
noun_phrase(C, D).

sentence(A, C) :-
noun_phrase(A, B),
verb(B, C).

noun_phrase(A, D) :-
determiner(A, B),
adjective_sequence(B, C),
noun(C, D).

noun_phrase(A, C) :-
determiner(A, B),
noun(B, C).

noun_phrase(A, B) :-
noun(A, B).

verb([satjA], A).
verb([sawjA], A).
verb([hearsjA], A).
verb([tookjA], A).
verb([seesjA], A).
verb([will_seejA], A).

adjective_sequence(A, C) :-
adjective(A, B),
adjective_sequence(B, C).

adjective_sequence(A, B) :-
adjective(A, B).

determiner([thejA], A).
determiner([ajA], A).
determiner([anjA], A).

noun([catjA], A).
noun([matjA], A).

172 12 Using Grammar Rules to Analyse English Sentences

noun([manjA], A).
noun([boyjA], A).
noun([dogjA], A).

adjective([largejA], A).
adjective([smalljA], A).
adjective([brownjA], A).
adjective([orangejA], A).
adjective([greenjA], A).
adjective([bluejA], A).

This is considerably different! For example the syntactic term sentence has
become the predicate sentence with two arguments. This is what was meant by
saying that a special syntax is available for language parsing in Section 12.2. The
–> operator is not merely an infix operator, using it enables a different syntax for
Prolog to be used that is automatically converted to 'regular' Prolog clauses.

Special language syntax of this form is sometimes known by the slightly deroga-
tory term syntactic sugar. The implication is presumably that 'real' programmers
do not need such sweetening on top of their favourite language. While this may be
true, there is no doubt that most people will find it much easier to work with Prolog
clauses for language processing written using the –> notation than with the 'raw'
Prolog clauses generated from them.

We will next show how the grammar rule notation can be used to ensure that
a singular noun is followed by a singular verb and a plural noun is followed by a
plural verb, i.e. that a noun and the following verb have the same plurality.

We first change the definition of our five nouns to

noun(singular)-->[cat].
noun(singular)-->[mat].
noun(singular)-->[man].
noun(singular)-->[boy].
noun(singular)-->[dog].

and then add the plural forms

noun(plural)-->[cats].
noun(plural)-->[mats].
noun(plural)-->[men].
noun(plural)-->[boys].
noun(plural)-->[dogs].

12.2 Parsing English Sentences 173

We next do the same for the verbs

verb(both)-->[sat].
verb(both)-->[saw].
verb(both)-->[took].
verb(both)-->[will_see].

verb(singular)-->[hears].
verb(singular)-->[sees].

verb(plural)-->[hear].
verb(plural)-->[see].

The first four verbs are labelled 'both', indicating that they are the same with
either a singular or a plural noun ('the man sat', 'the men sat' etc.). Verbs 'hears' and
'sees' are labelled as 'singular' and we have added the plural forms 'hear' and 'see'.

We can now change the definitions of sentence and noun_phrase to incorporate
information about the plurality of the first noun and the corresponding verb.

sentence-->noun_phrase(_),verb(both),noun_phrase(_).
sentence-->noun_phrase(_),verb(both).

sentence-->noun_phrase(Plurality),verb(Plurality),
noun_phrase(_).

sentence-->noun_phrase(Plurality),verb(Plurality).

noun_phrase(Plurality)-->determiner,
adjective_sequence,noun(Plurality).

noun_phrase(Plurality)-->determiner,noun(Plurality).
noun_phrase(Plurality)-->noun(Plurality).

The definition of sentence indicates that if the plurality of the verb is 'both' we
do not care about the plurality of the preceding noun. However if the verb has a
plurality that is 'singular' or 'plural' we require the first noun in the sentence to have
the same plurality as the verb. In all cases we are unconcerned about the plurality of
the second noun (if there is one).

?- phrase(sentence,[the,small,green,man,sees,a,large,dog]).
true .

?- phrase(sentence,[the,small,green,men,sees,a,large,dog]).
false.

?- phrase(sentence,[the,small,green,men,see,a,large,dog]).
true .

174 12 Using Grammar Rules to Analyse English Sentences

?- phrase(sentence,[the,small,green,man,sees,the,large,dogs]).
true .

?- phrase(sentence,[the,small,green,man,took,the,large,dogs]).
true .

?- phrase(sentence,[the,small,green,men,took,the,large,dogs]).
true .

It would be straightforward to associate a tense (past, present or future) with a
verb in the same way that we have associated a plurality with nouns and verbs, but
we will not pursue this possibility here.

Instead we will demonstrate that it is possible to include 'regular' Prolog in a
grammar rule clause. To do this we make use of another piece of special syntax and
enclose the 'regular' Prolog in fbracesg.

Instead of the six grammar rules currently defining adjectives we can write:

adjective-->[X],fadjective_is(X)g.

adjective_is(large).
adjective_is(small).

adjective-->[brown].
adjective-->[orange].
adjective-->[green].
adjective-->[blue].

The first clause indicates that an adjective is any X such that adjective_is(X).
The other definitions of adjective (green etc.) could also have been converted into
adjective_is form, of course, but they have been left as they were to indicate that a
mixed notation is possible.

?- phrase(sentence,[the,man,saw,the,large,dog]).
true .

?- phrase(sentence,[the,man,saw,the,large,green,dog]).
true .

?- phrase(sentence,[the,green,man,saw,the,small,blue,large,boy]).
true .

Now we have the fbraceg notation available, we can simplify the whole definition
of adjective to the much more compact form:

adjective-->[X],
fmember(X,[large,small,brown,orange,green,blue])g.

12.2 Parsing English Sentences 175

?- phrase(sentence,[the,small,green,man,saw,the,large,orange,green,dog]).
true .

We can also simplify the definition of singular and plural nouns to just:

noun(singular)-->[X],fmember(X,[cat,mat,man,
boy,dog])g.

noun(plural)-->[X],fmember(X,[cats,mats,men,
boys,dogs])g.

?- phrase(sentence,[the,small,green,man,sees,a,large,dog]).
true .

?- phrase(sentence,[the,small,green,men,sees,a,large,dog]).
false.

?- phrase(sentence,[the,small,green,men,see,a,large,dog]).
true .

?- phrase(sentence,[the,small,green,man,sees,the,large,dogs]).
true .

?- phrase(sentence,[the,small,green,man,took,the,large,dogs]).
true .

?- phrase(sentence,[the,small,green,men,took,the,large,dogs]).
true .

Similarly the definition of verb can be simplified to:

verb(both)-->[X],fmember(X,[sat,saw,took,will_see])g.
verb(singular)-->[X],fmember(X,[hears,sees])g.
verb(plural)-->[X],fmember(X,[hear,see])g.

As well as wishing to verify that a sentence is syntactically valid we may wish
to show which of the four types of valid sentence we have defined applies in a
particular case. We can do this by adding an argument to each of the sentence
clauses.

sentence(s1)-->noun_phrase(_),verb(both),
noun_phrase(_).

sentence(s2)-->noun_phrase(Plurality),verb(Plurality),
noun_phrase(_).

sentence(s3)-->noun_phrase(_),verb(both).
sentence(s4)-->noun_phrase(Plurality),verb(Plurality).

176 12 Using Grammar Rules to Analyse English Sentences

?- phrase(sentence(Stype),[the,blue,man,saw,a,large,green,boy]).
Stype D s1 .

?- phrase(sentence(Stype),[the,small,green,men,hear]).
Stype D s4 .

We may also want to know which of the definitions of noun_phrase have been
used. We can give them labels too:

noun_phrase(np1,Plurality)-->determiner,
adjective_sequence,noun(Plurality).

noun_phrase(np2,Plurality)-->determiner,
noun(Plurality).

noun_phrase(np3,Plurality)-->noun(Plurality).

There may be either one or two noun_phrases in a valid sentence. To allow for
this, we could define two versions of sentence, one with two arguments (the sentence
type, followed by the single noun_phrase type) and the other with three arguments
(the sentence type and then two noun_phrase types).

However it is probably preferable for sentence to have a single argument which
is a list. The first element of the list is always the sentence type (s1, s2 etc.). The
rest of the list comprises the type of the one or two noun_phrases (np1,np2 etc.) that
appear in the sentence, as appropriate.

sentence([s1,NP1,NP2])-->noun_phrase(NP1,_),
verb(both),noun_phrase(NP2,_).

sentence([s2,NP1,NP2])-->noun_phrase(NP1,Plurality),
verb(Plurality),noun_phrase(NP2,_).

sentence([s3,NP1])-->noun_phrase(NP1,_),verb(both).
sentence([s4,NP1])-->noun_phrase(NP1,Plurality),

verb(Plurality).

?-phrase(sentence(S),[the,large,green,men,see,a,small,blue,dog]).
S D [s2, np1, np1] .

There is a valid sentence of type s2, with two noun_phrases, both of type np1.

?- phrase(sentence(S),[the,men,saw,dogs]).
S D [s1, np2, np3] .

?- phrase(sentence(S),[the,green,men,took]).
S D [s3, np1] .

We can also include the plurality of the verb as the second element of the list by
changing the definition of sentence as follows:

12.2 Parsing English Sentences 177

sentence([s1,both,NP1,NP2])-->noun_phrase(NP1,_),
verb(both),noun_phrase(NP2,_).

sentence([s2,Plurality,NP1,NP2])-->noun_phrase
(NP1,Plurality),verb(Plurality),noun_phrase(NP2,_).

sentence([s3,both,NP1])-->noun_phrase(NP1,_)
,verb(both).

sentence([s4,Plurality,NP1])-->noun_phrase
(NP1,Plurality),verb(Plurality).

?- phrase(sentence(S),[the,large,green,men,see,a,small,blue,dog]).
S D [s2, plural, np1, np1] .

?- phrase(sentence(S),[the,men,saw,dogs]).
S D [s1, both, np2, np3] .

?- phrase(sentence(S),[the,green,men,took]).
S D [s3, both, np1] .

This is clearly moving away from merely verifying that a sentence is syntactically
valid to something closer to a linguistic analysis of the structure of the sentence.

We can add the verb itself as the third element of the list by changing the
definitions of sentence and verb.

sentence([s1,both,V,NP1,NP2])-->noun_phrase(NP1,_),
verb(both,V),noun_phrase(NP2,_).

sentence([s2,Plurality,V,NP1,NP2])
-->noun_phrase(NP1,Plurality),

verb(Plurality,V),noun_phrase(NP2,_).
sentence([s3,both,V,NP1])-->noun_phrase(NP1,_),
verb(both,V).
sentence([s4,Plurality,V,NP1])
-->noun_phrase(NP1,Plurality),verb(Plurality,V).

verb(both,X)-->[X],fmember(X,[sat,saw,
took,will_see])g.

verb(singular,X)-->[X],fmember(X,[hears,sees])g.
verb(plural,X)-->[X],fmember(X,[hear,see])g.

?- phrase(sentence(S),[the,large,green,men,see,a,small,blue,dog]).
S D [s2, plural, see, np1, np1] .

?- phrase(sentence(S),[the,large,green,men,will_see,a,small,blue,dog]).
S D [s1, both, will_see, np1, np1] .

?- phrase(sentence(S),[the,green,small,men,see,a,blue,dog]).

178 12 Using Grammar Rules to Analyse English Sentences

S D [s2, plural, see, np1, np1] .

?- phrase(sentence(S),[the,green,small,men,took,a,blue,dog]).
S D [s1, both, took, np1, np1] .

?- phrase(sentence(S),[the,green,small,man,sees]).
S D [s4, singular, sees, np1] .

If we also want to get the noun or nouns into the list we can do so, starting by
changing the definition of a noun to include as the second argument the word itself.
Then we change the definition of noun_phrase to have a third argument, the noun
word itself. Finally, we change the definition of sentence to put the noun or nouns
into the list that is the argument of sentence.

sentence([s1,both,V,NP1,Noun1,NP2,Noun2])
-->noun_phrase(NP1,_,Noun1),

verb(both,V),noun_phrase(NP2,_,Noun2).
sentence([s2,Plurality,V,NP1,Noun1,NP2,Noun2]
-->noun_phrase(NP1,Plurality,Noun1),

verb(Plurality,V),noun_phrase(NP2,_,Noun2).
sentence([s3,both,V,NP1,Noun1])
-->noun_phrase(NP1,_,Noun1),verb(both,V).
sentence([s4,Plurality,V,NP1,Noun1])
-->noun_phrase(NP1,Plurality,Noun1),

verb(Plurality,V).

noun_phrase(np1,Plurality,N)-->determiner,
adjective_sequence,noun(Plurality,N).

noun_phrase(np2,Plurality,N)-->determiner,
noun(Plurality,N).

noun_phrase(np3,Plurality,N)-->noun(Plurality,N).

noun(singular,X)-->[X],fmember(X,[cat,mat,man,
boy,dog])g.

noun(plural,X)-->[X],fmember(X,[cats,mats,men,
boys,dogs])g.

?- phrase(sentence(S),[the,green,small,men,see,a,blue,dog]).
S D [s2, plural, see, np1, men, np1, dog] .

?- phrase(sentence(S),[the,green,small,men,took,a,blue,dog]).
S D [s1, both, took, np1, men, np1, dog] .

?- phrase(sentence(S),[the,green,small,man,sees]).
S D [s4, singular, sees, np1, man] .

12.2 Parsing English Sentences 179

?- phrase(sentence(S),[the,green,small,men,will_see,a,blue,dog]).
S D [s1, both, will_see, np1, men, np1, dog] .

Finally, we may wish to compile a list of all the verbs that occur in a sequence of
valid sentences that we analyse. This can be done by adding an assertz goal at the
end of each of the four definitions of sentence.

sentence([s1,both,V,NP1,Noun1,NP2,Noun2])
-->noun_phrase(NP1,_,Noun1),verb(both,V),

noun_phrase(NP2,_,Noun2),fassertz(wordlist
(verb,both,V))g.

sentence([s2,Plurality,V,NP1,Noun1,NP2,Noun2])
-->noun_phrase(NP1,Plurality,Noun1),

verb(Plurality,V),noun_phrase(NP2,_,Noun2),
fassertz(wordlist(verb,Plurality,V))g.

sentence([s3,both,V,NP1,Noun1])-->noun_phrase
(NP1,_,Noun1),
verb(both,V),fassertz(wordlist(verb,both,V))g.

sentence([s4,Plurality,V,NP1,Noun1])
-->noun_phrase(NP1,Plurality,Noun1),

verb(Plurality,V),fassertz(wordlist
(verb,Plurality,V))g.

?- phrase(sentence(S),[the,man,sees,the,blue,green,small,dog]).
S D [s2, singular, sees, np2, man, np1, dog] .

?- phrase(sentence(S),[the,man,took,the,blue,green,small,dog]).
S D [s1, both, took, np2, man, np1, dog] .

?- phrase(sentence(S),[a,large,man,sees,the,blue,green,small,dog]).
S D [s2, singular, sees, np1, man, np1, dog] .

?- phrase(sentence(S),[the,men,hear,the,blue,green,small,dog]).
S D [s2, plural, hear, np2, men, np1, dog] .

?- listing(wordlist).

wordlist(verb, singular, sees).
wordlist(verb, both, took).
wordlist(verb, singular, sees).
wordlist(verb, plural, hear).

true.

There is clearly much more that could be done, but we will leave the parsing of
English here. For reference, the complete program developed in this section is given
below.

180 12 Using Grammar Rules to Analyse English Sentences

sentence([s1,both,V,NP1,Noun1,NP2,Noun2])
-->noun_phrase(NP1,_,Noun1),verb(both,V),

noun_phrase(NP2,_,Noun2),fassertz(wordlist
(verb,both,V))g.

sentence([s2,Plurality,V,NP1,Noun1,NP2,Noun2])
-->noun_phrase(NP1,Plurality,Noun1),verb(Plurality,V),

noun_phrase(NP2,_,Noun2),
fassertz(wordlist(verb,Plurality,V))g.

sentence([s3,both,V,NP1,Noun1])-->noun_phrase
(NP1,_,Noun1),
verb(both,V),fassertz(wordlist(verb,both,V))g.

sentence([s4,Plurality,V,NP1,Noun1])
-->noun_phrase(NP1,Plurality,Noun1),

verb(Plurality,V),fassertz(wordlist
(verb,Plurality,V))g.

noun_phrase(np1,Plurality,N)-->determiner,
adjective_sequence,noun(Plurality,N).

noun_phrase(np2,Plurality,N)-->determiner,noun
(Plurality,N).

noun_phrase(np3,Plurality,N)-->noun(Plurality,N).

verb(both,X)-->[X],fmember(X,[sat,saw,took,
will_see])g.

verb(singular,X)-->[X],fmember(X,[hears,sees])g.
verb(plural,X)-->[X],fmember(X,[hear,see])g.

adjective_sequence-->adjective,adjective_sequence.
adjective_sequence-->adjective.

determiner-->[the].
determiner-->[a].
determiner-->[an].

noun(singular,X)-->[X],fmember(X,[cat,mat,man,boy,
dog])g.

noun(plural,X)-->[X],fmember(X,[cats,mats,men,boys,
dogs])g.

adjective-->[X],
fmember(X,[large,small,brown,orange,green,blue])g.

12.3 Converting Sentences to List Form 181

12.3 Converting Sentences to List Form

The most obvious difficulty with the use of grammar rule syntax and the phrase/2
predicate is that sentences do not naturally come in neat lists of words. Rather they
can be lengthy sequences of words, with embedded spaces, commas, colons etc.

To illustrate the issues involved in converting real sentences to lists of words we
will make use of a file named dickens.txt which contains the first six sentences of
the celebrated story 'A Christmas Carol' by Charles Dickens.

Marley was dead: to begin with.

There is no doubt whatever about that.
The register of his burial was signed by the clergyman, the clerk, the undertaker,
and the chief mourner. Scrooge signed it. And Scrooge's name was good upon
'Change, for anything he chose to put his hand to.

Old Marley was as dead as a door-nail.

There are a number of points to note:

• A sentence can run over more than one line of the file.
• More than one sentence can appear on the same line.
• Sentences are separated by at least one space or end of line character.
• The final sentence is followed by a blank line and then an end-of-file marker.
• The words in sentences are separated by spaces, end of line characters or

punctuation marks such as commas and colons.
• Sentences end with a terminator (full stop, exclamation mark or question mark,

although only full stops are used in this example).
• Spaces, end of line characters, punctuation marks (such as commas and colons)

and terminators (full stops, exclamation marks and question marks) should all be
removed. However apostrophes are part of words such as Scrooge's and should
not be removed.

Converting sentences to list form is difficult to do, much more so than most of
the other programs in this book. A Prolog program to convert the dickens.txt file
to six sentences in list form is given below without explanation but for possible
use in the reader's own programs. As in Chapter 5 we will assume that the ASCII
characters corresponding to 'end of line' and 'end of file' have ASCII values 10 and
�1 respectively.

http://dx.doi.org/10.1007/978-1-4471-5487-7_5

182 12 Using Grammar Rules to Analyse English Sentences

readlineF(File):-
see(File),repeat,inputline(L),LD[end_of_file],!,seen.

inputline(L):-buildlist(L,[]),reverse(L,L1),
writeout(L1),!.

writeout([]).
writeout([end_of_file]).
writeout(L):-write('Sentence: '),write(L),nl.

buildlist(L,OldL):-findword(Word,[]),
(

(WordD[],LDOldL);
(WordD[end_of_file],LD[end_of_file]);
(WordD[sep],buildlist(L,OldL));
(WordD[terminjWord1],name(S,Word1),LD[SjOldL]);
(name(S,Word),buildlist(L,[SjOldL]))

).

findword(Word,OldWord):-get0(X),
(

(terminator(X),WordD[terminjOldWord]);
(separator(X),((OldWordD[],WordD[sep]);
WordDOldWord));
(X<0,WordD[end_of_file]);
(append(OldWord,[X],New),findword(Word,New))

).

separator(10). /* end of line */
separator(32). /* space*/
separator(44). /* comma */
separator(58). /* colon */

terminator(46). /* full stop */
terminator(33). /* exclamation mark */
terminator(63). /* question mark */

?- readlineF('dickens.txt').
Sentence: [Marley,was,dead,to,begin,with]
Sentence: [There,is,no,doubt,whatever,about,that]
Sentence: [The,register,of,his,burial,was,signed,by,the,clergyman,the,clerk,the,
undertaker,and,the,chief,mourner]
Sentence: [Scrooge,signed,it]

12.3 Converting Sentences to List Form 183

Sentence: [And,Scrooge's,name,was,good,upon,'Change,for,anything,he,chose,
to,put,his,hand,to]

Sentence: [Old,Marley,was,as,dead,as,a,door-nail]
true.

One improvement to this program would be to replace all the words by their lower
case equivalents, i.e. change 'There' to 'here', 'And' to 'and' etc. Words appearing at
the start of a sentence are generally spelt with an initial capital letter and those that
do not are generally spelt with an initial lower case letter. For a practical system
for analyzing sentences standardizing all words to begin with a lower case letter
(e.g. standardizing both 'There' and 'there' to 'there') reduces the number of words
that have to be stored considerably. It can be achieved quite easily by adjusting the
get0(X) goal in the first line of the definition of findword so that if the character
input is an upper case letter (values 65 to 90 inclusive) it is changed to its lower case
equivalent (97 to 122 inclusive). Other characters are left unchanged.

The first line of the definition of findword should be changed to:

findword(Word,OldWord):-get0(X1),repchar(X1,X),

A new predicate repchar also needs to be added, defined as follows.

repchar(X,New):-X>D65,XD<90,New is XC32,!.
repchar(Char,Char).

Now the effect of using readlineF is:

?- readlineF('dickens.txt').
Sentence: [marley,was,dead,to,begin,with]
Sentence: [there,is,no,doubt,whatever,about,that]
Sentence: [the,register,of,his,burial,was,signed,by,the,clergyman,the,clerk,the,
undertaker,and,the,chief,mourner]
Sentence: [scrooge,signed,it]
Sentence: [and,scrooge's,name,was,good,upon,'change,for,anything,he,chose,to,
put,his,hand,to]
Sentence: [old,marley,was,as,dead,as,a,door-nail]
true.

A second desirable change is to write the new sentences into a text file so that
they can be read in again for subsequent processing. This can be achieved by giving
the readlineF predicate an extra argument and changing its definition to

184 12 Using Grammar Rules to Analyse English Sentences

readlineF(File,Outfile):-
see(File),tell(Outfile),repeat,inputline(L),
LD[end_of_file],!,told,seen.

and changing the final clause of writeout to:

writeout(L):-writeq(L),write('.'),nl.

Note the use of the writeq rather than the write predicate here and also that each
list is output with a full stop and a newline character after it.

?- readlineF('dickens.txt','newdickens.txt').
true.

The file newdickens.txt now contains

[marley,was,dead,to,begin,with].
[there,is,no,doubt,whatever,about,that].
[the,register,of,his,burial,was,signed,by,the,clergyman,the,clerk,the,
undertaker,and,the,chief,mourner].
[scrooge,signed,it].
[and,'scrooge \ 's',name,was,good,upon,' \ 'change',for,anything,he,
chose,to,put,his,hand,to].
[old,marley,was,as,dead,as,a,'door-nail'].

Thanks to the use of writeq, the original word Scrooge's has been changed to
the atom 'scrooge\'s' enclosed in quotes and with the embedded quote character
written as \'. Similarly Dickens's word 'Change (an archaic way of writing the word
Exchange) has been changed to '\'change'.

In this form each list is a valid Prolog term, terminated by a full stop, which can
be processed by a separate Prolog program which analyses the contents of sentences.

The extract from 'A Christmas Carol' was chosen to illustrate the complexity
of even a small number of sentences of 'real' English. To parse just the first six
sentences of this famous story would require a considerably more complex grammar
than the one we have developed so far, which would take us far outside the scope of
this book.

Sadly we will go back to much simpler examples and use a file sentences.txt
containing five sentences that are valid with the grammar defined in Section 12.2
and one sentence (the third) that is invalid.

12.3 Converting Sentences to List Form 185

[the,large,green,men,see,a,small,blue,dog].
[the,large,green,men,will_see,a,small,blue,dog].
[the,man].
[the,green,small,men,see,a,blue,dog].
[the,green,small,men,took,a,blue,dog].
[the,green,small,man,sees].

To process this file we need to add just a few lines to the program for analyzing
sentences given at the end of Section 12.2. The second clause of predicate proc2
enables us to trap the case where a list of words is not a valid sentence, at least as
far as the grammar we have defined is concerned.

process(File):-
see(File),repeat,read(S),proc(S),SDend_of_file,!,
seen.

proc(end_of_file).
proc(S):-write('Sentence: '),write(S),nl,proc2(S).

proc2(S):-phrase(sentence(L1),S),write('Structure: '),
write(L1),nl,nl,!.

proc2(S):-write('Invalid sentence structure'),nl,nl.

?-process('sentences.txt').
Sentence: [the,large,green,men,see,a,small,blue,dog]
Structure: [s2,plural,see,np1,men,np1,dog]

Sentence: [the,large,green,men,will_see,a,small,blue,dog]
Structure: [s1,both,will_see,np1,men,np1,dog]

Sentence: [the,man]
Invalid sentence structure

Sentence: [the,green,small,men,see,a,blue,dog]
Structure: [s2,plural,see,np1,men,np1,dog]

Sentence: [the,green,small,men,took,a,blue,dog]
Structure: [s1,both,took,np1,men,np1,dog]

Sentence: [the,green,small,man,sees]
Structure: [s4,singular,sees,np1,man]

true.

186 12 Using Grammar Rules to Analyse English Sentences

Chapter Summary

This chapter describes the use of the special syntax provided in Prolog for
analyzing grammar rules: the operator –>/2, the predicate phrase/2 and braces
to enclose 'regular' Prolog used in conjunction with grammar rules. A simple
grammar able to deal with basic sentences is defined. Predicates are given to
enable the validity of sentences presented as lists of words to be established and
to extract important information such as the type of each noun_phrase from valid
sentences. Finally, predicates are defined to convert sentences in standard English
into the 'list of words' form required by the grammar rules.

Practical Exercise 12

Extend the grammar rules given at the end of Section 12.2 to allow for the possibility
of an adverb at the end of a sentence of type s3 or s4. Define the following words as
adverbs: well, badly, quickly, slowly.

Chapter 13
Prolog in Action

Chapter Aims

After reading this chapter you should be able to:

• Implement an artificial language of your own devising, using the techniques
described elsewhere in this book. This will be illustrated by a simple language to
control the movements of an imaginary robot.

• Implement a shell program, which can be used to construct a series of similar
applications (the example used is a series of multiple-choice tests or quizzes).
There are two phases to the implementation: the setup phase, during which the
'content' of the application is read in from a data file and converted into facts
placed in the Prolog database, and the execution phase where a dialogue with the
user is automatically generated.

13.1 Implementing an Artificial Language

This chapter continues the theme of the previous one by illustrating how Prolog
can be used to implement applications of an 'Artificial Intelligence' kind. We will
illustrate two such areas: the first is a program to control an imaginary robot; the
second is an Expert System Shell for use in constructing and delivering multiple-
choice tests or quizzes.

We start by developing a very simple language for controlling the movements
of an imaginary robot and will show how it can be implemented in Prolog using a
simplified version of the methods shown in Chapter 12.

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7__13,
© Springer-Verlag London 2013

187

http://dx.doi.org/10.1007/978-1-4471-5487-7_12

188 13 Prolog in Action

We will imagine that initially the robot is at the origin of two axes running from
West to East and from North to South.

North

West East

South

We will refer to its position in terms of the number of metres North and East of
that position (the values may both be negative, indicating South and/or West of the
starting point).

Initially the robot is facing North. It can turn either clockwise or anti-clockwise
to an unlimited extent, but we will always refer to its orientation as a number of
degrees anticlockwise from East, so initially the orientation is 90 degrees.

For convenience (and without any loss of generality) we will restrict the value of
the orientation of the robot to the range of numbers from zero to (just less than) 360.
Thus 390 degrees will be adjusted to 30 degrees and -10 degrees will become 350
degrees etc.

The aim is to enable the user to control the robot using a sequence of commands
such as the following, ending with 'stop'. For convenience we will allow all
commands to use lower case and upper case letters interchangeably. Commands
will be written without surrounding quotes and with no final full stops.

forward 6 metres
turn right
turn left
turn 30 degrees clockwise
TURN Left
back 5 metres
turn ROUND
turn 60 degrees anticlockwise
report
goto 63 north 25 east
FACE 90 degrees
Stop

The following table shows the commands available in the very restricted
language available for controlling our robot and the effect of acting on each one.
We use n and m to indicate any numbers.

13.1 Implementing an Artificial Language 189

TURN n degrees anticlockwise Add n to current orientation
TURN n degrees clockwise Equivalent to 'TURN -n degrees anticlockwise'
TURN RIGHT Equivalent to 'TURN -90 degrees anticlockwise'
TURN LEFT Equivalent to 'TURN 90 degrees anticlockwise'
TURN ROUND Equivalent to 'TURN 180 degrees anticlockwise'
FORWARD n metres Go forward n metres using current orientation
BACK n metres Equivalent to 'TURN ROUND' and then 'FORWARD n metres'
GOTO n North m East Change position to n metres North and m metres East
FACE n degrees Change orientation to n degrees (anticlockwise from East)
REPORT State current position and orientation
STOP REPORT and then stop

We can write a basic program to read in a sequence of lines one at a time and
write them out again until a line containing just STOP is input as follows:

go:-repeat,inputline([],L),name(S,L),write('SD'),
write(S),nl,
SD'STOP',write('FINISHED'),nl.

inputline(OldL,L):-get0(X),process(X,OldL,L).

process(10,L,L).
process(X,OldL,NewL):-

XD\D10,append(OldL,[X],L2),inputline(L2,NewL).

?- go.
j: FORWARD 6 metres
SDFORWARD 6 metres
j: TURN RIGHT
SDTURN RIGHT
j: TURN LEFT
SDTURN LEFT
j: STOP
SDSTOP
FINISHED
true .

However this does not get us very far. The first improvement we need is to
incorporate some of the code developed in Chapter 12.3 to convert each line input
into a 'list of words' form and to write it out again. (This may not seem like a valuable
advance but it will turn out to be one, as will be shown later.)

Unlike the conversion of English sentences to list form in Section 12.3, for this
application the end of an input line is marked by a character with ASCII value 10,
not a full stop, exclamation mark or question mark. Also we do not need to allow

http://dx.doi.org/10.1007/978-1-4471-5487-7_12
http://dx.doi.org/10.1007/978-1-4471-5487-7_12

190 13 Prolog in Action

for any separators between words except spaces. Finally as we will be inputting
commands for the robot at the console not via a text file there is no possibility of
encountering an end of file character (ASCII value -1).

These considerations lead to the following revised program.

control_robot:-repeat,inputline(L),LD[stop],!.

inputline(L):-buildlist(L,[]),reverse(L,L1),
writeout(L1),!.

writeout(['']).
writeout(L):-writeq(L),nl.

buildlist(L,OldL):-findword(Word,[]),
(

(WordD[],LDOldL);
(WordD[sep],buildlist(L,OldL));
(WordD[terminjWord1],name(S,Word1),LD[SjOldL]);
(name(S,Word),buildlist(L,[SjOldL]))

).

findword(Word,OldWord):-get0(X1),repchar(X1,X),
(

(terminator(X),WordD[terminjOldWord]);
(separator(X),((OldWordD[],WordD[sep]);
WordDOldWord));
(append(OldWord,[X],New),findword(Word,New))

).

separator(32). /* space*/

terminator(10). /* end of line */

repchar(X,New):-X>D65,XD<90,New is XC32,!.
repchar(Char,Char).

?- control_robot.
j: back 8 metres
[back,8,metres]
j: TURN left
[turn,left]
j:
j: TURN right
[turn,right]

13.1 Implementing an Artificial Language 191

j: FORWARD 4 metres
[forward,4,metres]
j: STOP
[stop]
true.

Note that the program automatically ignores any blank lines. This is a conse-
quence of the first clause of the writeout predicate. Note also that all the input has
been converted automatically to lower case.

We will temporarily ignore the question of how the system should deal with
invalid lines, which are probably most likely to be caused by typing errors. We want
to avoid the robot control program crashing when that happens as far as possible.

The great benefit gained by the effort expended to get the input commands into
the list of words format, one list per line of input, is that we can now use the 'univ'
operator D../2 which was introduced in Chapter 11.

If we have a list L, say [write,'Hello World'], then evaluating the goal XD..L will
bind X to the term write('Hello World'). This term can then be evaluated as if it
were a goal using the call/1 predicate, which was also introduced in Chapter 11. For
example:

?- LD[write,'Hello World'],GD..L,call(G).
Hello World
L D [write, 'Hello World'],
G D write('Hello World').

To take advantage of this for our application we can start by changing the
writeout predicate to

writeout(['']).
writeout(L):-writeq(L),nl,XD..L,write(X),nl.

So that the list of words L is converted to a term X which is then printed out.

?- control_robot.
j: back 8 metres
[back,8,metres]
back(8,metres)
j: TURN left
[turn,left]
turn(left)
j:
j: TURN right
[turn,right]
turn(right)
j: FORWARD 4 metres
[forward,4,metres]

http://dx.doi.org/10.1007/978-1-4471-5487-7_11
http://dx.doi.org/10.1007/978-1-4471-5487-7_11

192 13 Prolog in Action

forward(4,metres)
j: STOP
[stop]
stop
true.

In order to make our robot program work, we now need to define predicates turn,
forward, report etc. and then apply the call predicate to each of the terms obtained
by converting lines of input, e.g. back(8,metres), in turn. We can do the latter part
by changing the definition of writeout to:

writeout(['']).
writeout(L):-writeq(L),nl,XD..L,write(X),nl,call(X).

Before defining the predicates forward, turn etc. we will first define a predicate
for stopping the input loop:

stop:-write('End of Input '),nl.

?- control_robot.
j: STOP
[stop]
stop
End of Input
true.

As we have not yet defined any of the predicates forward, turn etc. apart from
stop, the program as modified above is sure to fail as soon as anything else is input.
This seems a good time to include some code to handle invalid input.

We can define a new predicate verify/1 by

verify([HjL]):-
member(H,[forward,back,turn,goto,face,
report,stop]).

We can then change the definition of writeout to:

writeout(['']).
writeout(L):-writeq(L),nl,

((verify(L),XD..L,write(X),nl,call(X));
(write('Invalid input'),nl)).

13.1 Implementing an Artificial Language 193

If the first element of list L is one of the atoms forward, back, turn, goto, face,
report and stop we go on to convert the list to a term using 'univ' and then call it.
If the first element is anything else an error message is output. In either case the
expanded form of the goal succeeds.

With these changes to our program we can now get output such as the following.

?- control_robot.
j: BBACK 6 metres
[bback,6,metres]
Invalid input
j: STOP
[stop]
stop
End of Input
true.

It remains to define the predicates forward, back, turn, goto, face and report.
Before doing this we first need to decide how to store the robot's position (measured
in metres North and East of the starting point) and its orientation (measured in
degrees anticlockwise from East). A simple way of doing this is to place two clauses
in the database:

• one for predicate position/2, where the first and second arguments correspond to
the distance of the robot in metres from its starting point, in the North and East
direction, respectively

• another for predicate orientation/1, where the argument corresponds to the
number of degrees measured anticlockwise from East.

Initially we need to place the two clauses position(0,0) and orientation(90) in
the database. This can be achieved by defining a new predicate initialise/0 as:

initialise:-
retractall(orientation(_)),
retractall(position(_,_)),assertz(position(0,0)),
/* zero metres North and zero metres East */
assertz(orientation(90)).
/* degrees anticlockwise from east*/

and changing the definition of control_robot to:

control_robot:-initialise,repeat,inputline(L),
LD[stop],!.

194 13 Prolog in Action

We now turn to defining the turn predicate. There are five forms of turn
command, the first four of which can be defined in terms of the last.

turn(right):-turn(90,degrees,clockwise).
turn(left):-turn(90,degrees,anticlockwise).
turn(round):-turn(180,degrees,anticlockwise).

turn(N,degrees,clockwise):-N1 is -1*N,
turn(N1,degrees,anticlockwise).

Turning N degrees anticlockwise is just a matter of adding N to the current
orientation. We can do this by defining:

turn(N,degrees,anticlockwise):-retract(orientation
(Current)),
New is (CurrentCN) mod 360,assertz(orientation
(New)),
write('** New orientation is '),write(New),
write(' degrees anticlockwise from East'),nl.

The reason for the term (CurrentCN) mod 360 is to ensure that the angle is given
in the 'standard' range for angles, i.e. as a number of degrees from 0 to (just less
than) 360.

The FACE command simply involves retracting whatever orientation clause is
currently in the database and asserting a new value.

face(N,degrees):-
retract(orientation(_)),
assertz(orientation(N)),
write('** New orientation is '),
write(N),write('degrees anticlockwise from East'),nl.

We can now tell the robot to turn (change its orientation) in six different ways.
The next step is to define the report predicate, which writes out both the robot's
position and its orientation.

report:-position(North,East),write('** Position is '),
round2dp(North,North1),round2dp(East,East1),
write(North1),
write(' metres North and '),write(East1),

13.1 Implementing an Artificial Language 195

write(' metres East'),nl,
orientation(N),write('** Orientation is '),write(N),
write(' degrees anticlockwise from East'),nl.

round2dp(X,Y):-Y is round(X*100)/100.

The round2dp predicate is used to round the distance in each direction to 2
decimal places before it is displayed.

We will also change the definition of control_robot to produce an automatic
report immediately after initialisation.

control_robot:-
initialise,report,repeat,inputline(L),LD[stop],!.

and simplify the definition of writeout to remove output that is no longer needed.

writeout(['']).
writeout(L):-((verify(L),XD..L,call(X));

(write('Invalid input'),nl)).

With all these changes we can now produce the following dialogue with the robot
control system.

?- control_robot.
** Position is 0 metres North and 0 metres East
** Orientation is 90 degrees anticlockwise from East
j: TURN right
** New orientation is 0 degrees anticlockwise from East
j: TURN 30 degrees clockwise
** New orientation is 330 degrees anticlockwise from East
j: TURN round
** New orientation is 150 degrees anticlockwise from East
j: TURN LEFT
** New orientation is 240 degrees anticlockwise from East
j: TURN 140 degrees anticlockwise
** New orientation is 20 degrees anticlockwise from East
j: REPORT
** Position is 0 metres North and 0 metres East
** Orientation is 20 degrees anticlockwise from East
j: FACE 70 degrees

196 13 Prolog in Action

** New orientation is 70 degrees anticlockwise from East
j: STOP
End of Input
true.

The predicates not yet defined are forward, back and goto.
Next we define the goto predicate, which instructs the robot to go to position

North metres North and East metres East of its original starting point and then to
adopt its previous orientation.

goto(North,north,East,east):-
retract(position(_,_)),
assertz(position(North,East)),
write('** New position is '),
write(North),
write(' metres North and '),write(East),
write(' metres East'),nl.

We will define the back predicate using turn and forward. To go back n metres,
turn round and then go forward n metres.

back(N,metres):-
turn(180,degrees,anticlockwise),forward(N,metres).

This just leaves the forward predicate to define.
If a robot goes forward n metres at an orientation of d degrees anticlockwise from

the East direction, basic trigonometry tells us that it will travel n x sin(d) metres
North and n x cos(d) metres East. These formulae apply for all values of d, even
when they make one or both of the distances negative.1

However there is a complication in using these formulae and they need adjusting.
So far in this section we have measured all the angles in degrees whereas the Prolog
cosine and sine functions assume that angles are measured in radians.2 Measuring
angles in radians, although familiar to Mathematicians, is far less well-known to the
general public (we will not attempt to justify it here). However it is easy to convert

1Readers unfamiliar with trigonometry will lose nothing by taking these formulae (and those that
follow) on trust. This is a book about Prolog, not trigonometry.
2Warning – some versions of Prolog may measure angles in degrees not radians. To check which
form of measurement applies to the version of Prolog you are using, enter a query such as

?-X is sin(90).

If a value of 1 is returned for X, angles are measured in degrees. If the value returned is
approximately 0.894 then angles are measured in radians, as is assumed in the main text in this
section.

13.1 Implementing an Artificial Language 197

from one to the other using the conversion formula � radians D 180 degrees.
The Greek letter (pronounced 'pi') is a well known 'mathematical constant', with
approximate value 3.14159265. To calculate the distance measured in the north
and east directions when moving forward n metres at an orientation of d degrees
anticlockwise from east, we can use the formulae n x sin(d x 3.14159265/180) and
n x cos(d x 3.14159265/180), respectively. This leads to the following definition of
predicate forward:

forward(N,metres):-
retract(position(North,East)),
orientation(Degrees),radians(Degrees,Rads),
North1 is NorthCN*sin(Rads),
East1 is EastCN*cos(Rads),
assertz(position(North1,East1)),
write('** New position is '),
round2dp(North1,North2),round2dp(East1,East2),
write(North2),write(' metres North and '),
write(East2),write(' metres East'),nl.

radians(N,M):-M is (3.14159265)*N/180.
/* N degrees converted to M radians

(pi radiansD180 degrees) */

Putting together all the Prolog clauses defined in the section we now have a
complete program for our robot controller.

control_robot:-initialise,report,repeat,inputline(L),
LD[stop],!.

inputline(L):-buildlist(L,[]),reverse(L,L1),
writeout(L1),!.

writeout(['']).
writeout(L):-((verify(L),XD..L,call(X));

(write('Invalid input'),nl)).

buildlist(L,OldL):-findword(Word,[]),
(

(WordD[],LDOldL);
(WordD[sep],buildlist(L,OldL));
(WordD[terminjWord1],name(S,Word1),LD[SjOldL]);
(name(S,Word),buildlist(L,[SjOldL]))

).

198 13 Prolog in Action

findword(Word,OldWord):-get0(X1),repchar(X1,X),
(

(terminator(X),WordD[terminjOldWord]);
(separator(X),((OldWordD[],WordD[sep]);
WordDOldWord));

(append(OldWord,[X],New),findword(Word,New))
).
separator(32). /* space*/

terminator(10). /* end of line */

repchar(X,New):-X>D65,XD<90,New is XC32,!.
repchar(Char,Char).

stop:-write('End of Input'),nl.

verify([HjL]):-
member(H,[forward,back,turn,goto,face,report,stop]).

forward(N,metres):-
retract(position(North,East)),
orientation(Degrees),radians(Degrees,Rads),
North1 is NorthCN*sin(Rads),
East1 is EastCN*cos(Rads),
assertz(position(North1,East1)),
write('** New position is '),
round2dp(North1,North2),round2dp(East1,East2),
write(North2),write(' metres North and '),
write(East2),write(' metres East'),nl.

back(N,metres):-
turn(180,degrees,anticlockwise),forward(N,metres).

turn(right):-turn(90,degrees,clockwise).
turn(left):-turn(90,degrees,anticlockwise).
turn(round):-turn(180,degrees,anticlockwise).
turn(N,degrees,clockwise):-N1 is -1*N,

turn(N1,degrees,anticlockwise).
turn(N,degrees,anticlockwise):-retract(orientation

(Current)),
New is (CurrentCN) mod 360,assertz(orientation
(New)),
write('** New orientation is '),write(New),

13.1 Implementing an Artificial Language 199

write(' degrees anticlockwise from East'),nl.

goto(North,north,East,east):-
retract(position(_,_)),
assertz(position(North,East)),
write('** New position is '),
write(North),write(' metres North and '),
write(East),write(' metres East'),nl.

report:-position(North,East),write('** Position is '),
round2dp(North,North1),round2dp(East,East1),
write(North1),write(' metres North and '),
write(East1),write(' metres East'),nl,
orientation(N),write('** Orientation is '),write(N),
write(' degrees anticlockwise from East'),nl.

face(N,degrees):-
retract(orientation(_)),
assertz(orientation(N)),
write('** New orientation is '),

write(N),write('degrees anticlockwise from East'),nl.

stop:-write('STOP'),nl,report.

radians(N,M):-M is (3.14159265)*N/180.
/* N degrees converted to M radians
(pi radiansD180 degrees) */

round2dp(X,Y):-Y is round(X*100)/100.

initialise:-
retractall(orientation(_)),retractall
(position(_,_)),
assertz(position(0,0)),
/* zero metres North and zero metres East */
assertz(orientation(90)).
/* degrees anticlockwise from east*/

?- control_robot.
** Position is 0 metres North and 0 metres East
** Orientation is 90 degrees anticlockwise from East
j: TURN 30 degrees clockwise
** New orientation is 60 degrees anticlockwise from East

200 13 Prolog in Action

j: forward 10 metres
** New position is 8.66 metres North and 5 metres East
j: back 10 metres
** New orientation is 240 degrees anticlockwise from East
** New position is 0 metres North and 0 metres East
j: turn round
** New orientation is 60 degrees anticlockwise from East
j: report
** Position is 0 metres North and 0 metres East
** Orientation is 60 degrees anticlockwise from East
j: stop
End of Input
true.

13.2 Developing an Expert System Shell

In this section we will change to a different 'Artificial Intelligence'-like application.
We will start by imagining that we wish to develop a program to administer a
multiple-choice test, score the user's replies and give the user feedback on his or
her performance. Tests of this kind are commonplace in education, but they are also
commonly seen in magazines and elsewhere as 'assess yourself' quizzes, often with
remarkably simple questions. The example we use in this section will be a quiz of
this 'less than difficult' kind. The essential point, however, is that we do not want to
program just one quiz. We want to implement a framework in which a potentially
large number of quizzes of the same kind can conveniently be made available to
users.

This implies constructing a framework which is independent of the content of any
particular quiz, with each specific quiz being read in and assembled automatically
from a data file. This style of program is known as a shell or often as an expert
system shell.

There are typically two phases to using a shell:

• The setup phase, during which the 'content' of the application (the quiz questions
and answers etc.) are read in from a data file (a text file) and converted into facts
placed in the Prolog database by using the assertz predicate.

• The execution phase where a dialogue with the user is automatically generated.

The Prolog program comprising the shell should be as general as possible.
Although we cannot entirely avoid taking into account that the application is a
multiple-choice quiz/test we should avoid building assumptions into our shell such
as that there are always eight questions or that questions always have three possible
answers.

The key to programming a shell of this kind is to start by envisaging the content
of the data file for one specific application (quiz) and the Prolog facts corresponding

13.2 Developing an Expert System Shell 201

to the data that need to be generated and placed in the database during the setup
phase for that specific application. Once this design is done, the implementation
often follows naturally.

Here is the content of a data file for a particularly easy multiple-choice quiz,
which we will assume is stored in text file quiz1.txt.

'Are you a genius? Answer our quiz and find out!'.

'What is the name of this planet?'.
'Earth'. 20. 'The Moon'. 5. 'John'. 0. end.

'What is the capital of Great Britain?'.
'America'. 0. 'Paris'. 6. 'London'. 50. 'Moscow'. 4. end.

'In which country will you find the Sydney Opera House?'.
'London'. 5. 'Toronto'. 4. 'The Moon'. 2. 'Australia'. 10. 'Germany'. 8. end.

endquestions.

0. 20. 'You are definitely not a genius'.
21. 60. 'You need to do some more reading'.
61. 80. 'You are a genius!'.
endmarkscheme.

The data file comprises:

• The title of the quiz.
• The details of three questions and their possible answers followed by the term

endquestions.
For each question we have:

The text of the question.
Pairs of values terminated by end. Each pair comprises a possible answer

followed by the number of marks to be awarded for it.

• A mark scheme (the lowest and highest values of a number of ranges of
marks, each associated with a piece of feedback to the user) followed by
endmarkscheme.

Note that in this example the input is given as a sequence of Prolog terms, each
enclosed by quotes where required, terminated by a full stop and separated by one
or more spaces or newline characters. (All the blank lines in the data file will be
ignored.) All this is purely a matter of convenience (or otherwise) – the user will not
see the data file.

202 13 Prolog in Action

During the setup phase the following Prolog clauses (all facts) will be generated
from the data file and placed in the database using assertz.

title('Areyouagenius?Answerourquizandfindout!').

question('What is the name of this planet?',
[ans('Earth',20),ans('The Moon',5),ans('John',0)],20).

question('What is the capital of England?',
[ans('America',0),ans('Paris',6),ans('London',50),
ans('Moscow',4)],50).

question('In which country will you find the Sydney
Opera House?',

[ans('London',5),ans('Toronto',4),ans('The Moon',2),
ans('Australia',10),ans('Germany',8)],10).

range(0,20,'You are definitely not a genius').
range(21,60,'You need to do some more reading').
range(61,80,'You are a genius!').

There are three predicates shown above: title, question and range. The first
is straightforward: the argument of title/1 is the title of the quiz. The use of the
range/3 predicate should also be clear: each clause holds the lower and upper values
of a range of potential scores obtained from answering the quiz together with the
feedback to give the user if a score in that range is obtained.

There are three clauses (facts) for predicate question, one per question. Each one
has three components:

• The question itself.
• A list of terms of the form ans(Ans,Score), one for each possible answer to the

question, Ans, with the second argument being the corresponding number of
points, Score, that will be awarded for giving that answer.

• The maximum number of points available to be awarded for the question.

The last of these could have been included in the data file, but instead we will
obtain it from the scores associated with each possible answer to a question, by
taking the largest value.

These considerations lead directly to the following program to read in a data file,
say quiz1.txt, and write a number of facts into the Prolog database.

13.2 Developing an Expert System Shell 203

setup:-
see('quiz1.txt'),readin,seen,write('Setup completed'),nl.

readin:-read(Title),assertz(title(Title)),readqs.

readqs:-repeat,read(Qtext),process(Qtext),
QtextDendquestions,readranges.

process(endquestions):-!.

process(Qtext):-proc2([],Anslist,-9999,Maxscore),
assertz(question(Qtext,Anslist,Maxscore)).

proc2(Anscurrent,Anslist,Maxsofar,Maxscore):
-read(Ans),

(
(AnsDend,AnslistDAnscurrent,MaxscoreDMaxsofar,!);
(read(Score),append(Anscurrent,[ans(Ans,Score)],
Ansnew),Maxnew is max(Maxsofar,Score),
proc2(Ansnew,Anslist,Maxnew,Maxscore))

).

readranges:-
repeat,read(First),proc(First),FirstDendmarkscheme.

proc(endmarkscheme):-!.
proc(First):-read(Last),read(Feedback),

assertz(range(First,Last,Feedback)).

The definition of predicate readranges is typical of the way that a shell of this
kind can be constructed using repeat loops of the kind introduced in Chapter 6. We
read a value for term First (the lower bound of the next range), process it, then
go back and read another value for First, and so on, continuing until the value
endmarkscheme in found. 'Processing' the value of First (using predicate proc)
either means doing nothing with it, if it is the term endmarkscheme, or otherwise
reading two more terms, Last and Feedback, and combining them with First to form
a range/3 term that is then added to the Prolog database with assertz.

The processing of a question (using predicate process) is rather more com-
plicated. The process predicate uses predicate proc2 to read in pairs of possible
answers and associated scores and place them in a list Anslist, while finding the
highest possible score for the question and giving that value to variable Maxscore.
This is handled by giving proc2 four arguments:

• The answer/score list created so far (initially the empty list).
• The variable to which the final version of the list will be bound, i.e. Anslist.

http://dx.doi.org/10.1007/978-1-4471-5487-7_6

204 13 Prolog in Action

• The highest score found so far for any answer to the question (initially -9999,
which is chosen to be far below any value that is ever likely to be used in a real
quiz).

• The variable to which the final version of the highest score will be bound, i.e.
Maxscore.

After proc2 reads each potential answer it checks whether it is the term end.

• If it is, it binds Anslist, the final version of the answer/score list, to whatever is
its current version and also binds Maxscore, the final value of the highest score,
to whatever is its current estimate.

• If not, it reads another term, giving the value of a new score, adds a new ans/2
term, i.e. a new answer/score pair, to its current list of pairs (first argument),
revises its value of the largest score found so far (third argument) and calls itself
recursively to continue the process.

Having implemented the setup process, the next step for the developer is to
envisage a typical user dialogue with the system. One possibility is that it should
look like this:

Are you a genius? Answer our quiz and find out!

What is the name of this planet?
Possible answers are Earth, The Moon, and John
Enter your answer
j: The Moon
You have scored 5 points out of a possible 20

What is the capital of England?
Possible answers are America, Paris, London, and Moscow
Enter your answer
j: Moscow
You have scored 4 points out of a possible 50

In which country will you find the Sydney Opera House?
Possible answers are London, Toronto, The Moon, Australia, and Germany
Enter your answer
j: Toronto
You have scored 4 points out of a possible 10

Your total score is 13 points out of a possible 80

You are definitely not a genius

Note that although it is not essential it seems very desirable that the user's
input should take the form of strings of characters not Prolog terms. There are
several ways in which a readline facility can be implemented. One suitable for
this application is given below:

13.2 Developing an Expert System Shell 205

readline(S):-readline2([],L),name(S,L),!.

readline2(Lcurrent,Lfinal):-get0(X),
((XD10,LfinalDLcurrent);
(append(Lcurrent,[X],Lnew),readline2(Lnew,Lfinal))).

Predicate readline2 creates a list of ASCII values of characters entered by the
user, prior to an end of line character (ASCII value 10) being entered. Then readline
takes this list and converts it to a string of characters using the name predicate
described in Chapter 10.

Based on the dialogue given above we now need to consider what additional
facts need to be added to the database when the user works through the quiz. On
inspection it turns out that the only information that needs to be updated and stored
as each question is asked and answered in turn is the user's total score so far and the
maximum score available for all the questions answered so far. These two values
can be held (in that order) as the arguments of a single predicate myscore/2.

After the setup stage is complete the user needs a facility for running the quiz
(possibly several times) and as the first steps (or very early steps) in doing this we
should retract any myscore/2 clauses there may already be in the database and place
a clause myscore(0,0) in the database. We can do this by including in our program
the two clauses.

retractall(myscore(_,_)),assertz(myscore(0,0)),

The first task for a program to run a quiz that has already been placed in the
database is to obtain the title of the quiz and display it as a heading. This gives us
an initial (and incomplete) version of a program.

runquiz:-
retractall(myscore(_,_)),assertz(myscore(0,0)),
title(T),write(T),nl,nl,
askq.

It remains to implement predicate askq, which asks the user each question in
turn, gives a score for the first valid answer obtained and then goes on to ask more
questions until all the questions are exhausted, at which time it displays the user's
total score, the maximum score obtainable for the quiz and finally uses the range
clauses in the database to display feedback to the user.

http://dx.doi.org/10.1007/978-1-4471-5487-7_10

206 13 Prolog in Action

The basic structure to use for askq is that of 'backtracking with failure', described
in Section 6.4. This gives an initial outline version of askq as follows:

askq:-question(Qtext,Anslist,Maxscore),
write(Qtext),nl,

/* Use Anslist to tell the user the possible answers.
Request an answer from the user until one of the
possible ones is given, then tell the user how many
points he/she has obtained for that answer.

*/
fail.

askq:-
/*
Obtain the user's total score and the maximum possible
number of marks available from the 'myscore/2'
predicate and tell them to the user. Then use the
'range' predicate to give the user feedback on his/her
overall performance and finish.

*/
.

We can deal with the part 'Use Anslist to tell the user the possible answers' by
adding the goals

write('Possible answers are '),genanswers(Anslist),

into the definition of askq and defining a new predicate genanswers to display all
the possible answers:

genanswers([ans(A,_)]):-write('and '),write(A),nl,!.
genanswers([ans(A,_)jL]):-write(A),write(', '),
genanswers(L).

The second clause of askq (when there are no more questions to ask) is also
straightforward to implement:

askq:-myscore(M,Maxtotal),
write('Your total score is '),write(M),
write('points'),

http://dx.doi.org/10.1007/978-1-4471-5487-7_6

13.2 Developing an Expert System Shell 207

write(' out of a possible '),write(Maxtotal),nl,
range(First,Last,Feedback),M>DFirst,MD<Last,
write(Feedback),nl,nl,nl.

This just leaves the need to implement for the first clause of askq 'request an
answer from the user until one of the possible ones is given, then tell the user how
many points he/she has obtained for that answer'.

We add to the definition of the first clause of askq (just before the fail goal)

requestanswer(Anslist,Maxscore),

and define a new predicate requestanswer

requestanswer(Anslist,Maxscore):-
write('Enter your answer'),nl,
readline(Answer),
(
(member(ans(Answer,Score),Anslist),

usescore(Score,Maxscore),!);
(write('That is not a valid answer - try again!'),nl,

requestanswer(Anslist,Maxscore))
).

The user is repeatedly asked to enter an answer until he/she gives one that is valid.
This is determined by testing whether the answer, Answer, is one for which there
is a term ans(Answer,Score) in the list Anslist. When a valid answer is given, the
usescore predicate tells the user how many points have been awarded for the answer
given and the maximum number of points available for the question, using the values
of Score and Maxscore, respectively. It then updates the myscore/2 predicate with
the two arguments recording the total number of points awarded so far and the
maximum number of points available for all questions answered so far, respectively

A suitable definition of usescore/2 is as follows:

usescore(Score,Maxscore):-
write('You have scored '),write(Score),write(' points'),
write(' out of a possible '),write(Maxscore),nl,nl,
retract(myscore(Old,Oldtotal)),
New is OldCScore,Newtotal is OldtotalCMaxscore,
assertz(myscore(New,Newtotal)).

208 13 Prolog in Action

Putting all the code fragments in this section together we get a complete
definition of a program that will administer a quiz previously converted into title,
question and range clauses by the setup predicate given previously.

runquiz:-
retractall(myscore(_,_)),assertz(myscore(0,0)),
title(T),write(T),nl,nl,
askq.

askq:-question(Qtext,Anslist,Maxscore),
write(Qtext),nl,
write('Possible answers are '),genanswers(Anslist),
requestanswer(Anslist,Maxscore),fail.

askq:-myscore(M,Maxtotal),
write('Yourtotalscoreis '),write(M),write('points'),
write(' out of a possible '),write(Maxtotal),nl,
range(First,Last,Feedback),M>DFirst,MD<Last,
write(Feedback),nl,nl,nl.

genanswers([ans(A,_)]):-write('and '),write(A),nl,!.
genanswers([ans(A,_)jL]):-write(A),write(', '),
genanswers(L).

requestanswer(Anslist,Maxscore):-
write('Enter your answer'),nl,
readline(Answer),
(
(member(ans(Answer,Score),Anslist),

usescore(Score,Maxscore),!);
(write('Thatisnotavalidanswer-tryagain!'),nl,

requestanswer(Anslist,Maxscore))
).

usescore(Score,Maxscore):-
write('You have scored '),write(Score),

write(' points'),
write(' out of a possible '),write(Maxscore),nl,nl,
retract(myscore(Old,Oldtotal)),
New is OldCScore,Newtotal is OldtotalCMaxscore,
assertz(myscore(New,Newtotal)).

readline(S):-readline2([],L),name(S,L),!.

13.2 Developing an Expert System Shell 209

readline2(Lcurrent,Lfinal):-get0(X),
((XD10,LfinalDLcurrent);
(append(Lcurrent,[X],Lnew),readline2(Lnew,Lfinal))).

?- runquiz.
Are you a genius? Answer our quiz and find out!

What is the name of this planet?
Possible answers are Earth, The Moon, and John
Enter your answer
j: John
You have scored 0 points out of a possible 20

What is the capital of Great Britain?
Possible answers are America, Paris, London, and Moscow
Enter your answer
j: London
You have scored 50 points out of a possible 50

In which country will you find the Sydney Opera House?
Possible answers are London, Toronto, The Moon, Australia, and Germany
Enter your answer
j: Toronto
You have scored 4 points out of a possible 10

Your total score is 54 points out of a possible 80
You need to do some more reading

true .

The retractall goal in the second line of the program makes it possible for the
runquiz predicate to be used repeatedly either by the same user or by different users,
without any need to reload the title, question and range predicates.

This section has illustrated a typical example of a shell. It comprises two separate
programs: one to setup the data (i.e. to read in a data file, create a number of Prolog
facts equivalent to the contents of the file and assert them to the Prolog database)
and one to make use of the facts in the database. Once a shell has been created it
is straightforward to create (in this case) a new quiz or multiple-choice test, simply
by creating a new data file, say quiz2.txt, without any further programming being
required.

210 13 Prolog in Action

Chapter Summary

This chapter illustrates how Prolog can be used to develop applications of an
'Artificial Intelligence' kind. It is shown how to implement (1) an artificial
language to control the movements of an imaginary robot and (2) a shell program
that can be used to construct a series of similar applications, in this case multiple-
choice tests or quizzes.

Practical Exercise 13

Change the definition of the multiple-choice test/quiz shell so that the questions are
numbered in sequence, e.g.

Question 1. What is the name of this planet?

Appendix 1
Built-in Predicates

This appendix gives a brief description of each built-in predicate mentioned in this
book and some others. They are all 'standard' predicates, which should be available
in every version of Prolog, but inevitably there may be some exceptions to this. It
is also possible that in some implementations of Prolog the definitions may vary
slightly from those given here. In cases of disagreement, the definitions given in the
supplier's documentation should always be taken as definitive.

Name of Predicate !/0 [exclamation mark symbol, pronounced 'cut']
Syntax !
Description
Always succeeds. Used to control backtracking (see Chapter 7).

Name of Predicate append/1
Syntax append(Stream)
Description
Similar to tell/1 but whereas for tell/1 any existing file with the same name is deleted, any
existing file is not deleted and any output is placed after the end of the existing contents of the
file (see Chapter 5). The predicate used for this may vary in different implementations of Prolog.

Name of Predicate append/3
Syntax append(First,Second,Whole)
Description
Join or split lists (see Chapter 9).

Name of Predicate arg/3
Syntax arg(N,Term,Arg)
Description
N must be a positive integer and Term must be a compound term. Arg is unified with the Nth
argument of Term.

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7,
© Springer-Verlag London 2013

211

http://dx.doi.org/10.1007/978-1-4471-5487-7_7
http://dx.doi.org/10.1007/978-1-4471-5487-7_5
http://dx.doi.org/10.1007/978-1-4471-5487-7_9

212 Appendix 1 Built-in Predicates

Name of Predicate asserta/1
Syntax asserta(Clause)
Description
Adds a clause to the definition of a predicate at the beginning of its sequence of existing clauses
(if any).

Name of Predicate assertz/1
Syntax assertz(Clause)
Description
Adds a clause to the definition of a predicate at the end of its sequence of existing clauses (if
any).

Name of Predicate atom/1
Syntax atom(Term)
Description
Succeeds if and only if the given Term is a Prolog atom.

Name of Predicate atomic/1
Syntax atomic(Term)
Description
Succeeds if and only if Term is an atom, a number, or a variable bound to either.

Name of Predicate call/1
Syntax call(Goal)
Description
Calls the given Goal. Succeeds if Goal succeeds and fails if Goal fails.

Name of Predicate consult/1
Syntax consult(Filename)
Description
Loads the program contained in the named disk file.

Name of Predicate dynamic/1
Syntax dynamic(predicate_specification)
Description
Used to specify that a predicate is 'dynamic', i.e. may be modified (see Chapter 8).

Name of Predicate fail/0
Syntax fail
Description
Always fails. Used to force a program to backtrack.

Name of Predicate findall/3
Syntax findall(Term,Goal,List)
Description
Returns a list of all the instances of Term that satisfy goal Goal.

Name of Predicate functor/3
Syntax functor(Term,Functor,Arity)
Description
Succeeds if Term has the specified Functor and Arity.

http://dx.doi.org/10.1007/978-1-4471-5487-7_8

Appendix 1 Built-in Predicates 213

Name of Predicate get/1
Syntax get(Char)
Description
This reads the next 'printable' (i.e. non-white-space) character from the current input stream, and
unifies Char with its integer character code.

Name of Predicate get0/1
Syntax get0(Char)
Description
This reads the next character from the current input stream, and unifies Char with its integer
character code.

Name of Predicate halt/0
Syntax halt
Description
Terminates the current Prolog session and exits to the operating system.

Name of Predicate integer/1
Syntax integer(Term)
Description
Succeeds if and only if Term is an integer.

Name of Predicate length/2
Syntax length(List,Length)
Description
Tests the length of a list (see Chapter 9).

Name of Predicate listing/1
Syntax listing(Atom)
Description
Lists all predicates with the given name, irrespective of their arity.

Name of Predicate member/2
Syntax member(Term,List)
Description
Gets or checks a member of a list (see Chapter 9).

Name of Predicate name/2
Syntax name(Atom,List)
Description
Converts between an atom and a list of characters (see Chapter 10).

Name of Predicate nl/0
Syntax nl
Description
Outputs a carriage return and line feed to the current output stream, to complete a line of output.

Name of Predicate op/3
Syntax op(Precedence,Type,Name)
Description
Used to set, reset or clear the definition of an operator, using the given Precedence, Type and
Name.

http://dx.doi.org/10.1007/978-1-4471-5487-7_9
http://dx.doi.org/10.1007/978-1-4471-5487-7_9
http://dx.doi.org/10.1007/978-1-4471-5487-7_10

214 Appendix 1 Built-in Predicates

Name of Predicate phrase/2
Syntax phrase(Syntactic Term, List of Words)
Description
Satisfied if the list of words is a valid example of the syntactic term (see Chapter 12).

Name of Predicate put/1
Syntax put(Integer)
Description
Outputs the character corresponding to Integer to the current output stream.

Name of Predicate read/1
Syntax read(Var)
Description
Reads a term from the current input stream and attempts to assign the value to Var, which should
previously be unbound.

Name of Predicate repeat/0
Syntax repeat
Description
Always succeeds when called, both when called and on backtracking. Used to provide a looping
facility.

Name of Predicate retract/1
Syntax retract(Clause)
Description
Deletes the first matching clause from a predicate (see Chapter 8).

Name of Predicate retractall/1
Syntax retractall(Head)
Description
Deletes all clauses whose heads match the given Head (see Chapter 8).

Name of Predicate reverse/2
Syntax reverse(List,Reverse)
Description
Reverses the order of elements in a list (see Chapter 9).

Name of Predicate see/1
Syntax see(Stream)
Description
Sets Stream to be the current input stream. Stream may be the name of a disk file or the atom
user (referring to the console input device). If Stream refers to a disk file which is not open, it is
automatically opened for reading. If the file is already open, input continues from the point
immediately after the previously-read character.

Name of Predicate seeing/1
Syntax seeing(Stream)
Description
Stream is bound to the name of the current input stream, which may be a disk file or the atom
user (referring to the console input device).

http://dx.doi.org/10.1007/978-1-4471-5487-7_12
http://dx.doi.org/10.1007/978-1-4471-5487-7_8
http://dx.doi.org/10.1007/978-1-4471-5487-7_8
http://dx.doi.org/10.1007/978-1-4471-5487-7_9

Appendix 1 Built-in Predicates 215

Name of Predicate seen/0
Syntax seen
Description
Closes the file associated with the current input stream, and resets the current input stream to
user.

Name of Predicate statistics/0
Syntax statistics
Description
Displays statistics about the current session.

Name of Predicate tell/1
Syntax tell(Stream)
Description
Sets the current output stream, which may be a disk file or the atom user (referring to the console
output device). Any existing disk file with the same name is deleted. If the file is already open,
output continues from the point immediately after the previously written character.

Name of Predicate telling/1
Syntax telling(Stream)
Description
Gets the current output Stream, which may be a disk file or the atom user (referring to the
console output device). Stream is bound to the name of the current output stream.

Name of Predicate told/0
Syntax told
Description
Closes the file associated with the current output stream, and resets the current output stream to
user.

Name of Predicate true/0
Syntax true
Description
Always succeeds.

Name of Predicate write/1
Syntax write(Term)
Description
Writes Term to the current output stream, in unquoted syntax.

Name of Predicate writeq/1
Syntax writeq(Term)
Description
Writes Term to the current output stream, in quoted syntax.

Appendix 2
Built-in Operators

This appendix gives a brief description of each built-in operator mentioned in this
book and some others. They are all 'standard' operators, which should be available
in every version of Prolog, but inevitably there may be some exceptions to this. It
is also possible that in some implementations of Prolog the definitions may vary
slightly from those given here. In cases of disagreement, the definitions given in the
supplier's documentation should always be taken as definitive.

Name of Operator , [comma]
Type of Operator infix
Syntax Goal1,Goal2
Description
Succeeds if and only if Goal1 and Goal2 are both true.

Name of Operator ; [semicolon]
Type of Operator infix
Syntax Goal1;Goal2
Description
Succeeds if either Goal1 or Goal2 is true (or both).

Name of Operator D
Type of Operator infix
Syntax Term1 D Term2
Description
Succeeds if terms Term1 and Term2 unify (see Chapter 4).

Name of Operator \D
Type of Operator infix
Syntax Term\DTerm2
Description
Succeeds if Term1 does not unify with Term2 (see Chapter 4).

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7,
© Springer-Verlag London 2013

217

http://dx.doi.org/10.1007/978-1-4471-5487-7_4
http://dx.doi.org/10.1007/978-1-4471-5487-7_4

218 Appendix 2 Built-in Operators

Name of Operator DD
Type of Operator infix
Syntax Term1 DD Term2
Description
Succeeds if Term1 is identical to Term2 (see Chapter 4).

Name of Operator \DD
Type of Operator infix
Syntax Term1 \DD Term2
Description
Succeeds if Term1 is not identical to Term2 (see Chapter 4).

Name of Operator D:D
Type of Operator infix
Syntax Exp1 D:D Exp2
Description
Succeeds if the arithmetic expressions Exp1 and Exp2 evaluate to the same numerical value (see
Chapter 4).

Name of Operator D\D
Type of Operator infix
Syntax Exp1 D\D Exp2
Description
Succeeds if the arithmetic expressions Exp1 and Exp2 do not evaluate to the same numerical
value (see Chapter 4).

Name of Operator D.. [pronounced 'univ']
Type of Operator infix
Syntax TermD..List
Description
Converts from a list to a term or vice versa (see Chapter 11).

Name of Operator <

Type of Operator infix
Syntax Exp1<Exp2
Description
Succeeds if the value of arithmetic expression Exp1 is less than the value of arithmetic
expression Exp2.

Name of Operator D<

Type of Operator infix
Syntax Exp1D<Exp2
Description
Succeeds if the value of arithmetic expression Exp1 is less than or equal to the value of
arithmetic expression Exp2.

Name of Operator >

Type of Operator infix
Syntax Exp1>Exp2
Description
Succeeds if the value of arithmetic expression Exp1 is greater than the value of arithmetic
expression Exp2.

http://dx.doi.org/10.1007/978-1-4471-5487-7_4
http://dx.doi.org/10.1007/978-1-4471-5487-7_4
http://dx.doi.org/10.1007/978-1-4471-5487-7_4
http://dx.doi.org/10.1007/978-1-4471-5487-7_4
http://dx.doi.org/10.1007/978-1-4471-5487-7_11

Appendix 2 Built-in Operators 219

Name of Operator >D
Type of Operator infix
Syntax Exp1>DExp2
Description
Succeeds if the value of arithmetic expression Exp1 is greater than or equal to the value of
arithmetic expression Exp2.

Name of Operator –>

Type of Operator infix
Syntax head–>body (in a grammar rule)
Description
Used in grammar rules (see Chapter 12).

Name of Operator is/2
Type of Operator infix
Syntax Result is Expression
Description
Expression must be a valid arithmetic expression which is evaluated to give a number. If Result
is an unbound variable (the usual case) the variable is bound to the value of the expression. If
Result is a bound variable with a numerical value or a number, the goal succeeds if the values of
both sides of the is operator are the same and fails otherwise.

Name of Operator not/1
Type of Operator prefix
Syntax not Goal
Description
Succeeds if Goal fails, fails if Goal succeeds.
Note: in some versions of Prolog not/1 is defined as a predicate with one argument but not as an
operator. In such cases it can be made into an operator as shown in Section 4.4.

http://dx.doi.org/10.1007/978-1-4471-5487-7_12
http://dx.doi.org/10.1007/978-1-4471-5487-7_4

Appendix 3
Specimen Solutions to Practical Exercises

Practical Exercise 1

Question 2

A suitable program would comprise the five clauses:

animal(lion).
animal(tiger).
animal(cow).
carnivore(lion).
carnivore(tiger).

Suitable sequences of goals to test (a) to (d) are as follows.

?- animal(tiger).
true.

?- animal(cow),animal(tiger).
true.

?- animal(lion),carnivore(lion).
true.

?- animal(cow),carnivore(cow).
false.

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7,
© Springer-Verlag London 2013

221

222 Appendix 3 Specimen Solutions to Practical Exercises

Question 3

Here is the output produced by one Prolog system for the specified goals, with
explanations inserted in italic.

?- write(hello).
hello
true.
?- write(Hello).
_G884
true.

This obscure output is produced because Hello is not an atom (it begins with a
capital letter). To print Hello World with a capital H it must be enclosed in quotes.

?- write('Hello!').
Hello!
true.

It is not (usually) possible to suppress the final 'true', which indicates that the goal
has been satisfied. However the output can be made more readable by using 'nl' to
generate a newline after 'Hello!' (if the Prolog system does not automatically provide
one before it outputs 'true' or 'false').

?- write('Hello!'),nl.
Hello!
true.

?-100D100.
true.

?- 100D1000/10.
false.

Using D is not the right way to do arithmetic – see Chapter 4.

?- 100 is 1000/10.
true.

?- 1000 is 100*10.
true.

?- 2 is (5C7)/6.
true.

?- 74 is (5C7)*6.
false.

http://dx.doi.org/10.1007/978-1-4471-5487-7_4

Appendix 3 Specimen Solutions to Practical Exercises 223

Practical Exercise 2

Question 1

A suitable series of goals is as follows:

?- animal(mammal,A,_,_).
A D tiger;
A D hyena;
A D lion;
A D zebra

?- animal(mammal,A,carnivore,_).
A D tiger;
A D hyena;
A D lion;
false.

?- animal(mammal,A,_,stripes).
A D tiger;
A D zebra

?- animal(reptile,A,_,mane).
false.

Question 2

A suitable additional rule would be

couple(X,Y):-person(X,male),person(Y,female).

Testing this gives the following output:

?- couple(X,Y).
X D bill ,
Y D carol ;

X D bill ,
Y D margaret ;

X D bill ,
Y D jane ;

X D george ,
Y D carol ;

X D george ,
Y D margaret ;

224 Appendix 3 Specimen Solutions to Practical Exercises

X D george ,
Y D jane ;

X D alfred ,
Y D carol ;

X D alfred ,
Y D margaret ;

X D alfred ,
Y D jane

Practical Exercise 3

Question 1

Suitable definitions are given below:

child_of(A,B):-parent(B,A).
grandfather_of(A,B):-father(A,C),parent(C,B).
grandmother_of(A,B):-mother(A,C),parent(C,B).
great_grandfather_of(A,B):-

father(A,C),grandfather_of(C,B).
great_grandfather_of(A,B):-

father(A,C),grandmother_of(C,B).

?- child_of(X,ann).
X D henry ;
X D mary ;
false.

?- grandfather_of(A,caroline).
A D francis ;
false.

?- grandmother_of(B,caroline).
B D janice ;
false.

?- great_grandfather_of(C,caroline).
C D john ;
false.

Question 2

The system begins by matching the goal with the first clause defining the ancestor/2
predicate, i.e. [A1].

Appendix 3 Specimen Solutions to Practical Exercises 225

ancestor(louise,Desc).

[A1] ancestor(louise,Y):-parent(louise,Y).
X is bound to louise. Variables Desc and Y are bound to each other.

The goal parent(louise,Y) is now matched with clause [P3], which is first rewritten
to replace X and Y by X1 and Y1, i.e.

parent(X1,Y1):-mother(X1,Y1).

ancestor(louise,Desc).

[A1] ancestor(louise,Y):-parent(louise,Y).

[P3] parent(louise,Y1):-mother(louise,Y1).
X is bound to louise. Variables Desc, Y and Y1 are bound to each other. X1 is
bound to louise.

The system now tries to satisfy the goal mother(louise,Y1). It matches it with clause
[M9].

ancestor(louise,Desc).

[A1] ancestor(louise,Y):-parent(louise,Y).

[P3] parent(louise,Y1):-mother(louise,Y1).

[M9] mother(louise,caroline).
X is bound to louise. Variables Desc, Y and Y1 are bound to each other and to
caroline. X1 is bound to louise.

This gives a solution to the user’s goal, with Desc bound to caroline.

?- ancestor(louise,Desc).
Desc D caroline

If the user now forces the system to backtrack, the system will try to resatisfy
the goal mother(louise,Y1) and fail. This will cause the rule [P3] to be rejected.
Attempts to resatisfy parent(louise,Y) in the body of [A1] will also fail, so
clause [A1] will be rejected. This brings the system back to the original goal
ancestor(louise,Desc).
The system tries to resatisfy it by matching it with the second clause for ancestor/2,
i.e. [A2].

226 Appendix 3 Specimen Solutions to Practical Exercises

ancestor(louise,Desc).

[A2] ancestor(louise,Y):-parent(louise,Z),ancestor(Z,Y).
X is bound to louise. Variables Desc and Y are bound to each other. Variable Z is
unbound.

The system now tries to satisfy the goal parent(louise,Z). It matches it with [P3],
which is first rewritten as (say)

parent(X1,Y1):-mother(X1,Y1).

ancestor(louise,Desc).

[A2] ancestor(louise,Y):-parent(louise,Z),ancestor(Z,Y).

[P3] parent(louise,Y1):-mother(louise,Y1).
X is bound to louise. Variables Desc and Y are bound to each other. Variables Y1
and Z are bound to each other. Variable X1 is bound to louise.

It now tries to satisfy the goal mother(louise,Y1). It matches it with clause [M9].

ancestor(louise,Desc).

[A2] ancestor(louise,Y):-parent(louise,caroline),ancestor(caroline,Y).

[P3] parent(louise,caroline):-mother(louise,caroline).

[M9] mother(louise,caroline).
X is bound to louise. Variables Desc and Y are bound to each other. Variables Z
any Y1 are bound to each other and to caroline. Variable X1 is bound to louise.

The next step is to satisfy the goal ancestor(caroline,Y). It is matched with [A1],
which is first rewritten as (say)

ancestor(X2,Y2):-parent(X2,Y2).

ancestor(louise,Desc).

[A2] ancestor(louise,Y):-parent(louise,caroline),ancestor(caroline,Y).

[P3] parent(louise,caroline):-mother(louise,caroline).

[M9] mother(louise,caroline).

[A1] ancestor(X2,Y2):-parent(caroline,Y2).
X is bound to louise. Variables Desc andY are bound to each other. Variables Z and
Y1 are bound to each other and to caroline. Variable X1 is bound to louise.
Variable X2 is bound to caroline. Variables Y and Y2 are bound to each other.

Appendix 3 Specimen Solutions to Practical Exercises 227

Next the system tries to satisfy parent(caroline,Y2). It matches it with [P3], which
is first rewritten as (say)

parent(X3,Y3):-mother(X3,Y3).

ancestor(louise,Desc).

[A2] ancestor(louise,Y):-parent(louise,caroline),ancestor(caroline,Y).

[P3] parent(louise,caroline):-mother(louise,caroline).

[M9] mother(louise,caroline).

[A1] ancestor(X2,Y2):-parent(caroline,Y2).

[P3] parent(caroline,Y3):-mother(caroline,Y3).
X is bound to louise. Variables Desc and Y are bound to each other. Variables Z
and Y1 are bound to each other and to caroline. Variable X1 is bound to louise.
Variable X2 is bound to caroline. Variables Y, Y2 and Y3 are bound to each other.
X3 is bound to caroline.

Next the system tries to satisfy mother(caroline,Y3). It matches it with [M10].

ancestor(louise,Desc).

[A2] ancestor(louise,Y):-parent(louise,caroline),ancestor(caroline,david).

[P3] parent(louise,caroline):-mother(louise,caroline).

[M9] mother(louise,caroline).

[A1] ancestor(X2,david):-parent(caroline,david).

[P3] parent(caroline,david):-mother(caroline,david).

[M10] mother(caroline,david).
X is bound to louise. Variables Desc and Y are bound to each other. Variables Z
any Y1 are bound to each other and to caroline. Variable X1 is bound to louise.
Variable X2 is bound to caroline. X3 is bound to caroline. Variables Y , Y2 and Y3
are bound to each other and to david.

228 Appendix 3 Specimen Solutions to Practical Exercises

Now all the goals in the body of [A2] have succeeded, so the original goal
ancestor(louise,Desc) succeeds with Desc bound to david.
Another solution with Desc bound to janet is available by backtracking.

?- ancestor(louise,Desc).
Desc D caroline ;
Desc D david ;
Desc D janet ;
false.

Practical Exercise 4

Question 1

The following program is a possible solution. There is no need to change the names
of the predicates to isa_dog etc., but it makes the program easier to read if you do.

?-op(150,xf,isa_dog).
?-op(150,xf,isa_cat).
?-op(150,xf,is_large).
?-op(150,xf,is_small).
?-op(150,xf,isa_large_dog).
?-op(150,xf,isa_small_animal).
?-op(150,xfy,chases).
fido isa_dog. fido is_large.
mary isa_cat. mary is_large.
rover isa_dog. rover is_small.
jane isa_cat. jane is_small.
tom isa_dog. tom is_small.
harry isa_cat.
fred isa_dog. fred is_large.
henry isa_cat. henry is_large.
bill isa_cat.
steve isa_cat. steve is_large.
jim is_large.
mike is_large.
X isa_large_dog:- X isa_dog,X is_large.
A isa_small_animal:- A isa_dog,A is_small.
B isa_small_animal:- B isa_cat,B is_small.
X chases Y:-

X isa_large_dog,Y isa_small_animal,
write(X),write(' chases '),write(Y),nl.

Appendix 3 Specimen Solutions to Practical Exercises 229

There are six possible ways of satisfying the goal X chases Y.

?- X chases Y.
fido chases rover
X D fido ,
Y D rover ;

fido chases tom
X D fido ,
Y D tom ;

fido chases jane
X D fido ,
Y D jane ;

fred chases rover
X D fred ,
Y D rover ;

fred chases tom
X D fred ,
Y D tom ;

fred chases jane
X D fred ,
Y D jane ;

false.

Question 2

A possible definition is given below.

pred(A,B):-X is (ACB)/2,write('Average is: '),
write(X),nl,Y is sqrt(A*B),
write('Square root of product is: '),write(Y),nl,
Z is max(X,Y),write('Larger is: '),write(Z),nl.

?- pred(6,7).
Average is: 6.5
Square root of product is: 6.48074069840786
Larger is: 6.5
true.

?- pred(1,9).
Average is: 5
Square root of product is: 3.0
Larger is: 5
true.

230 Appendix 3 Specimen Solutions to Practical Exercises

Practical Exercise 5

Question 1

A possible definition is as follows:

makelower:-get0(X),process(X).
process(10):-nl.
process(X):-XD\D10,convert(X,Y),put(Y),makelower.
convert(X,Y):-X>D65,XD<90,Y is XC32.
convert(X,X):-X<65.
convert(X,X):-X>90.

Question 2

copyterms(Infile,Outfile):-
seeing(S),telling(T),
see(Infile),tell(Outfile),
copy,
seen,see(S),told,tell(T).

copy:-read(X),process(X).
process(end_of_file).
process(X):-

X\Dend_of_file,
writeq(X),write('.'),nl,copy.

Note the use of write('.') to output a full stop after each term, so that the file may
subsequently be read in again as specified.

Question 3

A possible definition of readfile is given below.

readfile(F):-
seeing(S),see(F),
readchar,readchar,readchar,

Appendix 3 Specimen Solutions to Practical Exercises 231

readchar,readchar,readchar,
readchar,readchar,readchar,
readchar,readchar,readchar,
readchar,
seen,see(S).

readchar:-get0(X),write(X),nl.

If 'end of file' and 'end of record' are represented as suggested in Chapter 5, the
output from a call to readfile would be:

?- readfile('testa.txt').
97
98
99
100
101
10
102
103
104
105
106
10
-1
true.

If this is not the output produced on your system, it means that your version of
Prolog uses a different way of representing end of file, end of record or both.

Question 4

It will be assumed that file in1.txt contains

first.
second.
third.
fourth.
'fifth and last'.
end.

and file in2.txt contains

http://dx.doi.org/10.1007/978-1-4471-5487-7_5

232 Appendix 3 Specimen Solutions to Practical Exercises

alpha.
beta.
gamma.
omega.
end.

A possible definition of combine is as follows.

combine(In1,In2,Out):-
seeing(S),telling(T),
tell(Out),see(In1),copyfile,seen,
see(In2),copyfile,seen,see(S),
write(end),nl,told,telling(T).

copyfile:-read(N),process(N).

process(end).
process(N):-write(N),nl,copyfile.

Testing this by

?- combine('in1.txt','in2.txt','out.txt').

produces the output file out.txt given below.

first
second
third
fourth
fifth and last
alpha
beta
gamma
omega
end

Question 5

It will be assumed that the file test1.txt contains

Appendix 3 Specimen Solutions to Practical Exercises 233

first.
second.
third.
fourth.
end.

and file test2.txt contains

first.
xxxx.
third.
fourthxxx.
end.

A possible definition of compare is:

compare(File1,File2):-
seeing(S),compfile(File1,File2),
see(File1),seen, see(File2),seen,see(S).

compfile(File1,File2):-
see(File1),read(X),see(File2),read(Y),
comp(X,Y),process(X,Y,File1,File2).

comp(A,A):-write(A),write(' is the same as '),
write(A),nl.

comp(A,B):-write(A),write(' is different from '),
write(B),nl.

process(end,end,_,_).
process(_,_,File1,File2):-compfile(File1,File2).

?- compare('test1.txt','test2.txt').
first is the same as first
second is different from xxxx
third is the same as third
fourth is different from fourthxxx
end is the same as end
true.

234 Appendix 3 Specimen Solutions to Practical Exercises

Practical Exercise 6

Question 1

A possible definition using recursion is given below:

outsquare(N1,N2):-N1>N2.
outsquare(N1,N2):-

write(N1),write(' squared is '),Square is N1*N1,
write(Square),nl,M is N1C1,outsquare(M,N2).

?- outsquare(6,12).
6 squared is 36
7 squared is 49
8 squared is 64
9 squared is 81
10 squared is 100
11 squared is 121
12 squared is 144
true.

Question 2

The following definition uses the repeat predicate:

go:-repeat,get0(X),getrest(X).
getrest(10):-nl./* newline */
getrest(63):-nl,repeat,get0(X),XD:D10.
getrest(X):-put(X),fail.

?- go.
: abcdef
abcdef
true.

?- go.
: abcde?wxyz
abcde
true.

Appendix 3 Specimen Solutions to Practical Exercises 235

Question 3

The following program uses backtracking with failure:

find:-
person(_,_,Age,_,Prof),Age>40,
write('Profession is '),write(Prof),nl,fail.

find.
person(john,smith,45,london,doctor).
person(martin,williams,33,birmingham,teacher).
person(henry,smith,26,manchester,plumber).
person(jane,wilson,62,london,teacher).
person(mary,smith,29,glasgow,surveyor).

?- find.
Profession is doctor
Profession is teacher
true.

Practical Exercise 7

Question 1

The corrected version is as follows.

factorial(1,1):-!.
factorial(N,Nfact):-N1 is N-1,

factorial(N1,Nfact1),Nfact is N*Nfact1.

?- factorial(6,N).
N D 720

?- factorial(7,M).
M D 5040

Question 2

A possible completed program is given below. It uses the same method of testing
whether a number is even that was used in Chapter 4, i.e. use // to divide the number
by 2, discarding any remainder, then multiply by 2 and check if the result is the
original number.

http://dx.doi.org/10.1007/978-1-4471-5487-7_4

236 Appendix 3 Specimen Solutions to Practical Exercises

go:-repeat,read_and_check(N,Type),
write(N),write(' is '),write(Type),nl,ND:D100,!.

read_and_check(N,Type):-
write('Enter next number: '),read(N),
check(N,Type).

check(N,even):-N1 is N//2,N2 is 2*N1,N2D:DN,!.
check(N,odd).

Practical Exercise 8

Question 1

A possible answer is given below. Predicate process adds a fact to the database only
if is not already there.

add_data:-
assert(animal(dummy)),
repeat,write('Enter next name: '),
read(X),process(X),XDend,
retract(animal(dummy)).

process(end):-!.
process(X):-animal(X),write('Duplicate entry'),nl,!.
process(X):-assert(animal(X)),!.

Question 2

The display_animals predicate defined below uses backtracking with failure to list
the names of all the animals in the database.

display_animals:-animal(X),write(X),nl,fail.
display_animals.

Question 3

The remove predicate removes clauses from the database if they are present. If they
are not, it does nothing but still succeeds.

Appendix 3 Specimen Solutions to Practical Exercises 237

remove2:-remove(dog),remove(cat).
remove(X):-retract(animal(X)).
remove(X).

Practical Exercise 9

Specimen solutions are given below. All the definitions require just one or two
clauses.

Question 1

pred1([AjL],L).

Question 2

inc([],[]).
inc([AjL],[A1jL1]):-A1 is AC1,inc(L,L1).

Question 3

palindrome(A):-reverse(A,A).

Question 4

putfirst(A,L,[AjL]).

Question 5

putlast(A,L,L1):-append(L,[A],L1).

Question 6

pred2(L1,L):-findall([A],member(A,L1),L).
pred3(L1,L):-findall(pred(A,A),member(A,L1),L).
pred4(L1,L):-findall([element,A],member(A,L1),L).

238 Appendix 3 Specimen Solutions to Practical Exercises

Practical Exercise 10

Specimen solutions are given below.

Question 1

spalindrome(S):-name(S,L),reverse(L,L).

Question 2

remove_final(S,S1):-
name(S,L),reverse(L,L1),
removespaces(L1,L2),reverse(L2,L3),
name(S1,L3).

removespaces([],[]):-!.
removespaces([32jL],L1):-removespaces(L,L1),!.
removespaces(L,L).

Question 3

replace(S1,S2):-name(S1,L1),rep(L1,L2),name(S2,L2).
rep([_jL],[63jL]).

Practical Exercise 11

Question 1

One solution is to place the operator definitions

?-op(200,fx,head).
?-op(200,fx,tail).

near the beginning of the program file and the clauses

H iss head [HjT]:-!.
T iss tail [HjT]:-!.

anywhere amongst the clauses defining the iss predicate (as long as it is before the
final clause).

Appendix 3 Specimen Solutions to Practical Exercises 239

Question 2

Using the univ operator this predicate can be defined with just one clause.

addArg(Term1,NewArg,Term2):-
Term1D..L,append(L,[NewArg],L2),
Term2D..L2.

The original term is converted to a list, the extra term is added to the end of the list
using the append/3 predicate and the resulting list is converted back to a term.

?- addArg(person(john,smith,25),london,T).
T D person(john,smith,25,london)

?- addArg(city(paris,france),[a,b,c],T).
T D city(paris,france,[a,b,c])

The definition also works if the first argument is an atom, not a compound term. A
term with one argument is created.

?- addArg(height,200,T).
T D height(200)

Practical Exercise 12

We can change the final two clauses of sentence to:

sentence([s3,both,V,NP1,Noun1])-->noun_phrase
(NP1,_,Noun1),
verb(both,V),adverb,fassertz(wordlist(verb,both,V))g.

sentence([s4,Plurality,V,NP1,Noun1])
-->noun_phrase(NP1,Plurality,Noun1),

verb(Plurality,V),adverb,
fassertz(wordlist(verb,Plurality,V))g.

and add a definition for adverb:

adverb-->[Xg,fmember(X,[well,badly,slowly,quickly])g.

?- phrase(sentence(S),[the,small,men,sat,slowly]).
S D [s3, both, sat, np1, men] .

240 Appendix 3 Specimen Solutions to Practical Exercises

?- phrase(sentence(S),[the,small,men,saw,slowly,the,dog]).
false.

?- phrase(sentence(S),[the,boy,will_see,quickly]).
S D [s3, both, will_see, np2, boy] .

Practical Exercise 13

We can do this by placing a new predicate lastnum/1 in the database to hold the
number of the last question asked (initially zero). When a new question is asked the
number is increased by one and this new value replaces the one previously stored.
To implement this we change the definition of predicate runquiz to:

runquiz:-
retractall(myscore(_,_)),assertz(myscore(0,0)),
retractall(lastnum(_)),assertz(lastnum(0)),
title(T),write(T),nl,nl,
askq.

and change the first clause of askq to

askq:-question(Qtext,Anslist,Maxscore),
retract(lastnum(Last)),Qnum is LastC1,
assertz(lastnum(Qnum)),
write('Question '),write(Qnum),write('. '),
write(Qtext),nl,
write('Possible answers are '),genanswers(Anslist),
requestanswer(Anslist,Maxscore),fail.

?-runquiz.
Are you a genius? Answer our quiz and find out!

Question 1. What is the name of this planet?
Possible answers are Earth, The Moon, and John
Enter your answer
j: Earth
You have scored 20 points out of a possible 20

Question 2. What is the capital of Great Britain?
Possible answers are America, Paris, London, and Moscow
Enter your answer
j: London
You have scored 50 points out of a possible 50

Appendix 3 Specimen Solutions to Practical Exercises 241

Question 3. In which country will you find the Sydney Opera House?
Possible answers are London, Toronto, The Moon, Australia, and Germany
Enter your answer
j: Australia
You have scored 10 points out of a possible 10

Your total score is 80 points out of a possible 80
You are a genius!

true.

Appendix 4
Glossary

Words in bold are cross-references to other entries in the glossary.

Anonymous Variable See Variable
Argument See Term
Arithmetic Expression A valid combination of numbers, variables, arithmetic

operators and arithmetic functions, for example 4.37C6*X�YCsqrt(67.4).
Arithmetic Function A predicate such as sin, sqrt or abs used in an arithmetic

expression that (unlike predicates used elsewhere in Prolog) returns a numerical
value.

Arithmetic Operator An operator such as C � * / used in an arithmetic
expression that (unlike operators used elsewhere in Prolog) returns a numerical
value.

Arity See Term
ASCII Value of a Character An integer from 0 to 255 associated with each of

the (up to) 256 possible characters that may be used by the Prolog system. See
Chapter 5 (Section 5.4) for a table giving the ASCII values of the most common
characters.

Atom A non-numeric constant, e.g. dog or 'a long atom'
Backtracking The process of going back to a previous goal to find alternative ways

of satisfying it (see Chapter 3). Backtracking can be prevented by using the cut
predicate (see Chapter 7).

Backtracking with Failure A technique that can be used to search through all the
clauses in the Prolog database or to find all possible ways of satisfying a goal
(see Chapter 6).

Binary Predicate A predicate that has two arguments.
Binding a Variable The process of giving a value to a variable.
BIP Abbreviation for Built-in Predicate
Body of a Clause See Clause

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7,
© Springer-Verlag London 2013

243

http://dx.doi.org/10.1007/978-1-4471-5487-7_5
http://dx.doi.org/10.1007/978-1-4471-5487-7_5
http://dx.doi.org/10.1007/978-1-4471-5487-7_3
http://dx.doi.org/10.1007/978-1-4471-5487-7_7
http://dx.doi.org/10.1007/978-1-4471-5487-7_6

244 Appendix 4 Glossary

Body of a Rule See Clause
Bound Variable One that has been given a value.
Built-in Predicate (BIP) See Predicate
Call Term A term that is either an atom or a compound term. Goals entered by

the user, heads of clauses and the components of bodies of rules are all of this
form.

Character One of a set of symbols that can be represented in a computer. These
can be letters, digits, spaces, punctuation marks etc. See also ASCII Value of a
Character and White Space Character

Clause A Prolog program comprises a sequence of clauses. There are two types of
clause: facts and rules.

(1) Facts are of the form

head.

head is called the head of the clause. It may be an atom or a compound term,
whose functor is any atom (except :-). Some examples of facts are:

christmas.
likes(john,mary).
likes(X,prolog).
dog(fido).

(2) Rules are of the form:

head:-ti,t2, : : : , tk. (k>D1)

head is called the head of the clause (or the head of the rule).
It must be an atom or a compound term, whose functor is any atom
(except :-).
:- is called the neck of the clause (or the 'neck operator').
t1,t2, : : : , tk is called the body of the clause (or the body of the rule). It
consists of one or more goals, separated by commas.
The neck operator :- is read as 'if'. Commas are read as 'and'. Thus a rule can
be read as 'head is true if t1, t2, : : : , tk are all true'.
Some examples of rules are:

large_animal(X):-animal(X),large(X).
grandparent(X,Y):-father(X,Z),parent(Z,Y).
go:-write('hello world'),nl.

Closed World Assumption Any conclusion that cannot be proved to follow from
the facts and rules in the database is false. There is no other information.

Compound Term See Term
Concatenating Lists Combining two lists to give a new list, the elements of

which are those of the first list followed by those of the second list. For example,
concatenating the lists [a,b,c,d] and [1,2,3] gives the list [a,b,c,d,1,2,3].

Cons Character The vertical bar character j used to construct a list from its head
and tail (see Chapter 9).

http://dx.doi.org/10.1007/978-1-4471-5487-7_9

Appendix 4 Glossary 245

Current Input Stream See Files
Current Output Stream See Files
Cut A special built-in predicate used to prevent backtracking (see Chapter 7).
Cut with failure A technique used to specify exceptions to general rules (see

Chapter 7).
Database The Prolog database comprises a set of clauses (rules and facts) which

constitute definitions for one or more predicates. Clauses are generally loaded
into the database from a text file by entering a consult directive at the system
prompt (see the built-in predicate consult described in Chapter 1). Clauses can
also be added to the database as a side effect when a goal is evaluated (see the
built-in predicates asserta and assertz described in Chapter 8).

Clauses placed in the database remain there until one of the following happens:

(a) One or more clauses are deleted as a side effect when a goal is evaluated (see
the retract and retractall built-in predicates described in Chapter 8).

(b) Further clauses are loaded into the database from a text file (if these include
one or more clauses for a predicate already stored in the database, all the
previously stored clauses for that predicate are first automatically deleted).

(c) The user exits from the Prolog interpreter (all clauses are automatically
deleted).

Declarative Interpretation of a Rule Rules have both a declarative and a proce-
dural interpretation. The declarative interpretation is that its head is satisfied if
all the goals in its body are satisfied. With this reading, the order of the clauses
defining a predicate and the order of the goals in the body of each rule are
irrelevant. See also Procedural Interpretation of a Rule.

Declarative Program A declarative program is one in which the order of the
clauses defining each predicate and the order of the goals in the body of each rule
do not affect the answers to a user query (including multiple answers produced
by backtracking). This aim may be either fully or partly achieved. It is considered
to be good Prolog programming practice to make programs declarative as far as
possible (see Section 3.7).

Directive A goal included in a Prolog program, prefixed by the system prompt
characters (see Section 4.1).

Disjunction Operator The disjunction operator;/2 (written as a semicolon char-
acter) is used to represent 'or'. It is an infix operator that takes two arguments,
both of which are goals. Goal1;Goal2 succeeds if either Goal1 or Goal2
succeeds.

Dynamic Predicate See Predicate
Empty List See List
Equality Operator An operator used for testing the equality of two arithmetic

expressions or two terms.
Evaluate a Goal Determine whether or not a goal is satisfied.
Existentially Quantified Variable See Variable
Fact A fact is a type of clause.

http://dx.doi.org/10.1007/978-1-4471-5487-7_7
http://dx.doi.org/10.1007/978-1-4471-5487-7_7
http://dx.doi.org/10.1007/978-1-4471-5487-7_1
http://dx.doi.org/10.1007/978-1-4471-5487-7_8
http://dx.doi.org/10.1007/978-1-4471-5487-7_8
http://dx.doi.org/10.1007/978-1-4471-5487-7_3
http://dx.doi.org/10.1007/978-1-4471-5487-7_4

246 Appendix 4 Glossary

Files The same facilities available for input and output from and to the user's
terminal are available for input and output from and to files (e.g. on a hard disk
or a CD-ROM).
Prolog takes all input from the current input stream and writes all output to the
current output stream. The user may open and close input streams and output
streams associated with any number of named files but there can only be one
current input stream and one current output stream at any time.

Function A relationship between a number of values, such as 6C4 or sqrt(N),
which evaluates to a number (or potentially some other kind of term), rather than
to true or false as for predicates. Prolog does not make use of functions except in
arithmetic expressions (see Chapter 4).

Functor See Term
Goal A component of a query entered by the user at the system prompt, such

as go, animal(X) or factorial(6,M), which either succeeds or fails. The head of a
clause can be viewed as a goal with, in the case of a rule, the components of its
body as subgoals. The components in the body of a rule are also known as goals.
Wherever they appear, goals always take the form of call terms.

Head of a Clause See Clause
Head of a List See List
Head of a Rule See Clause
Infix Operator A predicate with two arguments written using a special notation

where the functor is placed between its two arguments with no parentheses, e.g.
john likes mary. See also Operator.

Input Stream See Files
Lexical Scope of a Variable If a variable, say X, appears in a clause, it is entirely

different from any variable named X that may appear in another clause. This is
expressed by saying that the lexical scope of a variable is the clause in which it
appears.

List A type of compound term, which is written not in the usual 'functor
and argument' notation, but as an unlimited number of arguments (known
as list elements) enclosed in square brackets and separated by commas, e.g.
[dog,cat,fish,man].

An element of a list may be a term of any kind, including another list, e.g.
[x,y,mypred(a,b,c),[p,q,r],z]
[[john,28],[mary,56,teacher],robert,parent(victoria,albert),[a,B,[C,D,e],f],29]
A list with no elements is known as the empty list. It is written as [].
The first element of a non-empty list is called its head. The list remaining after

the head is removed is called the tail of the original list.
For example the head of the list [x,y,mypred(a,b,c),[p,q,r],z] is the term x (an

atom) and the tail is the list [y,mypred(a,b,c),[p,q,r],z].
The head of the list
[[john,28],[mary,56,teacher],robert,parent(victoria,albert),[a,B,[C,D,e],f],29]
is the term [john,28] (which is a list). The tail is the list
[[mary,56,teacher],robert,parent(victoria,albert),[a,B,[C,D,e],f],29].

http://dx.doi.org/10.1007/978-1-4471-5487-7_4

Appendix 4 Glossary 247

List Element See List
List Processing Performing operations on the elements of one or more lists. See

Chapter 9.
Logic Programming A style of programming derived from research in the field

of computational logic. It is most commonly embodied in the programming
language Prolog (Programming in Logic). The clauses in a Prolog program have
a close similarity to propositions in mathematical logic.

Looping Evaluating a set of goals repeatedly either a fixed number of times or
until a condition is met (see Chapter 6).

Neck of a Clause See Clause
Neck Operator See Clause
Operator A predicate with two arguments can be converted to an infix operator

in the interests of readability of programs. The functor is written between the
two arguments, e.g. john likes mary instead of likes(john,mary). A predicate with
one argument can be converted to either a prefix operator or a postfix operator.
The functor is written either before (prefix) or after (postfix) the argument, e.g.
isa_dog fred or fred isa_dog instead of isa_dog(fred).

Arithmetic Operator An operator such as C - * / used in an arithmetic ex-
pression that (unlike operators used elsewhere in Prolog) returns a numerical
value.

Equality Operator An operator used for testing the equality of two arithmetic
expressions or two terms.

Relational Operator An operator used for comparing numerical values, such as
< denoting 'less than'.

Operator Precedence A number (also called the precedence value) associated
with an operator that determines the order in which operators will be applied
when more than one is used in a term (see Chapter 4).

Output Stream See Files
Postfix Operator A predicate with one argument written using a special notation

where the functor is placed after its argument with no parentheses, e.g. fred
isa_dog. See also Operator.

Precedence Value See Operator Precedence
Predicate All the clauses in the Prolog database for which the head has the

same combination of functor and arity comprise the definition of a predicate.
Predicates are sometimes described using functor and arity notation, e.g. write/1.

Binary Predicate: a predicate that has two arguments
Built-in Predicate: a standard predicate defined by the Prolog system
Dynamic Predicate: one that may be modified (see Chapter 8)
Static Predicate: one that may not be modified (see Chapter 8)
Unary Predicate: a predicate that has one argument

Prefix Operator A predicate with one argument written using a special notation
where the functor is placed before its argument with no parentheses, e.g. isa_dog
fred. See also Operator.

http://dx.doi.org/10.1007/978-1-4471-5487-7_9
http://dx.doi.org/10.1007/978-1-4471-5487-7_6
http://dx.doi.org/10.1007/978-1-4471-5487-7_4
http://dx.doi.org/10.1007/978-1-4471-5487-7_8
http://dx.doi.org/10.1007/978-1-4471-5487-7_8

248 Appendix 4 Glossary

Procedural Interpretation of a Rule Rules have both a declarative and a proce-
dural interpretation. The procedural interpretation is that in order to satisfy its
head each of the goals in its body should be satisfied in turn, working from left
to right. With this reading, the order of the goals in the body of each rule and
the order of the clauses defining a predicate are of great importance. See also
Declarative Interpretation of a Rule.

Program A Prolog program comprises the clauses (rules and facts) currently held
in the Prolog database. Unlike most other programming languages there is no
fixed way in which a program must be used. Entering a goal or a sequence of
goals in response to the system prompt causes the Prolog interpreter to search
through the clauses relevant to satisfying that goal or goals, as described in
Chapter 4.

Prolog A programming language embodying the ideas of logic programming.
Prompt An abbreviated form of System Prompt
Query A sequence of one or more goals entered by the user at the prompt. In this

book the more explicit term 'sequence of goals' is generally used.
Re-evaluate a Goal Determine whether or not a goal can be resatisfied.
Recursive Definition of a Predicate One that uses the predicate itself, either

directly or indirectly.
Relational Operator An operator used for comparing values, such as < denot-

ing 'less than'.
Resatisfy a Goal Find another way of satisfying a goal, whilst backtracking.
Rule A rule is a type of clause.
Satisfy a Goal Prove that the goal follows from the facts and rules in the

database. This usually involves binding one or more variables (see Chapter 3).
Sequence of Goals A combination of goals joined together by commas, signify-

ing 'and'. In order for the sequence of goals to succeed, all the individual goals
must succeed.

Shell A framework which can be used for constructing any one of a series of
related applications (see Chapter 13).

Side Effect An action taken by the Prolog system, such as writing a line of text
or opening a file, whilst attempting to satisfy a goal.

Static Predicate See Predicate
String A collection of characters such as 'hello world'. An atom can be regarded

as a string (see Chapter 10).
String Processing Performing operations on the contents of one or more strings

(see Chapter 10).
Subgoal See goal.
Sublist A list element that is itself a list.
System Prompt A combination of characters (?- in this book) output by the

Prolog system to indicate that it is ready for the user to enter a sequence of one
or more goals.

Tail of a List See List

http://dx.doi.org/10.1007/978-1-4471-5487-7_4
http://dx.doi.org/10.1007/978-1-4471-5487-7_3
http://dx.doi.org/10.1007/978-1-4471-5487-7_13
http://dx.doi.org/10.1007/978-1-4471-5487-7_10
http://dx.doi.org/10.1007/978-1-4471-5487-7_10

Appendix 4 Glossary 249

Term The name given to the data objects in Prolog. A term can be an atom, a
variable, a number, a compound term or a list. Some dialects of Prolog allow
other possibilities, e.g. strings.

A compound term is a structured data type that consists of a functor followed by a
sequence of one or more arguments, which are enclosed in brackets and separated
by commas. The general form is: functor(t1,t2, : : : ,tn) n�l.

The functor must be an atom. Each argument must be a term (possibly a compound
term). The number of arguments a compound term has is called its arity. A
compound term can be thought of as representing a record structure. The functor
represents the name of the record, while the arguments represent the record fields.

A call term is an atom or a compound term. The body of a rule consists of a sequence
of call terms, separated by commas.

Unary Predicate A predicate that has one argument. See also Predicate
Unbound Variable One that does not have a value.
Unification A process of matching, generally involving binding variables, to

make two call terms identical (see Chapter 3).
Universally Quantified Variable See Variable
Unresatisfiable Goal One that always fails when backtracking.
User's Terminal A generic term that normally refers to the user's keyboard

(for input) and screen (for output). See also Files
Variable In a query a variable is a name used to stand for a term that is to

be determined, e.g. variable X may stand for atom dog, the number 12.3, a
compound term or a list. The meaning of a variable when used in a rule or fact is
described in Chapter 2. See also Lexical Scope of a Variable

Unbound Variable: one that does not have a value.
Bound Variable: one that has been given a value. A bound variable may become

unbound again and possibly then bound to a different value by the process of
backtracking, described in Chapter 3.

Universally Quantified Variable: one that appears in the head of a clause,
indicating that the corresponding fact or rule applies for all possible values
of the variable.

Existentially Quantified Variable: One that appears in the body of a rule, but not
in its head, signifying that 'there exists at least one value of the variable'.

Anonymous Variable: A variable used in a fact, rule or goal entered by the user
when the value is unimportant (see Chapter 2).

White Space Character A non-printing character, such as space or tab. For-
mally, a character with an ASCII value less than or equal to 32.

http://dx.doi.org/10.1007/978-1-4471-5487-7_3
http://dx.doi.org/10.1007/978-1-4471-5487-7_2
http://dx.doi.org/10.1007/978-1-4471-5487-7_3
http://dx.doi.org/10.1007/978-1-4471-5487-7_2

Index

Page numbers in bold refer to definitions in the Glossary (Appendix 4). Page numbers in bold italic
refer to definitions in the lists of Built-in Predicates and Built-in Operators (Appendices 1 and 2).

Symbols
! See 'Cut' Predicate
, [comma] Operator, 217
; [semicolon] Operator, 65, 217
\D Operator, 64, 217
\DD Operator, 63, 218
< Operator, 61, 218
D [equals] Operator, 63, 64, 217
D.. ['univ'] Operator, 158, 218
D:D Operator, 61, 62, 218
D\D Operator, 61, 62, 218
D< Operator, 61, 218
DD Operator, 62, 63, 218
> Operator, 61, 218
>D Operator, 61, 219
--> Operator, 166, 219

A
Anonymous Variable, 10, 25–26, 243
append Predicate, 127, 130–131, 211
Append to a File, 77
Applications of Prolog viii
arg Predicate, 160, 212
Argument, 4, 10, 18, 243
Arithmetic Expression, 58, 61–63, 243
Arithmetic Function, 58, 243
Arithmetic in Prolog, 58–61, 147–153
Arithmetic Operator, 58, 147, 243
Arity, 10, 15, 17, 30, 243
ASCII Value of a Character, 69, 72, 73, 138,

243

asserta Predicate, 111, 212
assertz Predicate, 110, 212
Atom, 4, 8, 10, 11, 14, 15, 17, 243
atom Predicate, 154, 212
atomic Predicate, 212

B
Backtracking, 7, 23, 31, 39–48, 52–53, 91–96,

99, 243
Backtracking with Failure, 94–96, 243
Binary Predicate, 55, 243
Binding a Variable, 23, 31, 243
BIP See Built-in Predicate
Body of a Clause, 14, 243
Body of a Rule, 14, 244
Bound Variable, 23, 244
Built-in Predicate (BIP) 2, 17, 57, 244

C
call Predicate, 158–159, 163–212
Call Term, 11, 13, 14, 30–35, 244
Character, 72–76, 244
Clause, 3, 4, 13–15, 244
Closed World Assumption, 30, 244
Compound Term, 10, 244
Concatenating Lists, 127–128, 244
Cons Character, 120–124, 244
consult Predicate, 4, 18–21, 109, 211
Context-free Grammar, 167
Current Input Stream, 71, 73, 76–77, 245

M. Bramer, Logic Programming with Prolog, DOI 10.1007/978-1-4471-5487-7,
© Springer-Verlag London 2013

251

252 Index

Current Output Stream, 17, 69–70, 72–73,
76–77, 245

'Cut' Predicate, 99–107, 211, 245
Cut with failure, 105–107, 245

D
Database, 4, 109–117, 245
Declarative Interpretation of a Rulevi, vi,

16–17, 245 See also Procedural
Interpretation of a Rule

Declarative Program, 51–52, 245
Definite Clause Grammar, 167
Directive, 57, 245
Disjunction Operator, 65, 245
dynamic Predicate, 110, 212

E
Empty List, 10, 119, 245
Equality Operators, 61–64, 245
Evaluate a Goal, 5, 35–49, 245
Existentially Quantified Variable, 24–25, 245
Expert System viii, 200–209
Expert System Shell See Shell

F
Fact vi, vii, 4, 13, 14, 114, 245
fail Predicate, 94, 107, 212
Files, 76–81, 246
findall Predicate, 132–134, 212
Function, 18, 246
Functor, 10, 15–17, 30, 246
functor Predicate, 159–160, 212

G
get Predicate, 73, 78, 141, 213
get0 Predicate, 73, 78, 141, 213
Goal, 1–3, 21–23, 30, 246

H
halt Predicate, 2, 3, 213
Head of a Clause, 13, 246
Head of a List, 119–120, 246
Head of a Rule, 14, 246

I
Infix Operator, 55, 246
Input Stream, 71, 73–74, 76–78, 246

integer Predicate, 213
is Operator, 58, 219

L
length Predicate, 125–126, 213
Lexical Scope of a Variable, 24, 246
List, 11, 119–124, 246
List Constructor Notation, 120–124
List Element, 10, 119, 247
List Processing ix, 119–135, 247
listing Predicate, 7, 213
Loading Clauses, 18–21, 109
Logic Programming viii, 247
Logical Operators, 64–65
Looping, 85–96, 247

M
member Predicate, 124, 125, 131, 213

N
name Predicate, 137–138, 213
Neck of a Clause, 14, 247
Neck Operator, 14, 247
nl Predicate, 2, 213
not Operator, 64–65, 219

O
op Predicate, 56–57, 213
Operator, 57–59, 61–64, 149, 247
Operator Precedence, 56, 61, 65–67, 247
Output Stream, 17, 69–70, 77, 247

P
phrase Predicate, 167, 214
Postfix Operator, 56, 247
Precedence Value See Operator Precedence
Predicate, 2, 4, 15–18, 30, 57, 247
Prefix Operator, 55, 247
Procedural Interpretation of a Rule x, 16,

248 See also Declarative Interpretation
of a Rule

Program ix, 248
Prolog v-x, 248
Prompt See System Prompt
put Predicate, 72–73, 214

Q
Query vi, 3, 244

Index 253

R
Re-evaluate a Goal, 49, 247
read Predicate, 71, 78, 214
Recursion ix, 18, 85–90, 128–132
Recursive Definition of a Predicate, 18, 248
Relational Operator, 57, 61–64, 248
repeat Predicate, 91–93, 214
Resatisfy a Goal, 39, 41–43, 248
retract Predicate, 111, 214
retractall Predicate, 112, 214
reverse Predicate, 126–127, 130, 131, 214
Rule vi, vii, 4, 13, 14, 16, 248

S
Satisfy a Goal, 5, 29–31, 39–51, 96, 248
see, Predicate, 78, 80, 214
seeing Predicate, 78, 80, 214
seen Predicate, 78, 80, 215
Sequence of Goals, 3, 248
Set Operations in Prolog, 155–157
Shell, 187, 200–210, 248
Side Effect, 2, 3, 17, 18, 29, 37, 248
Static Predicate, 110, 248
statistics Predicate, 2, 3, 215
String, 137, 248
String Processing, 11, 137–146, 153–155, 248
Subgoal, 14, 134, 248
Sublist, 119, 248
Syntactic Sugar, 172
Syntactic Term, 167, 172, 214
Syntax x
System Prompt vi, 1, 3, 4, 7, 248

T
Tail of a List, 119, 248
tell Predicate, 77, 80, 215
telling Predicate, 77, 80, 215
Term, 8–11, 249
Term Equality, 62–64
Terminal, 167
Terminating Condition, 86
Theorem Proving vii
told Predicate, 77, 80, 215
true Predicate, 215

U
Unary Predicate, 55, 249
Unbound Variable, 23, 31, 249
Unification, 31–35, 60, 63, 64, 160–162, 249
Universally Quantified Variable, 24, 249
Unresatisfiable Goal, 41, 69, 249
User-defined Predicates, 16
User’s Terminal, 76–77, 249

V
Variable, 4, 9–10, 22–26, 31, 249
Versions of Prolog ix

W
White Space Character, 13, 71, 249
write Predicate, 2, 69, 215
writeq Predicate, 70, 215

	Contents
	Introduction
	Some Technical Details

	Chapter 1: Getting Started
	1.1 Starting Prolog
	1.2 Prolog Programs
	1.3 Data Objects in Prolog: Prolog Terms
	Practical Exercise 1

	Chapter 2: Clauses and Predicates
	2.1 Clauses
	2.2 Predicates
	2.3 Loading Clauses
	2.4 Variables
	Practical Exercise 2

	Chapter 3: Satisfying Goals
	3.1 Introduction
	3.2 Unification
	3.2.1 Unifying Call Terms

	3.3 Evaluating Goals
	3.4 Backtracking
	3.5 Satisfying Goals: A Summary
	3.6 Removing Common Variables
	3.7 A Note on Declarative Programming
	3.8 Important Note on User-Controlled Backtracking
	Practical Exercise 3

	Chapter 4: Operators and Arithmetic
	4.1 Operators
	4.2 Arithmetic
	4.3 Equality Operators
	4.4 Logical Operators
	4.5 More About Operator Precedence
	Practical Exercise 4

	Chapter 5: Input and Output
	5.1 Introduction
	5.2 Outputting Terms
	5.3 Inputting Terms
	5.4 Input and Output Using Characters
	5.5 Outputting Characters
	5.6 Inputting Characters
	5.7 Using Characters: Examples
	5.8 Input and Output Using Files
	5.9 File Output: Changing the Current Output Stream
	5.10 File Input: Changing the Current Input Stream
	5.10.1 Reading from Files: End of File
	5.10.2 Reading from Files: End of Record

	5.11 Using Files: Examples
	Practical Exercise 5

	Chapter 6: Loops
	6.1 Introduction
	6.2 Looping a Fixed Number of Times
	6.3 Looping Until a Condition Is Satisfied
	6.3.1 Recursion
	6.3.2 Using the ＇repeat＇ Predicate

	6.4 Backtracking with Failure
	6.4.1 Searching the Prolog Database
	6.4.2 Finding Multiple Solutions

	Practical Exercise 6

	Chapter 7: Preventing Backtracking
	7.1 Introduction
	7.2 The Cut Predicate
	7.3 Cut with Failure
	Practical Exercise 7

	Chapter 8: Changing the Prolog Database
	8.1 Changing the Database: Adding and Deleting Clauses
	8.2 Adding Clauses
	8.3 Deleting Clauses
	8.4 Changing the Database: Example
	8.5 Maintaining a Database of Facts
	Practical Exercise 8

	Chapter 9: List Processing
	9.1 Representing Data as Lists
	9.2 Notation for Lists
	9.3 Decomposing a List
	9.4 Built-in Predicate: member
	9.5 Built-in Predicate: length
	9.6 Built-in Predicate: reverse
	9.7 Built-in Predicate: append
	9.8 List Processing: Examples
	9.9 Using findall/3 to Create a List
	Practical Exercise 9

	Chapter 10: String Processing
	10.1 Converting Strings of Characters To and From Lists
	10.2 Joining Two Strings
	10.3 Trimming a String
	10.4 Inputting a String of Characters
	10.5 Searching a String
	10.6 Dividing a String into Its Component Parts
	Practical Exercise 10

	Chapter 11: More Advanced Features
	11.1 Introduction
	11.2 Extending Prolog: Arithmetic
	11.3 Extending Prolog: Operations on Strings
	11.4 Extending Prolog: Sets
	11.5 Processing Terms
	Practical Exercise 11

	Chapter 12: Using Grammar Rules to Analyse English Sentences
	12.1 Introduction
	12.2 Parsing English Sentences
	12.3 Converting Sentences to List Form
	Practical Exercise 12

	Chapter 13: Prolog in Action
	13.1 Implementing an Artificial Language
	13.2 Developing an Expert System Shell
	Practical Exercise 13

	Appendix 1 Built-in Predicates
	Appendix 2 Built-in Operators
	Appendix 3 Specimen Solutions to Practical Exercises
	Appendix 4 Glossary
	Index

