Complex Numbers

This calculator is capable of performing the following operations using complex numbers.

- Arithmetic operations (addition, subtraction, multiplication, division)
- Calculation of the reciprocal, square root, and square of a complex number
- Calculation of the absolute value and argument of a complex number
- Calculation of conjugate complex numbers
- Extraction of the real part
- Extraction of the imaginary part
- 4-1 Before Beginning a Complex Number Calculation
- 4-2 Performing Complex Number Calculations

4-1 Before Beginning a Complex Number Calculation

Before beginning a complex number calculation, press (CPLX) to display the complex number calculation menu.

- {i} ... {imaginary unit i input}
- {Abs}/{Arg} ... obtains {absolute value}/{argument}
- {Conj} ... {obtains conjugate}
- {ReP}/{ImP} ... {real}/{imaginary} part extraction

4-2 Performing Complex Number Calculations

The following examples show how to perform each of the complex number calculations available with this calculator.

Arithmetic Operations

[OPTN]-[CPLX]-[i]

Arithmetic operations are the same as those you use for manual calculations. You can even use parentheses and memory.

Example 1 (1 + 2i) + (2 + 3i)

3+5i

+ (2 + 3 F1(i)) EXE

Example 2 $(2+i)\times(2-i)$

 \mathbf{X} (2 $\mathbf{-}$ $\mathbf{F1}(i)$) EXE

Reciprocals, Square Roots, and Squares

Example $\sqrt{(3+i)}$

SHIFT
$$\checkmark$$
 (3 $+$ F1 (i)) EXE

 $\sqrt{(3+i)}$

Absolute Value and Argument

[OPTN]-[CPLX]-[Abs]/[Arg]

The unit regards a complex number in the form a + bi as a coordinate on a Gaussian plane, and calculates absolute value | Z | and argument (arg).

Example

To calculate absolute value (r) and argument (θ) for the complex number 3 + 4i, with the angle unit set for degrees

4 - 2 Performing Complex Number Calculations

AC @FM F3 (CPLX) F2 (Abs)

(C 3 + 4 F1 (i)) EXE
(Calculation of absolute value)

AC @FM F3 (CPLX) F3 (Arg)

(C 3 + 4 F1 (i)) EXE

53.13010235

(Calculation of argument)

The result of the argument calculation differs in accordance with the current

■ Conjugate Complex Numbers

angle unit setting (degrees, radians, grads).

[OPTN]-[CPLX]-[Conj]

A complex number of the form a + bi becomes a conjugate complex number of the form a - bi.

Example

To calculate the conjugate complex number for the complex number 2 + 4i

AC @M F3(CPLX)F4(Conj) Conjg (2+4 \mathbf{i})
() 2 + 4 F1(i) [XE]

■ Extraction of Real and Imaginary Parts

(Imaginary part extraction)

[OPTN]-[CPLX]-[ReP]/[ImP]

Use the following procedure to extract the real part a and the imaginary part b from a complex number of the form a + bi.

Example To extract the real and imaginary parts of the complex number 2 + 5*i*

AC (PTN) F3 (CPLX) F5 (ReP) ReP (2+5i)

(2 + 5 F1(i)) E8

(Real part extraction)

■ Complex Number Calculation Precautions

• The input/output range of complex numbers is normally 10 digits for the mantissa and two digits for the exponent.

- When either the real part or imaginary part equals zero, that part is not displayed.
- 20 bytes of memory are used whenever you assign a complex number to a
- The following functions can be used with complex numbers.

$$\sqrt{\ }$$
, x^2 , x^{-1}
Int, Frac, Rnd, Intg, Fix, Sci, ENG, ENG, $\stackrel{\longleftarrow}{\text{ENG}}$, $\stackrel{\circ}{\circ}$, $\stackrel{\circ}{\circ}$, $\stackrel{\circ}{\circ}$, a^b/c , d/c , $F\Leftrightarrow D$

