Open Financial Exchange

Specification 2.2 Public DRAFT #2

May 17, 2016

© 2016 Intuit Inc., Envestnet® | Yodlee®, Enterprise Engineering Inc., Finicity, Innovision Corporation,
JPMorgan Chase & Co., Plaid, SVB Financial Group, Wells Fargo Bank, and Xero Limited.
All rights reserved.

Open Financial Exchange Specification Legend

Open Financial Exchange Specification ©2016 by: Intuit Inc., Enterprise Engineering Inc., Envestnet® |

Yodlee®, Finicity, Innovision Corporation, JPMorgan Chase & Co., Plaid, SVB Financial Group, Wells Fargo
Bank, and Xero Limited (“Publishers™). All rights reserved.

Publishers hereby grant to any party a royalty-free, worldwide, and perpetual license to review the Open
Financial Exchange Specification in order to provide input, suggestions and other feedback (“Feedback™).
By providing Feedback, you (and your represented organization) grant to Publishers a perpetual,
irrevocable, non-exclusive, royalty-free, worldwide license, with the right to directly and indirectly
sublicense, to make, use, sell, copy, publish, and distribute the Feedback in any way.

THIS OPEN FINANCIAL EXCHANGE SPECIFICATION IS MADE AVAILABLE “AS IS” WITHOUT
WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
PUBLISHERS FURTHER DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT, ALL OF WHICH ARE HEREBY DISCLAIMED. THE
ENTIRE RISK ARISING OUT OF THE USE OF THIS SPECIFICATION REMAINS WITH
RECIPIENT. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT
SHALL THE PUBLISHERS OF THIS SPECIFICATION BE LIABLE FOR ANY CONSEQUENTIAL,
INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE, OR OTHER DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY
LOSS) ARISING OUT OF ANY USE TO WHICH THIS SPECIFICATION IS PUT, EVEN IF THE
PUBLISHERS HEREOF HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TABLE OF CONTENTS

Chapter 1 OFX 2.2 Specification Public Draft Overview 17
L1 INtrodUCtion e 17
1.1.1 Design Principleso e 18
1.2 Open Financial ExchangeataGlance 20
1.2.1 Data Trans POl o 20
1.2.2 Request and Response Model i 22
1.2.3 HTTP Form Request and Response Model 24

1.3 DefiNitioNS 25
1.3] Ul ot 25
1.3.2 Financial Institution 25
1.3.3 Service ProVIdert 25
134 Client .. 25
13D SBIVEE o 25
136 SBIVICE . oot 25

0 T I T 26
138 Elemento 26
1.3.0 AQOIregate . .. 26
1.3.10 ReQUEST .. oo 27
1,300 RESPONSE . .ttt 27
13002 MBSSAGE . v it ittt et 27
1.3.13 TransaCtionottt e 27
1.3.14 Synchronization 27
1.3.15 MeESSage Sl ..ot 28

1.4 OFX VEISIONS . oottt e e e e e e e 28
15 CONVENTIONS . .o 30
Chapter 2 StruCTUIe e 33
2.0 HTT P Headers . ..o e e e e e e e 34
2.2 Open Financial Exchange File Format 34
2.2.1 OFXHEADER ... 36
2.2.2 VERSION .. 36
2.2.3 SECURITY i 36
2.2.4 OLDFILEUID and NEWFILEUID e 36

2.3 XML Details . ..o 37
2.3.1 ComplianCe e 37

OFX 2.2 Specification Public Draft 05/17/2016 iii

2.4 Open Financial Exchange XML Structure 37

241 OVEIVIEW . .ottt e e e 37
2.4.2 Case SENSItIVITY 37
2.4.3 Top LeVel ... 38
244 IMIBSSAES . . . o vttt e 38
2.4.5 Message Setsand VersionControl i, 40
2.4.6 TransaClionsttt 43
2.4.7 Synchronization Wrappert e 46
2.4.8 Message SEt WIapPelot 46

2.5 The Signon Message Setttt e e e e e e e e 46
2.5.1 Signon <SONRQ>and <SONRS> e 46
2.5.2 USERPASS Change <PINCHRQ><PINCHRS> 56
2.5.3 <CHALLENGERQ><CHALLENGERS> i, 58
2.5.4 <MFACHALLENGERQ> <MFACHALLENGERS> 59
2.5.5 Signon Message Set Profile Information 63
2.5.6 EXaMPIES . .o e 64

2.6 External Data SUPPOIt oo 71
2.7 Extensions to Open Financial Exchange 73
2.7.1 Private Tag EXIENSION i e e 73
2.7.2 <OFXEXTENSION> Aggregatet 74
2.7.3 <OFXEXTENSION>Example i i 75
2.8 Backward Compatibility with Pre-OFX 2.2Systems 75
2.8.1 ENAd Tag UsSage . ..ottt e 75
2.8.2 XML Compliant Header e 75
2.8.3 International SUPPOIt 76
2.8.4 Message Set Versioningttt 76
Chapter 3 Common Aggregates, Elements, and Data Types 75
3.1 CommON AgQgregatesot 75
3.1.1 lIdentification of Financial Institutions and Accounts 75
3.1.2 Punctuation in Certain User-Supplied Values 75
3.1.3 EChoiNg iN RESPONSES . ..o\ttt e e e 77
3.1.4 Balance Records <BAL> 77
3.1.5 Error Reporting <STATUS> e e e e 78
3.1.6 Common Aggregates relatedtoImagescc i, 79

3.2 CommoON EIEMENTS 82
3.2.1 Client-Assigned Transaction UID<TRNUID> 82
3.2.2 Server-Assigned ID <SRVRTID> e e 82
3.2.3 Financial Institution Transaction ID <FITID> 83
05/17/2016 OFX 2.2 Specification Public

Draft

3.2.4 Token <TOKEN> 85

3.2.5 Transaction AMOUnt <TRNAMT> i 85
3.2.6 Memo SMEMO> 85
3.2.7 Date Start and Date End <DTSTART><DTEND> 86
3.2.8 Common Data TYPES . ..ot 88
3.2.9 Amounts, Prices,and Quantities i 91
3.2.10 LanQUAagEot 92
3.2.11 Other BasiC Data TYPeSot e e e e e 92
Chapter 4 OFX SeCUItY e 93
4.1 Security Concepts in OF X .. i 93
4.1.0 Architecture 93
4.1.2 Security Goals ... 94
4.1.3 Security Standards 94
4.1.4 FIResponsibilities 95
4.1.5 Security Levels: Channel vs. Application 96

4.2 Security Implementation in OFX 97
4.2.1 Channel-Level Security i 97
4.2.2 Application-Level Securityc i e 99
Chapter 5 International Support i 105
5.1 Language and ENCOAINGt e e 105
5.2 Currency <CURDEF> <CURRENCY> <ORIGCURRENCY> 105
5.3 Country-Specific ElementValues i, 107
Chapter 6 Data Synchronization, 109
8.1 OVEIVIEW ..ot 109
6.2 Background 109
6.3 Data Synchronization Approach 110
6.4 Data Synchronization SpecifiCs i 111
B.4.1 TOKENS . .. 111
6.4.2 The Synchronization ProCesst 112
6.4.3 Synchronizable Objects i e 114
6.4.4 Token and Full Synchronization Summary 114

6.5 Conflict Detection and Resolution i 116
6.6 Synchronization Options i 116
6.6.1 Synchronization Errors i 118

OFX 2.2 Specification Public Draft 05/17/2016 v

6.7 Typical Server Architecture for Synchronization............................. 118

6.8 Typical Client Processing of Synchronization Results 120
6.9 Simultaneous CoONNECLIONS i 121
6.10 Synchronization Alternatives 121
6.10.1 File-Based ErrOor RECOVEIY ot e e e e e 122
6.10.2 Lite Synchronization 124
6.10.3 Relating Synchronization and Error Recovery 124
B.11 EXamples ... 126
Chapter 7 FIProfile e 129
7L OVEIVIBW ot 129
7.0l MESSAgE SB S ..ot 129
7.1.2 Version Control 130
7.1.3 Batchingand ROULING i e e e e e 131
7.1.4 Client Signon for Profile Requests 131
7.1.5 Profile Request <PROFRQ> i e e 132

7.2 Profile Response <PROFRS> e 133
7.2, 0 MESSAQE SOl . it 134
7.2.2 Signon Realms 136
7.2.3 StatuS COOBS . . .o\ttt 138

7.3 Profile Message Set Profile Information 138
Chapter 8 Activation & Account Information 139
8.l OVBIVIBW . o 139
8.2 Approaches to User Sign-Up with OFX i 139
8.3 Users and ACCOUNTSttt e e 140
8.4 Enrollment and Password Acquisition 140
8. L USEr DS .. 141
8.4.2 Enrollment Request <ENROLLRQ> 141
8.4.3 Enrollment Response <ENROLLRS> i, 142
8.4.4 Enrollment Status Codes i 143
8.4.5 EXamples 144
8.5 Account Information 145
8.5.1 Account Obfuscation i 146
8.5.2 Request KACCTINFORQ> it e 147
8.5.3 Response <ACCTINFORS> 147
8.5.4 Account Information Aggregate <ACCTINFO> 148
05/17/2016 OFX 2.2 Specification Public

Draft

8.5.5 StatuS COOBSt ottt 150

8.5.6 EXamMPIES ... 151

8.6 Service ACLIiVatioN 153
8.6.1 Activation Request <ACCTRQ> i e 153
8.6.2 Activation Response <ACCTRS> i e 155
8.6.3 StatuUS CodeSo 156
8.6.4 Service Activation Synchronization i 157
8.6.0 EXamMPIes 159

8.7 Name and Address Changescouiiiim e 160
8.7.1 Change User Information Request <CHGUSERINFORQ> 160
8.7.2 Change User Information Response <CHGUSERINFORS> 161
8.7.3 StatuUS COUES . . .ottt 161
8.7.4 Change User Information Synchronization 162

8.8 Signup Message Set Profile Information, 164
Chapter 9 Customer to Fl Communication 161
9.1 The E-Mail Message Set 161
0.2 E-Mail MESSA0ES . . ottt e e 161
9.2.1 Reqgular vs. Specialized E-Mail 162
0.2.2 Basic <MAIL> Aggregatecii i e 162
9.2.3 E-Mail <MAILRQ><MAILRS> 164
9.2.4 E-Mail Synchronization <MAILSYNCRQ> <MAILSYNCRS> 166
9.25 E-Mail Example 167
9.3 Get HTML Page . ..ottt 170
9.3.1 MIME Get Request and Response <GETMIMERQ> <GETMIMERS> 170
0.3.2 MIME EXample e 171
9.4 Message Setsand Profile 173
9.4.1 Message Set and MEeSSAgESottt 173
9.4.2 E-Mail Message Set Profile i, 173
Chapter 10 Recurring Transactionsiiiinnnnnennnnn. 175
10.1 CreatingaRecurringModel 175
10.2 Recurring Instructions <RECURRINST> i 176
10.2.1 Valuesfor <FREQ> 176
10.2.2 EXamples . ..o 177
10.3 Retrieving Transactions Generated by a RecurringModel 179
10.3.1 Modelsand SyncBehavior 179

OFX 2.2 Specification Public Draft 05/17/2016 Vii

10.4 Modifying and Canceling Individual Transactions 179

10.5 Modifying and Canceling RecurringModels 180
10.5.1 EXamMPIes . ..o 180
10.6 Expired ModElso 183
Chapter 11 Banking e 185
11.1 Consumer and BusinessBanking i i 185
1101 Loan Data . ..o et 185
11.2 CreditCard Data e e e 185
11.3 Common Banking Aggregatest 185
11.3.1 Banking Account <BANKACCTFROM> and <BANKACCTTO> 186
11.3.2 Credit Card Account <CCACCTFROM> and <CCACCTTO> 190
11.3.3 Bank Account Information <BANKACCTINFO> 191
11.3.4 Credit Card Account Information <CCACCTINFO>.................... 192
11.3.5 Transfer Information <XFERINFO> 192
11.3.6 Transfer Processing Status <XFERPRCSTS> 195
11.3.7 Loan Account <LOANACCTFROM> and <LOANACCTTO> 196
11.3.8 Loan Account Information <LOANACCTINFO> 197
11.3.9 Loan Transaction Amount <LOANTRNAMT> 201
11.3.10 Last Payment Info <LASTPMTINFO>, 201
11.4 Downloading Transactionsand Balances 202
11.4.1 Posted and Pending Transactionst 204
11.4.2 Bank Statement Download 205
11.4.3 Credit Card Statement Download i, 209
11.4.4 Statement Transaction <STMTTRN> and <STMTTRNP> 213
11.4.5 Loan Statement Downloadc i 220
11.4.6 Loan Statement Transaction <LOANSTTMTTRN> 223
11.4.7 Amortization Schedule Download 226
11.5 Statement Closing Information i i 229
11.5.1 Statement Closing Download i, 229
11.5.2 Non-Credit Card Statement<CLOSING> 231
11.5.3 Credit Card Statement Closing Request <CCSTMTENDRQ> 233
11.5.4 Credit Card Statement Closing Response <CCSTMTENDRS> 233
11.5.5 Loan Statement End Request <LOANSTMTENDRQ> 237
11.5.6 Loan Statement End Response <LOANSTMTENDRS> 237
11.5.7 StatusS COOBS . . .ottt e e e 238
11.5.8 Loan Closing <LOANCLOSING> e 239
11.6 Stop Check ... o 242
viii 05/17/2016 OFX 2.2 Specification Public

Draft

11.6.1 Stop Check Add 243

11.6.2 Status COOESottt e e 246
11.7 Intrabank Funds Transfer i i 247
11.7.1 Intrabank Funds Transfer Addition 248
11.7.2 Intrabank Funds Transfer Modification 251
11.7.3 Intrabank Funds Transfer Cancellation 254
11.8 Interbank Funds Transfer i 256
11.8.1 Interbank Funds Transfer—US i 256
11.8.2 Interbank Funds Transfer — International Usage 257
11.8.3 Interbank Funds Transfer Modification 260
11.8.4 Interbank Funds Transfer Cancellation 263
11.9 Wire Funds Transfer i e e 265
11.9.1 Wire Funds Transfer Addition 266
11.9.2 Wire Funds Transfer Cancellation 270
11.10 Recurring Funds Transfer i i e 272
11.10.1 Recurring Intrabank Funds Transfer Addition 272
11.10.2 Recurring Intrabank Funds Transfer Modification 275
11.10.3 Recurring Intrabank Funds Transfer Cancellation 278
11.10.4 Recurring Interbank Funds Transfer Addition 279
11.10.5 Recurring Interbank Funds Transfer Modification 282
11.10.6 Recurring Interbank Funds Transfer Cancellation 285
11.11 E-Mail and Customer Notification 287
11.11.1 Banking E-Mail 287
11.12.2 NoOtifications 290
11.11.3 Returned Check and Deposit Notification 291
11114 Loan E-Mail o 293
11.12 Data Synchronizationfor Banking 295
11.12.1 Data Synchronization for StopCheck 295
11.12.2 Data Synchronization for Intrabank Funds Transfers 296
11.12.3 Data Synchronization for Interbank Funds Transfers 299
11.12.4 Data Synchronization for Wire Funds Transfers 301
11.12.5 Data Synchronization for Recurring Intrabank Funds Transfers 303
11.12.6 Data Synchronization for Recurring Interbank Funds Transfers 305
11.12.7 Data Synchronization forBank Mail 307
11.12.8 Data Synchronization for LoanMail 309
11.13 Message Setsand Profile i e 311
11.13.1 Message Setsand MeSSagesottt t it 312
11.13.2 Bank Message SetProfile 319

OFX 2.2 Specification Public Draft 05/17/2016 iX

11.13.3 Credit Card Message SetProfile 321

11.13.4 Interbank Funds Transfer Message Set Profile 322
11.13.5 Wire Transfer Message Set Profile 323
11.13.6 Loan Message SetProfile 324
11,04 EXamMPIes ... 325
11.14.1 Statement Download 325
11.14.2 Intrabank Funds Transfer i 327
11.14.3 Stop Check o 329
11.14.4 Recurring Transfers 332
11145 LOANS .o oo 342
Chapter 12 Payments i 343
12.1 Consumer and BUSiNess Paymentscuiriirinennnnnnnnnnn.. 343
12.2 The Payee Model 343
12.2.1 Payee ldentifiers e 343
12.2.2 Payee ListS 344
12.2.3 Standard Payee ListSt 345
12.2.4 Identifying Payees 346
12.2.5 Side Effects of Payee Adds and Modifications 347
12.3 Identifiers Used in Payment Transactions 347
12.4 The Payment Life CycCle e 349
12.4.1 Payment Creation i 349
12.4.2 Payment Modification 349
12.4.3 Payment Status INnqUiry i 350
12.4.4 Payment Cancellation 350
12,45 Delayed Payee Matching i, 350
12,5 Common Payments Aggregates 351
12.5.1 Payments Account Information <BPACCTINFO> 351
12.5.2 Payment Information <PMTINFO>, 352
12.6 Payments FUNCLIONSt e 359
12.6.1 Payment Creation i i e 360
12.6.2 Payment Modification 363
12.6.3 Payment Cancellation i 367
12.6.4 Payment Status INQUITYt 369
12,7 RecUrring Payments e e e e 370
12.7.1 Creating a RecurringPayment 372
12.7.2 Recurring Payment Modification, 375
12.7.3 Recurring Payment Cancellation 379
05/17/2016 OFX 2.2 Specification Public

Draft

12.8 Payment Mail 381

12.8.1 Payment Mail Requestand Responsecciiiviiiinn. 381
12.8.2 Payment Mail Synchronization i, 384
12,9 Payee ListS ..ot 385
12.9.1 AddingaPayeetothePayee List 387
12.9.2 Payee Modification i 389
12.9.3 Payee Deletion 393
12.9.4 Payee List Synchronization i 395
12.10 Data Synchronization for Payments 397
12.10.1 Payment Synchronization i, 398
12.10.2 Recurring Payment Synchronization 400
12.10.3 DISCUSSION .\ttt e e e e e e e 402
12.11 Message Setsand Profile i e 403
12.11.1 Bill Pay Message Sets and MeSSagesuuiiiiinninnennn. 404
12.11.2 Bill Pay Message Set Profile <BILLPAYMSGSET> 406
12,02 EXAMPIES . 408
12.12.1 SchedulingaPayment i 408
12.12.2 Modifyinga Payment 412
12.12.3 CancelingaPayment e 415
12.12.4 Updating Payment Statusiiiiii i 416
12.12.5 Scheduling a RecurringPayment 417
12.12.6 Modifying a Recurring Payment iiiiiinannn. 419
12.12.7 Canceling a RecurringPayment iiiiieiennnnnn. 422
12.12.8 Adding aPayeetothePayee List i, 423
12.12.9 Synchronizing Scheduled Payments 425
Chapter 13 InVestments e 427
13.1 Types of Response Information 428
13.2 SUD-ACCOUNES .o e e 428
13.3 Units, Precision, and SigNst 428
13,3, UNItS oot 428
13.3.2 PreCiSioNn 429
13,33 SIgNS ottt 429
13.4 Bank and Investment Transactionsc..uiiiriininnennnnenns 430
135 Money Market FUNAS o e 430
13.5.1 Separate Account at the Financial Institution 430
13.5.2 Sweep Account Within an Investment Account 431
13.5.3 Position Within an Investment Account 431

OFX 2.2 Specification Public Draft 05/17/2016 Xi

13.6 INVESIMENT ACCOUNTS . ..\t e e e e e e 431

13.6.1 Specifying the Investment Account <INVACCTFROM> 431
13.6.2 Investment Account Information <INVACCTINFO> 432
13.6.3 Brokerage, Mutual Fund, and 401K Accounts 433
13.7 Investment Message Setsand Profile i 434
13.7.1 Investment Statement Download 435
13.7.2 Security Information 438
13.8 INVeStMENt SECUNITIESo\t 441
13.8.1 Security Identification <SECID> i 441
13.8.2 Security LISt ReqUESt o 441
13.8.3 Security LiSt RESPONSEo 443
13.8.4 Security LiSt<SECLIST> 444
13.8.5 Securities Information 445
13.9 Investment Statement Download 451
13.9.1 Investment Statement Request i 451
13.9.2 Investment Statement ReSpoONSet 454
13.9.3 401(K) Account Information i e 478
13.10 Investment Statement Closing Information 484
13.10.1 Request <INVSTMTENDRQ>t 485
13.10.2 Response <INVSTMTENDRS> i 485
13.10.3 Investment Statement <INVCLOSING> 486
13.11 Investment E-Mail 487
13.11.1 Investment E-Mail Request and Responsecovvv.n. 487
13.11.2 Investment E-Mail Synchronization 489
13.12 Complete EXample 491
13.13 Complete 401(K) EXample e 496
Chapter 14 Bill Presentment 503
141 OVEIVIEW ..ot 503
14.1.1 Bill Presentment Model 503
14.1.2 Servers and Message SetsSo e 503
14.2 Biller DireCtOry 504
14.2.1 Client Signon to the Biller Directory Server, 504
14.2.2 Search ArgUMENTSo 504
14.2.3 Identification of Bill Publishers 504
14.2.4 Find Biller Request <FINDBILLERRQ>, 505
14.2.5 Find Biller Response <FINDBILLERRS> 507
14.2.6 Status Codes <FINDBILLERRS> 509

xii 05/17/2016 OFX 2.2 Specification Public

Draft

14.2.7 Account Number Validation 510

14.2.8 Biller Payment Restrictions i 511
14.3 CUSTOMET SIQNUP .ottt et e e e e e e e 512
14.3.1 Enrollment 513
14.3.2 ACCOUNT INQUITY ..ot e 513
14.3.3 Service ACtIiVation 516
14.3.4 Service Status Update for Groups of Customers 518
14.4 Bill DeliVery ... o 522
14.4.1 Bill Delivery ProCessot 522
14.4.2 Bill ListRetrieval 522
14.4.3 Bill Detail Retrieval 536
14.4.4 Table Structure Definition i 540
14.45 Delivery Notification 542
14.4.6 Bill Status Modification 545
14,5 Bill Payment 546
145.1 Remittance Information 546
14.5.2 Payee Identification i 546
14.6 Bill Presentment E-Mail 547
14.6.1 Bill Presentment Mail Request <PRESMAILRQ> 548
14.6.2 Bill Presentment Mail Response <PRESMAILRS> 548
14.6.3 Status Codes <PRESMAILRS> e 549
14.6.4 Request <PRESMAILSYNCRQ> it 550
14.6.5 Response <PRESMAILSYNCRS>. i e 551
14.7 Message Setsand Profile 552
14.7.1 Message Sets and MesSSagesottt 552
14.7.2 Biller Directory Message Set Profile 556
14.7.3 Bill Delivery Message Set Profile 556
14.8 Bill Presentment Examples i 558
14.8.1 Find Biller Examples 558
14.8.2 Enrollment Examples i 565
14.8.3 Activation Example 567
14.8.4 Bill Delivery EXamples e 569
Chapter 15 ImMages 579
15,1 OVeIVIBW . oot 579
15.2 Image Download Optionst 579
15.2.1 Image Retrieval Method # 1. Reference Type OPAQUE 580
15.2.2 Image Retrieval Method # 2: Reference Type URL 582

OFX 2.2 Specification Public Draft 05/17/2016 xiii

15.2.3 Image Retrieval Method # 3: Reference Type FORMURL 583

15.3 Message Setsand Profile 584
15.3.1 Image Message Set Request MeSsageso 584
15.3.2 Image Message Set Response Messages ... 584
15.3.3 Image Message Set Profile 584
15,4 EXaMPIES ..o e 586
15.4.1 Transaction Image Example i 586
15.4.2 Statement Closing Image Example 590
15.4.3 Transaction FORMURL Example 593
15.4.4 Profile Request and Response Showing Image Support 595
Chapter 16 Automatic 1-Way OFX i 599
16.1 ReqUESTORX FOIM . .o e 599
16.1.1 User Credentials <USERID>, <USERPASS>, <CRED2>, <CRED3>,

SCLIENTUID> .. e e e e e 600
16.1.2 Challenge QUeStion ANSWELISttt e e 600
16.1.3 Date Start and Date End <DTSTART>,<DTEND> 601
16.1.4 Include Flags <INCTRAN>, <INCPOS>, <INCBAL> 601
16.1.5 Account ID <ACCTID> 601
16.1.6 Account Type <ACCTTYPE> e 602
16.2 HTTP FOIrmM ReSPONSEttt e e e e e 603
16.2.1 Response to RequestOFX FOrm i e e 603
16.2.2 Status REeSPONSES . .. oottt e 604
16.2.3 Challenge ReSPpONSEt e e 604
16.3 Automatic 1-Way URL e 605
16.4 Redirection and COOKIESttt e e 605
16,5 EXamMPIes ... 606
16.5.1 Example - Failed Multiple Statements Request 606
16.5.2 Example - MFA Challenge Response 606
16.5.3 Banking and Credit Card Statements i .. 607

16.5.4 Example - Banking Accounts with Multiple Accounts and Ampersand in
PaSSWOId . .. 612
16.5.5 Example - Banking, Balanceonly o 614
16.5.6 Investment Statement, Balances and Positions 616
Appendix A Status CodesSttt 623
Appendix B Suggested Name Values for the Banking <BALLIST> 631
B.1 Usage Field Values 631
Xiv 05/17/2016 OFX 2.2 Specification Public

Draft

B.2 Name and Description Table 631

Appendix C Change History 635
C.l OFX 1610 2.0 .ottt e e e 635
C.1.1 Specification Changes by Chapter 635
C.2 OFX 2,010 2.0.0 ..ottt e 638
C.2.1 Specification Changesby Chapter 639
C.3 OFX 2.0.110 2.0.2 oottt 642
C.3.1 Specification Changesby Chapter 642
C.3.2 DTD Changesttt e e e e 643
C.h OFX 2.0.210 2.0 .. oottt e e 644
C.4.1 Specification Changesby Chapter i, 645
C.5 OFX 2. 10 2. 0.0 . o 648
C.5.1 Specification Changesby Chapter 648
C.6 OFX 21110 2.2 . . oottt e e e e e e 650
C.6.1 Specification Changes by Chapter 650

OFX 2.2 Specification Public Draft 05/17/2016 XV

XVi 05/17/2016 OFX 2.2 Specification Public
Draft

CHAPTER 1 OFX 2.2 SPECIFICATION PUBLIC DRAFT
OVERVIEW

1.1 Introduction

Open Financial Exchange is a broad-based framework for exchanging financial data and instructions
between customers and their financial institutions. It allows institutions to connect directly to their
customers without
requiring an
intermediary.

INSTITUTIONS
CUSTOMERS Financial Institulions
Consumers P> Financial Advizors
Families Govammant Agencias
Taxpayers Marchants and Businasses
Small Businazzas Imarmation Providera
Transaction Frocassors

Open Financial Exchange is an open specification that anyone can implement: any financial institution,
transaction processor, software developer, or other party. It uses widely accepted open standards for data
formatting (such as XML), connectivity (such as TCP/IP and HTTP), and security (such as SSL).

Open Financial Exchange defines the request and response messages used by each financial service as well
as the common framework and infrastructure to support the communication of those messages. This
specification does not describe any specific product implementation.

OFX 2.2 Specification Public Draft 05/17/2016 17

1.1.1 Design Principles

The following principles were used in designing Open Financial Exchange:

Broad Range of Financial Activities — Open Financial Exchange provides support for a broad
range of financial activities. Open Financial Exchange 2.2 specifies the following services:

» Bank statement download

» Credit card statement download

» Funds transfers including recurring transfers

» Loan statement download

e Consumer payments, including recurring payments
« Business payments, including recurring payments

« Brokerage and mutual fund statement download, including transaction history, current holdings, and
balances for normal, and 401(K) accounts

 Bill presentment and payment

« Tax form download, including 1095, 1098, 1099, and W2 (presented as annual addenda).
« Image download for banking, credit cards, investments and loans

¢ Automatic 1-Way OFX

Broad Range of Financial Institutions — Open Financial Exchange supports communication with
a broad range of financial institutions (FIs), including:

« Banks

» Brokerage houses

¢ Merchants

¢ Processors

» Financial advisors

» Government agencies

Broad Range of Front-End Applications — Open Financial Exchange supports a broad range of
front-end applications, including Web-based applications, covering all types of financial activities
running on all types of platforms.

Extensible — Open Financial Exchange has been designed to allow the easy addition of new services.
Future versions will include support for many new services.

Open - This specification is publicly available. You can build client and server applications using the
Open Financial Exchange protocols independent of any specific technology, product, or company.

Multiple Client Support — Open Financial Exchange allows a user to use multiple client applications
to access the same data at a financial institution. With the popularity of the World Wide Web, customers
are increasingly more likely to use multiple applications—either desktop-based or Web-based—to

18

1.1 Introduction

perform financial activities. For example, a customer can track personal finances at home with a
desktop application and occasionally pay bills while at work with a Web-based application. The use of
data synchronization to support multiple clients is a key innovation in Open Financial Exchange.

Robust — Open Financial Exchange will be used for executing important financial transactions and for
communicating important financial information. Assuring users that transactions are executed and
information is correct is crucial. Open Financial Exchange provides robust protocols for error recovery.

Secure — Open Financial Exchange provides a framework for building secure online financial
services. In Open Financial Exchange, security encompasses authentication of the parties involved, as
well as secrecy and integrity of the information being exchanged including various MFA solutions.

Batch & Interactive — The design of request and response messages in Open Financial Exchange is
for use in either batch or interactive style of communication. Open Financial Exchange provides for
applying a single authentication context to multiple requests in order to reduce the overhead of user
authentication.

International Support — Open Financial Exchange is designed to supply financial services
throughout the world. It supports multiple currencies, country-specific extensions, and different forms
of encoding such as UNICODE.

Platform Independent —Open Financial Exchange can be implemented on a wide variety of front-
end client devices. It also supports a wide variety of Web-based environments and messaging
frameworks, including those using SOAP, HTML, Java, JavaScript, or ActiveX. Similarly on the back-
end, Open Financial Exchange can be implemented on a wide variety of server systems, including those
running UNIX, Windows NT, or OS/2.

Transport Independent — Open Financial Exchange is independent of the data communication
protocol used to transport the messages between the client and server computers. Open Financial
Exchange 2.2 uses HTTP.

OFX 2.2 Specification Public Draft 05/17/2016 19

1.2 Open Financial Exchange at a Glance

The design of Open Financial Exchange is as a client and server system. An end-user uses a client
application to communicate with a server at a financial institution. The form of communication is requests
from the client to the server and responses from the server back to the client.

Open Financial Exchange uses the Internet Protocol (IP) suite to provide the communication channel
between a client and a server. IP protocols are the foundation of the public Internet and a private network
can also use them.

1.2.1 Data Transport

Clients use the HyperText Transport Protocol (HTTP) to communicate to an Open Financial Exchange
server. The World Wide Web throughout uses the same HTTP protocol. In principle, a financial institution
can use any off-the-shelf web server to implement its support for Open Financial Exchange.

To communicate by means of Open Financial Exchange over the Internet, the client must establish an
Internet connection. This connection can be a dial-up Point-to-Point Protocol (PPP) connection to an
Internet Service Provider (ISP) or a connection over a local area network that has a gateway to the Internet.

Clients use the HTTP POST command to send a request to the previously acquired Uniform Resource
Locator (URL) for the desired financial institution. The URL presumably identifies a Common Gateway
Interface (CGI) or other process on an FI server that can accept Open Financial Exchange requests and
produce a response.

20 1.2 Open Financial Exchange at a Glance

The POST identifies the data as being of type application/x-ofx. Use application/x-ofx as the return type as
well. Fill in other fields per the HTTP 1.0 specification. Here is a typical request:

POST http://www.fi.com/ofx.cgi HTTP/1.0HTTP headers
User-Agent:MyApp 5.0

Content-Type: application/x-ofx

Content-Length: 1032

<I--XML declaration-->
<?xml version="1.0"?>

<1--OFX declaration-->

<?0FX OFXHEADER="200" VERSION="220"" SECURITY=""NONE" OLDFILEUID=""NONE"
NEWFILEUID=""NONE"?>

<!--OFX request-->

<OFX>

... Open Financial Exchange requests ...
</OFX>

Ablank line defines the separation between the HTTP headers and the start of the Open Financial
Exchange headers.

The structure of a response is similar to the request, with the first line containing the standard HTTP result,
as shown next. The content length is given in bytes.

HTTP 1.0 200 OK HTTP headers

Content-Type: application/x-ofx
Content-Length: 8732

<!1--XML declaration-->
<?xml version=""1.0"7>

<I--OFX declaration-->

<?0FX OFXHEADER="200" VERSION="220"" SECURITY=""NONE"™ OLDFILEUID=""NONE™"
NEWFILEUID=""NONE"'?>

<I--OFX response-->
... Open Financial Exchange responses ...
</OFX>

OFX 2.2 Specification Public Draft 05/17/2016 21

1.2.2 Request and Response Model

The basis for Open Financial Exchange is the request and response model. One or more requests can be
batched in a single file. This file typically includes a signon request and one or more service-specific
requests. An FI server will process all of the requests and return a single response file. This batch model
lends itself to Internet transport as well as other off-line transports. Both requests and responses are plain
text files, formatted using a grammar based on Extensible Markup Language (XML).

Here is a simplified example of an Open Financial Exchange request file. (This example does not show the
Open Financial Exchange headers and the indentation is only for readability.) For complete details, see the
more complete examples throughout this specification.

<OFX> <I-- Begin request data -->
<SIGNONMSGSRQV1>
<SONRQ> <I-- Begin signon -->

<DTCLIENT>20051029101000</DTCLIENT><!-- Oct. 29, 2005, 10:10:00
am -->

<USERID>MyUser 1D</USERID> <!-- User ID -->

hole) <USERPASS>MyPassword</USERPASS> <!-- Password (SSL encrypts
whole) -->

<LANGUAGE>ENG</LANGUAGE> <I-- Language used for text -->
<FI> <I-— ID of receiving institution
-——>
<ORG>NCH</0ORG> <I-- Name of ID owner -->
<FID>1001</FID> <I-- Actual ID -—>
</FI>
<APP ID>MyApp</APPI1D>
<APPVER>0500</APPVER>
</SONRQ> <I-- End of signon -->
</S1GNONMSGSRQV1>
<BANKMSGSRQV1>
<STMTTRNRQ> <I-- First request in file -->
<TRNUID>1001</TRNUID>
<STMTRQ> <I-- Begin statement request -->
<BANKACCTFROM> <I-- Identify the account -->
D o> <BANKID>121099999</BANKID> <!-- Routing transit or other FI

<ACCTID>999988</ACCTID> <I-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <I-- End of account ID -->
<INCTRAN> <I-- Begin include transaction --
>
<INCLUDE>Y</ INCLUDE> <I-- Include transactions -->

22 1.2 Open Financial Exchange at a Glance

</ INCTRAN> <l-- End of include transaction -

->
</STMTRQ> <I-- End of statement request -->
</STMTTRNRQ> <I-—- End of First request -->
</BANKMSGSRQV1>
</0OFX> <I-—- End of request data -->

The response format follows a similar structure. Although a response, such as a statement response,
contains all of the details of each transaction, each individual detail of the statement is identified using
tags.

The key rule of Open Financial Exchange syntax is that each tag is either an element or an aggregate. Data
follows its element tag. An aggregate tag begins a compound tag sequence, which must end with a
matching tag; for example, <AGGREGATE> ... </AGGREGATE>.

The file sent by Open Financial Exchange does not require any white space between tags.

White space following a tag delimiter (>), following an element value, or preceding a tag delimiter (<)
should be ignored. White space within an element value (i.e. not preceding, not following) is significant. If
white space is desired preceding or following an element value, this is achieved using the CDATA
wrapper. If more than one white space element is needed, then multiple macros should be utilized.
See section 2.3.1.1.

OFX 2.2 Specification Public Draft 05/17/2016 23

1.2.3 HTTP Form Request and Response Model

OFX 2.2 also supports form requests to a website supporting an HTTP form request and response model.
This is discussed in Chapter 16, "Automatic 1-Way OFX".

Having authenticated the request, the web site responds with an OFX download, just as if the customer had
manually entered the OFX request at the site.

Here is a typical successful response:

HTTP 1.0 200 OK HTTP headers
Content-Type: application/x-ofx
Content-Length: 8732

<?0FX OFXHEADER="200" VERSION="220"" SECURITY=""NONE" OLDFILEUID=""NONE"
NEWFILEUID=""NONE"'?>

<OFX>
... Open Financial Exchange response following the OFX specification...
</OFX>

24 1.2 Open Financial Exchange at a Glance

1.3 Definitions

The following sections detail definitions that hold within the context of OFX.

1.3.1 User

User refers to the person or entity interfacing with the OFX client to cause it to generate OFX requests.

1.3.2 Financial Institution

Financial Institution (FI) refers to the institution with which the user has a direct relationship. Generally
this means a bank, but in many cases it may be an institution providing non-banking financial services.

1.3.3 Service Provider

Service Provider (SP) refers to an institution with which the user does not have a direct relationship.
Generally, such an institution is subcontracted by the FI to provide specific services to the customer on
behalf of the FI.

1.3.4 Client

An OFX client is the software that generates OFX requests, receives responses and processes them. This
may be a personal finance manager, a web browser running locally interactive code (such as with a Java
applet or ActiveX control), a Web server, a proxy, or one of many other possibilities.

1.3.5 Server

An OFX server is the software that receives OFX requests, processes them, and generates OFX responses.

1.3.6 Service

A service is a collection of related transactions. For example, the BANKSVC service encompasses
banking transactions such as requesting bank statements, initiating stop checks, initiating wire transfers,
etc.

In OFX 1.x and 2.x, services are used directly only when describing or changing the general options
available to a particular customer. Other collections of transactions instead use the concept of Message
Sets as described in section 1.3.15.

OFX 2.2 Specification Public Draft 05/17/2016 25

1.3.7 Tag

Tag is the generic name for either a start tag or an end tag. A start tag consists of an element or aggregate
name surrounded by angle brackets. An end tag is the same as a start tag, with the addition of a forward
slash immediately preceding the name. For example, the start tag for the aggregate named FOO looks like
this:

<FO0>
The end tag for the same aggregate looks like this:

</F00>

1.3.8 Element

An OFX document contains one or more elements. An element is some data bounded by a leading start tag
and a trailing end tag. For example, an element named BAZ, containing data “bar,” looks like this:

<BAZ>bar</BAZ><!-- An element ended by its own end tag-->

An OFX element must contain data (not just white space) and may not contain other elements. This is a
refinement to the XML definition of an element which is more generic. An XML element containing other
elements is defined in OFX as an aggregate. OFX specifically disallows empty elements and elements
with mixed content.

1.3.9 Aggregate

An aggregate is a collection of elements and/or other aggregates. An aggregate may not contain any data
itself, but rather contains elements containing data, and/or recursively contains aggregates.

OFX includes very few empty aggregates and clients and servers should not send an aggregate without
content. In general, the entire aggregate should be left out of a request or response file when its (optional)
content is missing. The few exceptions to these rules (such as <SECLISTRS>, described in section
13.8.3.3) are called out in the relevant sections of this document.

26 1.3 Definitions

1.3.10 Request

A request is information sent by the client. An OFX request file is the entire XML file sent by the client,
including the OFX declaration. An individual request generally is an aggregate whose name ends in RQ.

1.3.11 Response

A response is information sent by the server. An OFX response file is the entire XML file sent by the
server, including the OFX declaration. An individual response generally is an aggregate whose name ends
in RS.

When elements and aggregates from the request also appear in the corresponding response they are
generally intended to echo the values from a request in the response (this enables client matching with the
request, for example). While the server should not modify data in individual elements when echoing,
elements not found in a particular request may be added in the response. These situations (such as adding a
<PAYEELSTID> when creating a <PMTRQ> response) are described as they arise. OFX also includes a
few specific situations requiring different information to be sent and returned in corresponding elements of
a request/response pair. Again, these exceptions (such as the <TOKEN> element in a sync request and
response) are described as they arise.

1.3.12 Message

A message is the unit of work in OFX. It refers to a request and response pair. For example, the message to
download a bank statement consists of the request <STMTRQ> and the response <STMTRS>.

1.3.13 Transaction

A transaction consists of a message and its associated transaction wrappers. The transaction request
wrapper contains a unique transaction identifier used to prevent ambiguity in matching a particular
response to its associated request, and the request aggregate. The transaction response wrapper contains a
status aggregate, the transaction identifier sent in the request, and (if the transaction was successful) the
response aggregate. For details on the use of transaction wrappers, see section 2.4.6.

1.3.14 Synchronization

For messages subject to synchronization (see Chapter 6, "Data Synchronization"), an added layer of
aggregates is also part of a message definition: a synchronization request and response. These add a token
and, in some cases, other information. Synchronization requests may encapsulate embedded transactions
that execute only when certain conditions are true at the server (either the containing synchronization
request completed without error or the request had no errors and the client was up to date).

OFX 2.2 Specification Public Draft 05/17/2016 27

1.3.15 Message Set

Message sets are collections of messages. Generally they form all or part of a service (as defined in section
1.3.6). OFX utilizes these smaller groupings when wrapping request or response transactions, profiling
server support for the wrappers and describing individual messages. The BANKSVC service, for example,
is broken into the BANKMSGSET, CREDITCARDMSGSET, INTERXFERMSGSET and
WIREXFERMSGSET message sets.

Please refer to section 2.4.5 , "Message Sets and Version Control" for additional information about
message sets.

1.4 OFX Versions

There are several distinct versions of OFX clients and servers.

Version 1.0.2 supports any or all version 1 message sets except Bill Presentment. These message sets are
defined by the OFX 1.0.2 Document Type Definition (DTD), which is used for parsing. Applications that
conform to this version are referred to as 1.0.2 clients and 1.0.2 servers.

Version 1.0.3 extends 1.0.2 by adding support for Muli-Factor Authentication.

Version 1.5.1 supports all version 2 message sets, Bill Presentment, and all version 1 message sets.
Because it supports all message sets, the OFX 1.5.1 DTD can be used to create and support OFX 1.0.2 and/
or OFX 1.5.1 clients and servers.

Version 1.6 DTD supports all message sets available in the OFX 1.5.1 DTD. It adds specific enhancements
to some of the aggregates. All of those enhancements are optional and should not be used by a client unless
the server indicates support in its FI Profile. Applications that conform to this version are referred to as 1.6
clients and 1.6 servers. The OFX 1.6 DTD fully incorporates the OFX 1.0.2 and 1.5.1 message sets, so it
can be used to support both 1.0.2 and 1.5.1 applications.

Version 2.0 supports all V1 message sets available in the OFX 1.6 DTD. It adds support for 401(k)
investment statement download. The Tax OFX addendum to OFX 2.0 adds support for 1099 and W2
download. An important change for 2.0 is that it adds the requirement of XML compliance to OFX 2.0
clients and servers. See chapter 2 for more information.

Version 2.0.1 extends 2.0 by adding support for investment transaction reversals, by adding the capability
to include an arbitrary list of balances in statement and credit card statement downloads, and by adding the
ability to specify bill publisher information in the payment message.

Version 2.0.2 adds clarification to 2.0.1 as well as fixes some minor documentation bugs.

Version 2.0.3, an extension of 2.0.2, adds Multi-Factor Authentication (MFA) to the Signon Message Set
and changes to the Profile Message Set to support MFA.

28 1.4 OFX Versions

Version 2.1 extends 2.0.2 by adding support for loans, as well as image download for banking, credit cards,
investments and loans. Automatic 1-Way OFX is also new; see in Chapter 16 for details. Appendix C.4
contains a full description of changes made for OFX 2.1.

Version 2.1.1 adds Multi-Factor Authentication (MFA) to the Signon Message Set and changes to the
Profile Message Set to support MFA. These are virtually the same MFA changes that are added to versions
1.0.3and 2.0.3.

Version 2.2.0 extends 2.1.1 by providing additional security options, multiple new data elements and
aggregates to make OFX more viable for aggregation, and multiple new implementation methods for
existing features to reduce complexity and coordination between providers and developers. Additionally
the main OFX Schema and the OFX Tax Schema, which have diverged since the 2.1.1 release, were
reconciled in the 2.2 release (up to the 2015 tax year). Appendix C.6 contains a full description of the
changes made for OFX 2.2.

For an overall description of OFX message sets, see section 2.4.5.3.

OFX 2.2 Specification Public Draft 05/17/2016 29

1.5 Conventions

The conventions used in the element and aggregate descriptions include the following:

Required elements and aggregates are in bold. Regular face indicates elements and aggregates that are
optional. Required means that a client must always include the element or aggregate in a request, and a
server must always include the element or aggregate in a response.

Required elements and aggregates occur once unless noted as one or more in the description, in which
case the specification allows multiple occurrences.

Optional elements and aggregates occur once if present unless noted as zero or more in the description,
in which case the specification allows multiple occurrences.

Character fields are identified with a data type of “A-n", where n is the maximum number of allowed
Unicode characters.

Note: n refers to the number of characters in the resultant string. Each multi-byte or encoded
character counts as a single character. UTF-8 encodes “high” Latin-1 characters (decimal 128-
255) using two bytes, and double-byte characters using three bytes. In addition, XML encodes
ampersands, less-than symbols, greater-than symbols, and spaces (where required) using multi-
character escape strings (see section 2.3.1.1). Therefore, an element of type A-40 may require
more than 40 bytes in a UTF-8-encoded XML stream.

N-n identifies an element of numeric type where n is the maximum number of characters in the value.
Values of this type are generally whole numbers, but the data type allows negative numbers. OFX
includes a few fixed-position numeric values (such as <APPVER>, see section 2.5.1.5) called out in the
text. In all cases, elements of this type may contain only the characters 0 through 9 and - (hyphen, the
negative sign indicator). So an element of type “N-6" may take values from -99999 to 999999. The
value “0000000” would be illegal for an N-6 element. White space is not allowed within the numeric
value. Leading zeroes are allowed, but discouraged except where noted in the text. For example, a
<MIN> element containing zero might be sent as “<MIN>0", “<MIN>00", “<MIN> 0", but not
“<MIN>0 0".

Common value types, such as a dollar amount, are referenced by name. Chapter 3, "Common
Adggregates, Elements, and Data Types" lists value types that are referenced by name.

Explanatory information is in italics

Tag Description

<REQUIRED> Required element or aggregate (1 or more)

<REQUIRED2> Required element or aggregate that occurs only once

<OPTIONAL> Optional element or aggregate; this element or aggregate can occur
multiple times (0 or more)

<SPECIFIC> Values are A, B, and C

<ALPHAVALUE> Takes a value up to 32 characters in length, A-32

30 1.5 Conventions

Description

Explanatory text Hopefully useful information.

OFX 2.2 Specification Public Draft 05/17/2016 31

32

1.5 Conventions

CHAPTER 2 STRUCTURE

This chapter describes the basic structure of an Open Financial Exchange request and response. Structure
includes headers, basic syntax, and the Signon request and response. This chapter also describes how Open
Financial Exchange encodes external data, such as bit maps.

Open Financial Exchange data consists of a declaration plus one Open Financial Exchange data block.
This block consists of a signon message and zero or more additional messages. When sent over the Internet
using HTTP, standard HTTP and (optionally) multipart MIME headers and formats surround the Open
Financial Exchange data. A simple file that contained only Open Financial Exchange data would have the
following form:

HTTP headers

MIME type application/x-ofx

XML declaration

Open Financial Exchange declaration
Open Financial Exchange XML block

A more complex file that contained additional Open Financial Exchange data would have this form:
HTTP headers

MIME type multipart/x-mixed-replace; boundary =XYZZY24x7
--XYZZY24x7

MIME type application/x-ofx

XML declaration

Open Financial Exchange declaration

Open Financial Exchange XML block

--XYZZY24x7
MIME type image/jpeg
F1 logo
--XYZZY24X7--

Version 1.0.2 of the Open Financial Exchange specification did not specify how to properly separate the
various components of an OFX request. In particular, separation of the HTTP headers, the MIME
attachments, the OFX declaration, the OFX header elements, and the OFX SGML block.

OFX 1.0.2 clients used a mix of LF and CRLF constructs and OFX 1.0.2 servers handled either linefeed
(LF) or carriage return/line feed (CRLF), but not often both. In the future, it is expected that 1.0.2 servers
will be upgraded to handle both CRLF and LF.

OFX 2.2 clients and servers are expected to follow standard XML 1.0 conventions regarding the use of CR
and LF. XML 1.0 is an accepted World Wide Web Consortium (W3C) recommendation.

http://www.w3.0rg (W3C home page)
http://www.w3.0rg/TR/REC-xml (XML 1.0 recommendation)

OFX 2.2 Specification Public Draft 05/17/2016 33

http://www.w3.org

The text has been included below for ease of reference:

2.1 HTTP Headers

Data delivered by way of HTTP places the standard HTTP result code on the first line. HTTP defines a
number of status codes. Servers can return any standard HTTP result. However, Fls should expect clients
to collapse these codes into the following three cases:

Code Meaning Action

200 OK The request was processed and a valid Open Financial Exchange result is
returned.

400s Bad request The request was invalid and was not processed. Clients will report an internal

error to the user. Invalid requests include: general HTTP transport errors, XML
formatting errors, invalid OFX syntax, and invalid data values. This error should
not appear for request files the server is able to parse.

500s Server error The server is unavailable. Clients should advise the user to retry shortly.

Note: The server must return a code in the 400s for any problem that prevents it from
processing the request file. Processing problems include failures relating to security,
communication, parsing, or the Open Financial Exchange declaration (for example, the client
requested an unsupported language). For content errors such as wrong USERPASS or invalid
account, the server must return a valid Open Financial Exchange response along with code 200.
If a communication time-out error occurs while an OFX server and a back-end server are
communicating to fill a request, then the server MUST return a code in the 500s.

Open Financial Exchange requires the following HTTP standard headers:

Value Explanation
Content- application/x- | The MIME type for Open Financial Exchange
type ofx
Content- length Length of the data after removing HTTP headers
length

When responding with multipart MIME (likely only if the request included a <GETMIMERQ> request),
the main type will be multipart/x-mixed-replace; one of the parts will use application/x-ofx.

2.2 Open Financial Exchange File Format

The contents of an Open Financial Exchange file consists of simple declarations followed by contents
defined by those declarations.

34 2.1 HTTP Headers

The standard XML declaration must come first. This Processing Instruction (PI) includes an option to
specify the version of XML being used, and may include options to show such things as the encoding
declaration, and the standalone status of the document.

The XML declaration takes the following form:

Note: White space requirements are not imposed by this specification beyond the standard
XML 1.0 conventions; therefore, the white space formatting shown in these examples is not
required.

The encoding and standalone attributes are shown below for completeness and may be omitted.
See XML 1.0 for a description of the default handling for these attributes.

<?xml version="1.0" encoding=""UTF-8" standalone="no"'?>

The OFX declaration must come next in the file. This PI identifies the contents as an Open Financial
Exchange file and provides the version number of the Open Financial Exchange declaration itself (not the
version number of the contents). The Open Financial Exchange PI contains the following attributes:

OFXHEADER
VERSION
SECURITY
OLDFILEUID
NEWFILEUID

All these attributes are required. "NONE" should be returned if client or server does not make use of an
individual attribute, e.g., OLDFILEUID="NONE".

The entire declaration takes the form:

<?0FX OFXHEADER="200" VERSION="220"" SECURITY=""NONE" OLDFILEUID=""NONE"
NEWFILEUID=""NONE"?>

OFX 2.2 Specification Public Draft 05/17/2016 35

For information about each of the OFX declaration attributes, refer to the following sections.

2.2.1 OFXHEADER

OFXHEADER specifies the version number of the Open Financial Exchange declaration.

The OFXHEADER value changes its major number only if an existing client is unable to process the new
header. This can occur because of a complete syntax change in a header, or a significant change in the
semantics of an existing header element.

Because OFX 2.2 uses an XML compliant header which significantly differs from the 1.x header, the value
of OFXHEADER is now 2.0 (OFXHEADER="200").

2.2.2 VERSION
VERSION specifies the version number of the following OFX data block.

The OFX 2.2 DTD supports the following:
» All message sets found in OFX 2.1.1 plus all OFX 2.2 enhancements and additions

For OFX 2.2 the accepted value for VERSION is 220.

2.2.3 SECURITY

SECURITY defines the type of application-level security, if any, that is used for the <OFX> block. The
values for SECURITY can be NONE or TYPEL.

For more information about security, refer to Chapter 4, "OFX Security."

2.2.4 OLDFILEUID and NEWFILEUID

NEWFILEUID uniquely identifies this request file. The NEWFILEUID, which clients must send with
every request file and which servers must echo in the response, serves two purposes:

» Servers can use the NEWFILEUID to quickly identify duplicate request files.

« Clients and servers can use NEWFILEUID in conjunction with OLDFILEUID for file-based error
recovery. For more information about using file-based error recovery or lite synchronization, see
Chapter 6, "Data Synchronization."”

OLDFILEUID is used together with NEWFILEUID only when the client and server support file-based
error recovery. OLDFILEUID identifies the last request and response that was received and processed by
the client.

36 2.2 Open Financial Exchange File Format

2.3 XML Details

2.3.1 Compliance

XML is the basis for Open Financial Exchange 2.0 and later. To enable OFX clients and servers to use off-
the-shelf XML parsers, OFX 2.2 is fully XML compliant. Therefore, in contrast to the guidelines for OFX
1.6 and below, unrecognized tags may not be present. If clients and servers wish to extend OFX with
private tags and true DTD validation is necessary, a modified OFX DTD which contains those new tags
must be passed along with the OFX document.

2.3.1.1 Special Characters

Special characters in OFX 2.2 are handled according to the XML standard. Characters such as ’<’, ’>’,
’&’, 7, and """ are predefined in XML. Other character strings with many special characters should be
enclosed in a CDATA section.

Note: The space macro () should be used if leading or trailing blanks are meant to be
preserved as part of a data element’s value. Alternatively, a CDATA block may be used to force
the handling of leading or trailing spaces. No special formatting of space characters in the
middle of an element’s text value is needed.

2.4 Open Financial Exchange XML Structure

2.4.1 Overview
Open Financial Exchange hierarchically organizes request and response blocks:

Top Level <OFX>

Message Set and Version <xxxMSGSVn>
Synchronization Wrappers <xxXXSYNCRQ>, <xxXSYNCRS>
Transaction Wrappers <xxXTRNRQ>, <xxxXTRNRS>
Specific requests and responses

The following sections describe these levels.

2.4.2 Case Sensitivity

OFX requires upper case letters for tag names and enumerated values. In the example below,
<SEVERITY> is an element with an enumerated value and <MESSAGE> is an element with a value that
is not enumerated.

<STATUS>
<CODE>2000</CODE>

OFX 2.2 Specification Public Draft 05/17/2016 37

<SEVERITY>ERROR</SEVERITY>
<MESSAGE>General Error</MESSAGE>
</STATUS>

2.4.3 Top Level

An Open Financial Exchange request or response has the following top-level form:

Tag Description
<OFX> Opening tag
<SONRQ> or Required signon request or response. See section 2.5.1.
<SONRS>
... Open Financial 0 or more transaction requests and responses inside appropriate message set
Exchange requests or aggregates
responses ...
</OFX> Closing tag for the Open Financial Exchange record

This chapter specifies the order of requests and responses.

Asingle file MUST contain only one OFX block.

2.4.4 Messages

A message is the unit of work in Open Financial Exchange. It refers to a request and response pair, and the
status codes associated with that response. For example, the message to download a bank statement
consists of the request <STMTRQ> and the response <STMTRS>.

OFX uses several common message types to perform specific functions. Within OFX, the following
naming conventions are used, where the general xxx messages may be:

» Basic (or Add) request <xxxRQ> and response <xxxRS>

* Modify request <xxxMODRQ> and response <xxxMODRS>

» Delete request <xxxDELRQ> and response <xxxDELRS>

» Cancel request <xxxCANRQ> and response <xxxCANRS> (these pairs may also be named
<xXXCANCRQ> and <xxxCANCRS)

38 2.4 Open Financial Exchange XML Structure

2.4.4.1 Basic and Add Messages

The basic OFX message has a name structure of <xxxRQ>/<xxxRS>. It is used for read actions of a
specific object (such as a bank statement using <STMTENDRQ>). It is encapsulated in a transaction
wrapper <xxXxTRNRQ> or <xxxTRNRS> (therefore, <STMTENDTRNRQ> and <STMTENDTRNRS> in
the example above).

The add OFX message, like the Basic message, has a name structure of <xxxRQ>/<xxxRS>. It is used to
create a new instance of object xxx (such as creating a new payment using <PMTRQ>). It is encapsulated
in a transaction wrapper <xxxTRNRQ> or <xxxTRNRS> (therefore, <PMTTRNRQ> and <PMTTRNRS>
in the example above).

2.4.4.2 Modify Message

The modify OFX message has a name structure of <xxxMODRQ>/<xxxMODRS>. It is used to modify an
existing instance of object xxx (such as modifying an existing payment using <PMTMODRQ>). It is
encapsulated in a transaction wrapper <xxxTRNRQ> or <xxxTRNRS> (therefore, <PMTTRNRQ> and
<PMTTRNRS> in the example above).

The <xxxMODRQ> request contains the complete replacement data for an existing object xxx. Therefore,
both changed and unchanged elements must be included in the request.

2.4.4.3 Delete and Cancel Messages

The delete and cancel OFX messages have a name structure of <xxxDELRQ>/<xxxDELRS> and
<XXXCANRQ>/<xxXxCANRS> or <xxxCANCRQ>/<xxxCANCRS>, respectively. They are used to delete
an existing instance of object xxx (such as deleting a payee from a payee list using <PAYEEDELRQ>), or
to cancel an existing scheduled object (such as canceling a pending payment using <PMTCANCRQ>).
They are encapsulated in a transaction wrapper <xxxTRNRQ> or <xxxTRNRS> (therefore,
<PAYEETRNRQ> and <PMTTRNRQ> in the examples above).

2.4.4.4 Inquiry Message

The inquiry OFX message sometimes has a name structure of <xxxINQRQ>/<xxxINQRS>. It is used to
search for and/or gain information about (an) existing object(s) xxx (such as finding one or more existing
payments using <PMTINQRQ>). It is encapsulated in a transaction wrapper <xxxINQTRNRQ> or
<xXXINQTRNRS> (therefore, <PMTINQTRNRQ>and <PMTINQTRNRS> in the example above).

Inquiry messages limit the response set to records matching the selection criteria used in the request.
Selection criterion elements in the request are generally repeating elements. Where more than one value is
given for a particular element, the query ORs those values. Where multiple different elements (matches for
different fields of the objects) are provided, the query ANDs those values. Where an element is absent
from the request, the query is not filtering on that element. If an element has a history associated with i,
only the most recent value is intended by the inquiry.

OFX 2.2 Specification Public Draft 05/17/2016 39

Note: A server is not obligated to support filtering on all selection criterion elements. If a
server chooses not to support a particular element as a selection criterion, it must treat that
element as if it were not present. That is, the server must return the appropriate record set for
the elements on which it does support filtering. As a result, clients should be prepared to
receive records outside the scope of the selection criteria submitted in the request.

Note: Many inquiry messages do not presently follow the naming conventions detailed above.
They may be named <xxxINFORQ>/<xxxINFORS> (<ACCTINFORQ> and
<ACCTINFORS> for example) or without reference to an obvious convention
(<KPRESLISTRQ> and <PRESLISTRS> for example).

2.4.5 Message Sets and Version Control

Message sets are collections of messages. Generally they form all or part of what a user would consider a
service, something for which they might have signed up, such as “banking.” Message sets are the basis of
version control, routing, and security. They are also the basis for the required ordering in Open Financial
Exchange files.

Within the OFX block, OFX organizes messages by message set. Message sets follow these rules:
* Arequest file may include at most one message set wrapper of each type.
« All messages within any message set must be from the same version of that message set.

« Servers must respond using the same message sets and versions as sent in the request file. For example,
if <SIGNUPMSGSRQV1> appears in the request file, <SIGNUPMSGSRSV1> must appear in the
response file. There is one exception to this rule: servers may return the <SECLISTMSGSRSV1>
wrapper (see 13.7.2 and 13.8.4) in response to an investment statement download request that may or
may not include <SECLISTMSGSRQV1>.

2.4.5.1 Message Set Aggregates

For each message set of xxx and version n, there are two aggregates, one for requests <xxxMSGSRQVn>)
and one for responses <xxxMSGSRSVn>. All of the messages from that message set must be enclosed in
the appropriate message set aggregate. In the following example, the Open Financial Exchange block
contains a signon request inside the signon message set, and two statement requests and a transfer request
inside the bank message set.

<OFX>
<SIGNONMSGSRQV1> <I-- Signon message set -->
<SONRQ> <I-- Signon message -->
</SONRQ>
</S1GNONMSGSRQV1>
<BANKMSGSRQV1> <I-- Banking message set -->

40 2.4 Open Financial Exchange XML Structure

<STMTTRNRQ> <!-- Statement request -->

</STMTTRNRQ>
<STMTTRNRQ> <I-- Another stmt request -->

</STMTTRNRQ>
<INTRATRNRQ> <I-- Intrabank transfer request -->

</ INTRATRNRQ>
</BANKMSGSRQV1>
</0OFX>

2.4.5.2 Message Set Ordering

Message sets must appear in the following order:
» Signon

e Signup

» Banking

» Credit card statements

* Loan statements
 Investment statements

* Interbank funds transfers
» Wire funds transfers

* Payments

» General e-mail

* Investment security list
 Biller Directory

» Bill Delivery

* FI Profile

* Image download

Note: Image download is an exception to the above. An OFX file containing the Image
message set includes only the Signon message set. No other message sets may be present in the
file. See Chapter 15, "Image Download", for details.

The definition of each message set can further prescribe an order of its messages within that message set.

OFX 2.2 Specification Public Draft 05/17/2016 41

2.4.5.3 Message Set Version Numbers

The following table lists each message set, along with its aggregate name and the DTD/XML Schema
versions that support it.

Note: Starting with OFX 2.0, a DTD is no longer maintained. Instead, an XML Schema is

maintained.

Message Set

Signon

Signup

Banking

Credit Card Statements

Loan Statements

Investment Statements

Interbank Funds Transfers

Wire Funds Transfers

Payments

General e-mail

Investment security list

Biller directory

Bill delivery

FI Profile

Image download

Message Set Aggregate
<SIGNONMSGSETV1>

<SIGNUPMSGSETV1>
<BANKMSGSETV1>
<CREDITCARDMSGSETV1
>

<LOANMSGSETV1>
<INVSTMTMSGSETV1>

<INTERXFERMSGSETV1>

<WIREXFERMSGSETV1>

<BILLPAYMSGSETV1>

<EMAILMSGSETV1>

<SECLISTMSGSETV1>

<PRESDIRMSGSETV1>

<PRESDLVMSGSETV1>

<PROFMSGSETV1>

<IMAGEMSGSETV1>

DTD/Schema Support

1.0.2,1.0.3,151,1.6,2.0,20.1,
20.2,2.03,21,21.1,22

1.0.2,1.0.3,15.1,1.6, 2.0, 2.0.1,
20.2,2.03,2.1,2.1.1,2.2

1.0.2,1.03,151,1.6,2.0,20.1,
20.2,2.03,2.1,2.1.1,2.2

1.0.2,1.0.3,151,1.6,2.0,20.1,
20.2,203,21,21.1,22

21,21.1,2.2

1.0.2,1.03,151,1.6,2.0,20.1,
20.2,2.03,2.1,2.1.1,2.2

1.0.2,1.0.3,151,1.6,2.0,20.1,
20.2,2.03,21,21.1,22

1.0.2,1.0.3,15.1,1.6, 2.0, 2.0.1,
202,2.03,2.1,2.1.1,2.2

1.0.2,1.0.3,151,1.6,2.0,20.1,
20.2,2.03,2.1,2.1.1,2.2

1.0.2,1.0.3,151,1.6,2.0,20.1,
20.2,2.03,2.1,2.1.1,2.2

1.0.2,1.0.3,15.1,1.6, 2.0, 2.0.1,
20.2,2.03,2.1,2.1.1,2.2

1.0.2,1.0.3,151,1.6,2.0,20.1,
20.2,2.03,2.1,2.1.1,2.2

1.0.2,1.0.3,15.1,1.6, 2.0, 2.0.1,
20.2,2.03,2.1,2.1.1,2.2

1.0.2,1.0.3,15.1,1.6, 2.0, 2.0.1,
202,2.03,2.1,2.1.1,2.2

21,21.1,2.2

Note: For each message set that it is supporting, a financial institution must indicate which
version numbers of that message set it supports. The financial institution includes the message

42 2.4 Open Financial Exchange XML Structure

set version number in the <MSGSETCORE> aggregate of the FI profile. For more information
about the FI profile, refer to Chapter 7, "FI Profile." OFX 2.2 servers should use version
number 1.

2.4.6 Transactions

Other than the signon message, each request is made as a transaction. Transactions contain a client-
assigned globally-unique 1D, optional client-supplied pass-back data, and the request aggregate. A
transaction similarly wraps each response. The response transaction returns the client ID sent in the
request, along with a status message, the pass-back data if present, and the response aggregate. This
technique allows a client to track responses against requests. Section 3.1.2 provides more information
about the format of information exchanged by the client and server.

The <STATUS> aggregate, defined in Chapter 3, "Common Aggregates, Elements, and Data Types,"
provides feedback on the processing of the request. If the <SEVERITY> of the status is ERROR, the
server provides the transaction response without the nested response aggregate. Otherwise, the response
must be complete even though a warning might have occurred.

Clients can send additional information in <CLTCOOKIE> that servers will return in the response. This
allows clients that do not maintain state, and thus do not save <TRNUID>s, to cause some additional
descriptive information to be present in the response. For example, a client might identify a request as
relating to a user or a spouse.

<CLTCOOKIE> must only be returned by the server in the initial response to the client (and any crash
recovery from that response). The <CLTCOOKIE> should not be present in a sync response, except for
those transactions whose requests were wrapped in the sync request.

In some countries, some banks may require that a customer-supplied authorization number be included to
authenticate certain kinds of individual transactions such as payment requests. For those banks, the
<TAN> element passes this information to servers.

Note that if a <CLTCOOKIE> is given to an OFX server in a request, the OFX server is required to return
it. This return of the <CLTCOOKIE> will necessitate server-side storage of <CLTCOOKIE> data. In the

case of an OFX client getting a <CLTCOOKIE> that it didn’t send in a request, the default behavior is to

ignore it.

2.4.6.1 Transaction Wrapper

With the exception of the <SONRQ>/<SONRS> message, each message has a corresponding transaction
wrapper. For requests, the transaction wrapper adds a transaction unique 1D <TRNUID>. For responses,
the transaction wrapper adds the same transaction unique ID <TRNUID> (an echo of that found in the
request), plus a <STATUS> aggregate.

The transaction wrapper has a name structure of <xxxTRNRQ>/<xxxTRNRS>. A transaction wrapper pair
encapsulates a single message (<XXXRQ>/<xxxRS>, <xxxMODRQ>/<xxxMODRS>, etc.).

OFX 2.2 Specification Public Draft 05/17/2016 43

While the same name may be used for addition, modification and deletion messages, a single transaction
wrapper may contain at most one request or response. The request transaction wrapper must contain a

single request. The response transaction wrapper must contain a single response unless the contained
<STATUS> aggregate indicates an error.

Note: Some requests and responses (generally, Add, Modify, and Delete/Cancel types) share a
transaction wrapper and synchronization wrapper. In these cases, the names of the transaction
and synchronization wrappers reflect the Add message.

44 2.4 Open Financial Exchange XML Structure

A typical request is as follows:

Tag Description

<XXXTRNRQ> Transaction-request aggregate
<TRNUID> Client-assigned globally-unique 1D for this transaction, trnuid
<CLTCOOKIE> Data to be echoed in the transaction response, A-32
<TAN> Transaction authorization number; used in some countries with some types of

transactions. The FI Profile defines messages that require a <TAN>, A-80
<OFXEXTENSION> | OFX extension aggregate; see Section 2.7.2 for more information

</OFXEXTENSION>
Request aggregate | Aggregate for the request

</xXxXTRNRQ>

A typical response is as follows:

Tag Description
<XXXTRNRS> Transaction-response aggregate
<TRNUID> Client-assigned globally-unique ID for this transaction, trnuid
<STATUS> Status aggregate
</STATUS>
<CLTCOOKIE> Client provided data, A-32

<OFXEXTENSION> | OFX extension aggregate; see Section 2.7.2 for more information
</OFXEXTENSION>

Response aggregate | Aggregate for the response

</xxXTRNRS>

List of status code values for the <CODE> element of <STATUS>:

Meaning

0 Success (INFO)
2000 General error (ERROR)
2022 Invalid TAN (ERROR)

OFX 2.2 Specification Public Draft 05/17/2016

2.4.7 Synchronization Wrapper

The synchronization wrapper has a name structure of <xxxSYNCRQ>/<xxxSYNCRS>. It contains
synchronization parameters and optionally encapsulates one or more transaction wrappers. For details on
the use of synchronization wrappers, see Chapter 6.

When embedded transactions are not present, the synchronization request contains no transaction
wrappers. If the client is up to date when the server processes such a request, the synchronization response
also contains no transaction wrappers.

Note: If a request/response is a sync request/response only, the transaction wrapper and
request that it wraps are omitted.

Note: The OFX Extension aggregate, see Section 2.7.2 for more information, has been added
to all synchronization messages prior to any embedded transactions in both request and
response synchronization wrappers.

2.4.8 Message Set Wrapper
The profile message set wrappers have a name structure of <xxxtMSGSET> and <xxxMSGSETV1>.

The request and response message set wrappers have a name structure of <xxxMSGSRQVn> and
<xxXMSGSRSVn> respectively. For OFX 2.2, “n” must be “1”. This number indicates the version of the
message set used by the contained messages.

2.5 The Signon Message Set

The Signon message set includes the signon message, USERPASS change message, challenge message,
and multi-factor authentication (MFA) challenge message, which must appear in that order. The
<SIGNONMSGSRQV1> and <SIGNONMSGSRSV1> aggregates wrap the message.

2.5.1 Signon <SONRQ> and <SONRS>

The signon record identifies and authenticates a user to an FlI. It also includes information about the
application making the request, because some services might be appropriate only for certain clients. Every
Open Financial Exchange block contains exactly one <SONRQ>. Every response must contain exactly one
<SONRS> record. Use of Open Financial Exchange presumes that Fls authenticate each customer and
then give the customer access to one or more accounts or services. Authentication of a <SONRQ> is
required, even when in Error Recovery.

46 2.5 The Sighon Message Set

2.5.1.1 General <SONRQ>/<SONRS> Information
2.5.1.1.1 <SONRS> Error Propagation

If the server returns any signon error, it must respond to all other requests in the same <OFX> block with
status code 15500. For example, if the server returns status code 15502 to the <SONRQ> request, it must
return status code 15500 to all other requests in the same <OFX> block. The server must return status code
15500 for all requests; it cannot simply ignore the requests. In addition, any sync responses must indicate
an error with <TOKEN>-1</TOKEN>, <LOSTSYNC>N </LOSTSYNC>(<LOSTSYNC> is an optional
element). Responses for any transactions embedded in the sync request should contain the same
<STATUS><CODE>15500</CODE></STATUS>. Otherwise, they must be omitted from the sync
response wrapper. (See section 6.2 for data synchronization specifics.)

2.5.1.1.2 <SESSIONCOOKIE> Handling

The client returns <SESSCOOKIE> if the server sent one in a previous <SONRS>. Servers can use the
value of <SESSCOOKIE> to track client usage but cannot assume that all requests come from a single
client, nor can they deny service if they did not expect the returned cookie. Use of a backup file, for
example, could lead to an unexpected <SESSCOOKIE> value that nevertheless should not stop a user
from connecting.

2.5.1.2 User Credentials and User Identification

OFX 2.2 contains 3 distinct methods in the <SONRQ> for "user credentials" or "user identification" to be
provided to the server for authentication. These methods are mutually exclusive within the schema via an
XOR relationship - only one method may be used within any individual <SONRQ>.

2.5.1.2.1 <USERID> and <USERPASS>

Since Fls assign user IDs for the customer, any OFX client must not make any assumptions about the
syntax of the ID, add check-digits, or do similar processing. To ensure security and help prevent identity fraud,
Financial Institutions are discouraged from using Social Security Number for Customer ID or PIN/Password.

If passwords are specific to individual services or accounts, a separate Open Financial Exchange request
must be made for each user ID or password required. This will not necessarily be in a manner visible to the
user. Note that some situations, such as joint accounts or business accounts, will have multiple user IDs
and multiple passwords that can access the same account.

2.5.1.2.2 <USERKEY>

To improve server efficiency in handling a series of Open Financial Exchange request files sent over a
short period of time, clients can request that a server return a <USERKEY> in the signon response. If the
server provides a user key, clients will send the <USERKEY> instead of the user ID and password in
subsequent sessions, until the <USERKEY> expires. This allows servers to authenticate subsequent
requests more quickly. Servers must accept a <GENUSERKEY> element in a <SONRQ>. However, a

OFX 2.2 Specification Public Draft 05/17/2016 a7

server may decide <USERKEY> does not afford sufficient security and may optionally not return a
<USERKEY> in the <SONRS>.

2.5.1.2.3 <ACCESSTOKEN>

Servers may require the use of an <ACCESSTOKEN> in place of <USERID> and <USERPASS> for
authentication. The server can specify this requirement using the <ACCESSTOKENREQ> tag in the
applicable <SIGNONINFO> section of the profile response. The use and format of <ACCESSTOKEN>
must be arranged out-of-band between the client and the OFX Server provider.

Keeping the specific use and format of <KACCESSTOKEN> out of band allows OFX to support numerous
methods of token generation such as OAUTH 1.0, OAUTH 2.0, JSON Tokens, and so on. Essentially any
agreed upon token format and methodology may be used between the client and server.

The intent of <ACCESSTOKEN?> is to leverage an out of band mechanism which will fully replace all
other types of authentication within OFX for all types of accounts and requests. As such,
<ACCESSTOKEN?> interaction with other <SONRQ> mechanisms and features should be avoided. Of
particular note:

* While it would be permissible under the specification to have multiple signon realms with a mixture of
<ACCESSTOKEN> and <USERID>/<USERPASS> used between those realms this is STRONGLY
DISCOURAGED due to the client side complexity which would be created.

e While it would be permissible under the specification to use other OFX MFA mechanisms or requests
(such as <CHALLENGERQ>) this is STRONGLY DISCOURAGED due to the client side complexity
which would be created.

¢ When <ACCESSTOKEN?> is required by a server and indicated within the signon realm, servers
should set <PINCH> and <CHGPINFIRST> to N to indicate that OFX pin change functionality is not
supported. All other pin characteristics should be set to some default value as they are not used with this
authentication method. Additionally servers should NEVER use <CODE>15000 to request a client side
pin change. Lastly, clients should NEVER, even if a server indicates that pin change is supported, send
a <PINCHRQ> message to a signon realm on a server whose profile indicates that <ACCESSTOKEN>
is required.

2.5.1.3 Special Circumstances and Considerations
2.5.1.3.1 Anonymous <SONRQ>

A client may use an anonymous form of <USERID> and <USERPASS> on those rare occasions when a
server need not authenticate the <SONRQ>. The only present situations in this class are first-time
<PROFRQ>, <FINDBILLERRQ>, and all <ENROLLRQ> transactions. Any request sent by the client
after a successful <ENROLLRQ> response (or out of band enrollment) for the service must provide the
user’s <USERID> and <USERPASS>. The anonymous <USERID> or <USERPASS> value is left aligned
and padded with 0 to a length of 32 characters: anonymous00000000000000000000000

48 2.5 The Sighon Message Set

Note: This anonymous password length may exceed the <MAX> value for the profile server
(in the corresponding <SIGNONINFO> aggregate). Nonetheless, servers supporting
anonymous signon must not reject this password due to its length.

2.5.1.3.2 Empty <SONRQ>

An OFX 2.2 server has the option of allowing or disallowing “empty” signon transactions. In the context
of signon, “empty” means a simple signon without any other transaction (a sync, statement download,
etc.). If the OFX 2.2 server does not support empty signon, it should return error 15506. If the OFX 2.2
server does support empty signon, it should process the signon and return the appropriate error or success
code.

2.5.1.3.3 Server Driven Password (RUSERPASS>) Change

Servers can request that a consumer change his or her password by returning status code 15000. Servers
should keep in mind that only one status code can be returned. If the current signon response status should
be 15500 (invalid ID or password), the request to change the password must wait until an otherwise
successful signon is achieved.

2.5.1.4 Multi-Factor Authentication (MFA)
OFX 2.2 supports all previous specification version methods for multi-factor authentication.

2.5.1.4.1 Client Unique ID <CLIENTUID>

OFX servers can require OF X clients to include a client ID in each signon request. This client ID should be
unique to the installation of the client software, but the method that the ID is generated is left up to the
client. The server can specify that this field is required using the <CLIENTUIDREQ?> tag in the applicable
<SIGNONINFO> section of the profile. Servers should expect that users may connect via OFX from
multiple locations and may need to associate more than one <CLIENTUID> value with their <USERID>.

The client may make this value user discoverable, so that the user can register the client ID with financial
institutions.

2.5.1.4.2 Additional User Credentials <USERCRED1>, <USERCRED2>

The signon request contains two new user credential ID fields, <USERCRED1> and <USERCRED2>.
Servers use the applicable <SIGNONINFO> aggregate in the profile to specify if one or both of these
fields are required. The presence of KUSERCRED1LABEL> and <USERCRED2LABEL> in
<SIGNONINFO> specifies that these tags are required and also gives labels for these fields. OFX clients
should use these labels to prompt the user for necessary signon information. For instance, a server may
require <USERCRED1> and would specify its label as “Mother’s maiden name.”

Servers should assume that profile requests are made very infrequently. If the user credential ID or label is
expected to change frequently, the MFACHALLENGE message is the most appropriate method to use.
Use of <USERCRED1> and <USERCRED2> should be reserved for questions/prompts that will change
rarely, if at all.

OFX 2.2 Specification Public Draft 05/17/2016 49

2.5.1.4.3 One-Time Authentication Token <AUTHTOKEN>

This authentication token is intended to be used in conjunction with the client ID functionality described in
Section 2.5.1.4.1 although this is not required. By providing the user with this one-time value out of band
and then requiring (and validating) it on either the initial (for first time setup) or next session (for existing
users) an institution may establish the client ID received in the session as a “known” client ID value that is
directly associated with the user.

The signon request contains an additional field, <AUTHTOKEN>. Servers use the Signon Realm’s
<AUTHTOKENFIRST> tag to specify that the client is required to send this credential during the initial
signon session. A server may also indicate that this credential is required on the next session by returning a
15512 error code in a signon response. If this credential is required by the OFX server under either of the
above conditions then the server must also use the Signon Realm’s profile tags to specify a label for this
value (FRAUTHTOKENLABEL>) as well as a standard URL (<AUTHTOKENINFOURL>) where the one
time authentication token is either directly provided to the user (e.g. they login to the institution’s standard
web banking system and request a credential) or information on how to acquire the credential is given (e.g.
they are instructed to contact customer support).

During initial client software setup (if <AUTHTOKENFIRST> is set to Y in the profile) or upon receipt of
a 15512 error code during a session the client software must inform the user that their institution requires
additional information for the next session and display the <AUTHTOKENINFOURL> to the end-user.
The client software must prompt the user for the entry of the <AUTHTOKEN> value using the
<AUTHTOKENLABEL> as a caption for the data entry field.

This authentication token mechanism is intended for use on an infrequent basis and in conjunction with
client ID functionality. If additional authentication would be required on a regular basis then the
MFACHALLENGE messages would be a more appropriate implementation.

2.5.1.4.4 Access Key <ACCESSKEY>

If the client and server support the MFACHALLENGE request/response and/or the authentication token
functionality, the signon request may include the <ACCESSKEY> tag. When provided by the server, the
client will send the last value of the <ACCESSKEY> it has received.

2.5.1.5 Signon Request <SONRQ>

Unlike other requests, the signon request <SONRQ> does not appear within a transaction wrapper.

Description

<SONRQ> Signon-request aggregate

50 2.5 The Sighon Message Set

Tag

<DTCLIENT>

User identification. Either
<USERID> and
<USERPASS>, or
<USERKEY=>, or
<ACCESSTOKEN=> but not
more than one (see section
25.1)

<USERID>

<USERPASS>

<USERKEY>

<ACCESSTOKEN>

<GENUSERKEY>
<LANGUAGE>

<FI>

</FI>

<SESSCOOKIE>

<APPID>
<APPVER>
<CLIENTUID>

<USERCRED1>

Description

Date and time of the request from the client computer, datetime

This value should reflect the time (according to the client machine) when the request
file is sent to the server, not the (original) creation time of the request file. While not
required for existing software, OFX 2.2 clients must comply with this rule. This
clarification is particularly important in error recovery situations in which the request
file may be sent to the server after its initial creation.

User identification string. To ensure security and help prevent identity fraud, Financial
Institutions are discouraged from using Social Security Number for Customer 1D or
PIN/Password. A-32

User password on server, A-171

Note: The maximum clear text length of USERPASS is 32 characters: a client must
not send a longer password. However, when using Type 1 security, the encrypted value
may extend to 171 characters.

Log in using previously authenticated context, A-64

Out of band arranged token to be used for authentication, A-10000
Request server to return a USERKEY for future use, Boolean
Requested language for text responses, language
Financial-Institution-identification aggregate

Note: The client will determine out-of-band whether a FI aggregate should be used
and if so, the appropriate values for it. If the FI aggregate is to be used, then the client
should send it in every request, and the server should return it in every response.

Session cookie value received in previous <SONRS>, not sent if first login or if none
sent by FI, A-1000

ID of client application, A-5
Version of client application, (6.00 encoded as 0600), N-4
Unique ID identifying OFX client, A-36

Additional user credential required by server, A-171

Note: the effective size of USERCREDL is A-32. However, if Type 1 security is used,
then the actual field length is A-171.

OFX 2.2 Specification Public Draft 05/17/2016 51

Tag

<USERCRED2>

<AUTHTOKEN>

<ACCESSKEY>

<MFACHALLENGEANS
WER>

</MFACHALLENGEAN
SWER>

<OFXEXTENSION>
</OFXEXTENSION>

</SONRQ>

Description

Additional user credential required by server, A-171

Note: the effective size of USERCRED?2 is A-32. However, if Type 1 security is used,
then the actual field length is A-171.

Authentication token required for this signon session only. Credential is provided to the
user out of band, A-171

Note: the effective size of AUTHTOKEN is A-32. However, if Type 1 security is used,
then the actual field length is A-171.

Access key value received in prevous <SONRS>, not sent if first login or none sent by
FI, A-1000

MFA challenge question/answer aggregates (0 or more). See section 2.5.4.5

OFX extension aggregate; see Section 2.7.2 for more information

52

2.5 The Sighon Message Set

2.5.1.6 Signon Response <SONRS>

Unlike other responses, the signon response <SONRS> does not appear within a transaction wrapper.

Note: A client should use <DTPROFUP> and <DTACCTUP> only when the service provider
that originated <SONRS> is the same provider that is specified by <SPNAME> in the profile
message set. A client can determine if the service provider is the same by comparing the value
of <SPNAME> in the appropriate message set with the value for <SPNAME> in the profile

message set.

Tag

<SONRS>
<STATUS>
</STATUS>

<DTSERVER>

<USERKEY>

<TSKEYEXPIRE>
<LANGUAGE>

<DTPROFUP>

<DTACCTUP>

<FI>

</FI>
<SESSCOOKIE>
<ACCESSKEY>
<OFXEXTENSION>
</OFXEXTENSION>

</SONRS>

Description
Record-response aggregate

Status aggregate, see section 3.1.5. See list of possible code values in section 2.5.1.7

Date and time of the server response, datetime

This value should reflect the time (according to the server) when the response file was
originally created. While not required for existing software, OFX 2.2 servers must
comply with this rule. This clarification is particularly important in error recovery
situations: The server should (must for OFX 2.2 servers) return the time the request
was first processed. If the previous attempt failed after transactions were processed,
<DTSERVER> in the response file would reflect that processing time.

Use user key instead of USERID and USERPASS for subsequent requests.
TSKEYEXPIRE can limit lifetime. A-64

Date and time that USERKEY expires, datetime
Language used in text responses, language

Date and time of last update to profile information for any service supported by this FI
(see Chapter 7, "FI Profile"), datetime

Date and time of last update to account information (see Chapter 8, “Activation &
Account Information”), datetime

Financial-Institution-identification aggregate

Note: The client will determine out-of-band whether an FI aggregate should be used
and, if so, the appropriate values for it. If the FI aggregate is to be used, then the client
should send it in every request, and the server should return it in every response.

Session cookie that the client should return on the next <SONRQ>,A-1000
Access key that the client should send in the next <SONRQ>, A-1000

OFX extension aggregate; see Section 2.7.2 for more information

OFX 2.2 Specification Public Draft 05/17/2016 53

2.5.1.7 Status Codes

List of status code values for the <CODE> element of <STATUS>:

Value Meaning

0 Success (INFO)
2000 General error (ERROR)

3000 User credentials are correct, but further authentication required (ERROR)
This notifies client to send <MFACHALLENGERQ>.

3001 MFACHALLENGEANSWER contains invalid information (ERROR)
13504 <FI> Missing or Invalid in <SONRQ> (ERROR)

13505 Server undergoing maintenance; try again later (ERROR)
15000 Must change USERPASS (INFO)

15500 Signon invalid (see section 2.5.1) (ERROR)

15501 Customer account already in use (ERROR)

15502 USERPASS Lockout (ERROR)

15506 Empty signon transaction not supported (ERROR)

15507 Signon invalid without supporting pin change request (ERROR)
15510 CLIENTUID error (ERROR)

15511 User should contact financial institution (ERROR)

15512 OFX server requires AUTHTOKEN in signon during the next session
(ERROR)

15513 AUTHTOKEN invalid (ERROR)
15514 OFX Server requires ACCESSTOKEN for authentication (ERROR)

15515 Authentication failed; ACCESSTOKEN provided is invalid/unrecognized by
the server (ERROR)

15516 ACCESSTOKEN provided is expired and needs refresh (ERROR)

This notifies the client to use whatever out-of-band agreement for handling
expired tokens was agreed upon during the implementation

54 2.5 The Sighon Message Set

2.5.1.8 Financial Institution ID <FI>

Some service providers support multiple Fls, and assign each Fl an ID. The signon allows clients to pass
this information along, so that providers know to which FI the user is signing on.

If a server does not require an FI aggregate in a request but receives one anyway, it should echo the FlI
aggregate back. This is compliant with the general rule that the server should echo elements and aggregates
in the response if they are received and understood in the request.

If a server requires the <FI> aggregate in <SONRQ> requests and it contains incorrect information there
are several different specification compliant ways to respond. These are given in the order of preference:

» Return a 2000 error with appropriate text message — since the FI aggregate information is incorrect the
user’s information (KUSERID> and <USERPASS>) cannot be verified. Returning a 15500 might cause
clients to display messages to the user that the attempt to communicate with the server failed. A client
would probably suggest that the user verify their <USERID> and <USERPASS> values.

» Return a 15500 error — since the FI aggregate information is incorrect or unknown the server cannot
verify the <USERID>, <USERPASS>, etc.

» Return an http 400 error — this is the least desirable option since it will provide no useful feedback to
the client communicating with the server, however it is legal.

Tag Description
<FI> Fl-record aggregate

<ORG> Organization defining this FI name space, A-32

<FID> Financial Institution ID (unique within <ORG>), A-32
</FI>

OFX 2.2 Specification Public Draft 05/17/2016 55

2.5.2 USERPASS Change <PINCHRQ> <PINCHRS>

The client sends a request to change the customer password as a separate request from the signon.

Password changes pose a special problem for error recovery. If the client does not receive a response, it
cannot know whether or not the password change was successful. OFX recommends that servers accept
either the old password or the new password on the connection following the one containing a password
change. When file-based error recovery is in use, the server must reject the old password except when
received with NEWFILEUID/OLDFILEUID headers indicating an error recovery attempt.

Also, if the client does not receive a response that has a status code of 15000 from a server, it cannot know
that a password change is required. In this case, the server should not expect a pin change request in the
signon when the NEWFILEUID/OLDFILEUID headers indicate an error recovery attempt.

Servers that do not support file-based error recovery (or, when interacting with a client that does not utilize
file-based error recovery) must not complete a <PINCHRQ> until after the next request file arrives. If that
request file uses the new password, the new password must be permanently associated with the
<USERID>. Otherwise, the old password may authenticate the user. (For security, servers may return a
signon error if the next request file uses the old password but does not include a <PINCHRQ>.)
Conforming clients should re-send request files (unchanged beyond the <SONRQ>) after a failure whether
or not file-based error recovery is in use.

2.5.2.1 <PINCHRQ>
A <PINCHRQ> request must appear within a <PINCHTRNRQ> transaction wrapper.

A USERPASS change request changes the customer’s password for the specific realm associated with the
messages contained in the OFX block. Based on the properties of an OFX profile, defined in Chapter 7,
"FI Profile," a single OFX block contains instructions related to a single realm. The USERPASS change
request thus changes the USERPASS for all message sets associated with one realm. For more information
about signon realms, see section 7.2.2.

Tag Description
<PINCHRQ> USERPASS-change-request aggregate
<USERID> User identification string, A-32

Note: The maximum clear text length of USERPASS is 32 characters: a client
must not send a longer password. However, when using Type 1 security, the
encrypted value may extend to 171 characters.

<NEWUSERPASS> New user password, A-171

Note: The effective size of NEWUSERPASS is A-32. However, if Type 1 security
is used, then the actual field length is A-171.

</PINCHRQ>

56 2.5 The Sighon Message Set

2.5.2.2 <PINCHRS>

A <PINCHRS> response must appear within a <PINCHTRNRS> transaction wrapper.

Tag Description
<PINCHRS> USERPASS-change-response aggregate
<USERID> User identification string, A-32

<DTCHANGED> | Date and time the password was changed, datetime

</PINCHRS>

2.5.2.3 Status Codes

Value Meaning

0 Success (INFO)

2000 General error (ERROR)

15503 Could not change USERPASS (ERROR)
15508 Transaction not authorized (ERROR)

OFX 2.2 Specification Public Draft 05/17/2016

2.5.3 <CHALLENGERQ> <CHALLENGERS>

A challenge request is the first step in Type 1 application-level security. Essentially, it asks for some
random data from the server. The challenge response provides that server-generated random data and is the
second step in Type 1 security.

The challenge message is part of the signon message set and is not subject to data synchronization.

2.5.3.1 <CHALLENGERQ>

A <CHALLENGERQ> is part of a <CHALLENGETRNRQ> transaction, a <CHALLENGERS> part of a
<CHALLENGETRNRS>.

The client includes <FICERTID> in the request if it already has the server’s certificate. If that is included
and matches the server’s current certificate, the server may omit the actual certificate from the response.

Tag Description

<CHALLENGERQ> Opening tag for the challenge request.
<USERID> User identification string, A-32
<FICERTID> Optional server certificate ID. A-64

</CHALLENGERQ> | Closing tag for challenge request.

2.5.3.2 <CHALLENGERS>

Tag Description

<CHALLENGERS> Opening tag for the challenge response.

<USERID> User identification string, A-32
<NONCE> Server-generated random data. A-16
<FICERTID> ID of server certificate used to encrypt. A-64

</CHALLENGERS> | Closing tag for challenge response.

When generating the <NONCE>, make sure the data is as unpredictable as possible. See RFC 1750 for
recommendations.

The server includes <FICERTID> in the response to identify the certificate in a separate MIME part. Even
if the certificate itself is not attached, <FICERTID> is still included in the response.

58 2.5 The Sighon Message Set

2.5.3.3 Status Codes

Status code values for the <CODE> element (contained within the <STATUS> aggregate):

Value Meaning

0 Success (INFO)

2000 General error (ERROR)

15504 Could not provide random data (ERROR)
15508 Transaction not authorized (ERROR)

2.5.4 <MFACHALLENGERQ> <MFACHALLENGERS>

To support authentication mechanisms for which the additional signon information described above is not
sufficient, OFX 2.2 supports the MFACHALLENGE message. If the information in the signon request is
correct, but it is not sufficient to authenticate the user, the server can reply with an error code of 3000,
which indicates that the client must perform MFACHALLENGE authentication before proceeding with
OFX requests. The server must not process any requests included as part of the message that resulted in the
3000 error code.

Following receipt of the 3000 error code, the client should request a list of challenge questions with an
<MFACHALLEGERQ>. The server will then respond to this request with a <MFACHALLENGERS>,
which includes the list of authentication questions, specified by ID and label. If for some reason the server
cannot respond with a <MFACHALLENGERS> response, it should respond with an HTTP 400 error.

Note that some of these challenge questions may require user interaction and some may not (if the client
already has access to the necessary information). It is up to the client to determine which questions require
user interaction.

Note: If the profile response contains <MFACHALLENGEFIRST>Y, the client must send an
<MFACHALLENGERQ> request in the first connection with the server, before sending any
other requests.

Once the client has retrieved the answers to the challenge questions (either from the user or another
location), it will then include them within the signon request included as part of the next request message.
If these answers are correct, the server will process the request file. If they are incorrect, the server will
return an error code of 3001.

The client should not need to store the answers to the challenge questions. To prevent servers from needing
to verify the user with each OFX request, the server may respond to a correct set of challenge answers with
the <ACCESSKEY> element on the signon response. The server determines the contents of this optional
element. On each subsequent signon request, the client will send the last value of the <ACCESSKEY> it
has received, even after the end of the current session. The server has the option to respond to any

OFX 2.2 Specification Public Draft 05/17/2016 59

subsequent request with a 3000 error code, requiring the client to send a <MFACHALLENGERQ>. This
allows the server to determine the lifetime of the <ACCESSKEY>.

The challenge message is part of the signon message set and is not subject to data synchronization.

2.5.4.1 <MFACHALLENGERQ>

<MFACHALLENGERQ> is a request for the server to send a list of challenge questions that must be
correctly answered before the OFX client may proceed with further OFX requests. The
<MFACHALLENGERQ> request should be sent in response to an error code of 3000 or on a first request
to the server if the profile contains <MFACHALLENGEFIRST>Y.

The <MFACHALLENGERS> must appear within a <MFACHALLENGETRNRS> transaction wrapper.
The <MFACHALLENGERQ> request must appear within a <MFACHALLENGETRNRQ> transaction
wrapper.

Description

<MFACHALLENGERQ> | MFA challenge request aggregate
<DTCLIENT> Date and time of the request from the client computer, datetime

</MFACHALLENGERS>

2.5.4.2 <MFACHALLENGERS>

The <MFACHALLENGERS> response contains the list of questions that must be correctly answered in
the next OFX request. These questions may or may not require user interaction. See the table in Section
2.5.4.4 for more details.

While this specification imposes no upper limit on the number of challenge questions a server sends,
financial institutions and servers should be aware that there may be a limit to the number of questions a
client is able to collect.

The <MFACHALLENGERS> must appear within a <MFACHALLENGETRNRS> transaction wrapper
following the <SONRS> aggregate within the Signon Message set.

Tag Description
<MFACHALLENGERS> MFA challenge response aggregate
<MFACHALLENGE> Challenge question aggregate (1 or more)
<MFAPHRASEID> Identifier for the challenge question. It should be unique for this challenge question

but not unique for the user, session, etc. A-32. See section 2.5.4.4

<MFAPHRASELABEL> | The textual challenge question. This should be as appropriate as possible for
display to the user. A-64

60 2.5 The Sighon Message Set

Description

</MFACHALLENGE>

</MFACHALLENGERS>

2.5.4.3 Status Codes

Value Meaning

0 Success (INFO)
2000 General error (ERROR)

2.5.4.4 <MFAPHRASEID>

The <MFAPHRASEID> tag uniquely identifies a challenge question. In addition to providing a way to
correlate the answers to challenge questions with the questions themselves, it also provides the OFX client
additional options for collecting the answer from the user.

2.5.4.4.1 Enumerated <MFAPHRASEID> Meanings

The following table details the list of reserved values for <MFAPHRASEID>s. Servers should use these
values only when the question they are asking matches the associated question in the table below. Note that
servers are never required to use the reserved values for the phrase 1D, even when the challenge question
the servers require does match the question in the table below, but they should be aware that using the
reserved IDs when appropriate may result in a better customer experience.

MFAPHRASEID values above MFA100 are reserved for questions that the server expects the client to
answer. These do not require customer responses. All other enumerated IDs as well as server specific 1Ds
expect customer responses.

Clients may need to identify out of band which of the IDs above MFA100 they support.

Value Meaning

MFA1 City of birth

MFA2 Date of birth, formatted MM/DD/YYYY
MFA3 Debit card number

MFA4 Father’s middle name

MFA5 Favorite color

MFAG First pet’s name

MFA7 Five digit ZIP code

OFX 2.2 Specification Public Draft 05/17/2016 61

Value Meaning

MFA8 Grandmother’s maiden name on your father’s side
MFA9Q Grandmother’s maiden name on your mother’s side
MFA10 Last four digits of your cell phone number

MFA11 Last four digits of your daytime phone number
MFA12 Last four digits of your home phone number

MFA13 Last four digits of your social sescurity number
MFA14 Last four digits of your tax 1D

MFA15 Month of birth of youngest sibling, do not abbreviate
MFA16 Mother’s maiden name

MFA17 Mother’s middle name

MFA18 Name of the company where you had your first job
MFA19 Name of the manufacturer of your first car

MFA20 Name of the street you grew up on

MFA21 Name of your high school football team, do not include high school name, e.g. "Beavers"

rather than "Central High Beavers"

MFA22 Recent deposit or recent withdrawal amount
MFA23 Year of birth, formatted YYYY

MFA24

MFA25

MFA26

MFA27

MFA28

MFA29

MFA30

MFA101 Datetime, formatted YYYYMMDDHHMMSS
MFA102 Host name

MFA103 IP Address

MFA104 MAC Address

MFA105 Operating System version

MFA106 Processor architecture, e.g. 1386

62 2.5 The Sighon Message Set

Value Meaning

MFA107 UserAgent

MFA108

MFA109

MFA110

2.5.4.5 Signon Answers to Challenge Questions <MFACHALLENGEANSWER>

The <SONRQ> following receipt of <MFACHALLENGERS> should contain the answers.

Tag Description
<MFACHALLENGEANSWER> | MFA challenge question/answer aggregate

<MFAPHRASEID> Identifier for the challenge question. If should be unique for this challenge question,
but not unique for the user, session, etc. A-32. See section 2.5.4.4

<MFAPHRASEA> User’s answer to the challenge question, A-64

</MFACHALLENGEANSWER>

2.5.5 Signon Message Set Profile Information

A server must include the signon message set <SIGNONMSGSET> as part of the <MSGSETLIST>
aggregate in the FI profile, since every server must support signon requests.

The information that is part of the <MSGSETCORE> aggregate (for example, the URL and security level)
is used only when no other message sets are used. Otherwise, the other message sets override the signon
message set for the purposes of batching and routing. For example, if bill payments are sent to a URL that
is different from the one used for signon, the client uses the URL specified in the bill payment message set
<BILLPAYMSGSET>. For more information about how clients batch and route messages, refer to section
7.1.3.

Tag Description
<SIGNONMSGSET> Signon-message-set-profile-information aggregate
<SIGNONMSGSETV1> Opening tag for V1 of the message set profile information

<MSGSETCORE> Common message set information, defined in Chapter 7, "FI Profile"

</MSGSETCORE>
</SIGNONMSGSETV1>

</SIGNONMSGSET>

OFX 2.2 Specification Public Draft 05/17/2016 63

2.5.6 Examples

User requests a password change (only pin change transaction portion is shown):

<PINCHTRNRQ>
<TRNUID>888</TRNUID>
<PINCHRQ>
<USERI1D>12345</USERID>

<NEWUSERPASS>5321</NEWUSERPASS>

</PINCHRQ>
</PINCHTRNRQ>

The server responds with:

<PINCHTRNRS>

<TRNUID>888</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<P INCHRS>
<USERI1D>12345</USERID>
</PINCHRS>
</PINCHTRNRS>

Signon in OFX 2.2 which includes CLIENTUID and both additional credential tags:

<OFX>
<SIGNONMSGSRQV1>
<SONRQ>

<DTCLIENT>20060321083010</DTCLIENT>

<USERID>12345</USERID>

<USERPASS>MyPassword</USERPASS>

<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</0ORG>
<FID>000111222</FI1D>
</FlI>
<APPI1D>MyApp</APPI1D>
<APPVER>1600</APPVER>

<CLIENTUID>22576921-8E39-4A82-9E3E-EDDB121ADDEE</CLIENTUID>

64

2.5 The Sighon Message Set

<USERCRED1>MyPin</USERCRED1><!--Profile has included
<USERCRED1LABEL>PIN:</USERCRED1LABEL>-->
<USERCRED2>My I1D</USERCRED2><!--Profile has included
<USERCRED2LABEL>Your 1D:</USERCRED2LABEL>-->
</SONRQ>
</SI1GNONMSGSRQV1>
e <I--Other message sets-->

The following series shows the OFX 2.2 exchanges that occur when a server requires the client to
collect a one time authentication token

Note: This could also be requested in profile, but this example is a case where user is an existing
OFX consumer.

Client sends OFX request to server.

<OFX>
<SIGNONMSGSRQV1>
<SONRQ>
<DTCLIENT>20060321083010</DTCLIENT>
<USERID>12345</USERID>
<USERPASS>MyPassword</USERPASS>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</0ORG>
<FI1D>000111222</FI1D>
</Fl1>
<APP ID>MyApp</APPID>
<APPVER>1600</APPVER>
<CLIENTUID>22576921-8E39-4A82-9E3E-EDDB121ADDEE</CLIENTUID>
</SONRQ>
</S1GNONMSGSRQV1>
- <I--Other message sets-->
</0OFX>

Server accepts credentials but wants one-time token.

<OFX>
<SIGNONMSGSRSV1>
<SONRS>
<STATUS>

OFX 2.2 Specification Public Draft 05/17/2016

65

<CODE>15512</CODE>
<SEVERITY>ERROR</SEVERITY>
<MESSAGE>Please provide Authentication Token</MESSAGE>
</STATUS>
<DTSERVER>20060321083015</DTSERVER>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</0ORG>
<FID>000111222</FI1D>
</F1>
</SONRS>
</S1GNONMSGSRSV1>
-—-<I--All other transaction responses return <CODE>15500</CODE>-->
</OFX>

Client collects the answers and returns them to server along with the original request.

<OFX>
<SIGNONMSGSRQV1>
<SONRQ>
<DTCLIENT>20060321083415</DTCLIENT>
<USERI1D>12345</USERID>
<USERPASS>MyPassword</USERPASS>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</0ORG>
<FID>000111222</FI1D>
</FI>
<APP ID>MyApp</APPI1D>
<APPVER>1600</APPVER>
<CLIENTUID>22576921-8E39-4A82-9E3E-EDDB121ADDEE</CLIENTUID>
<AUTHTOKEN>1234567890</AUTHTOKEN><!—-Authentication token
provided to user out of band-->
</SONRQ>
</S1GNONMSGSRQV1>
e <I--Other message sets-->
</OFX>

Server accepts requests and returns an ACCESSKEY.
<OFX>

<SI1GNONMSGSRSV1>
<SONRS>

66 2.5 The Sighon Message Set

<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
<MESSAGE>Success</MESSAGE>
</STATUS>
<DTSERVER>20060321083445</DTSERVER>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</ORG>
<FID>000111222</FI1D>
</FI>
<ACCESSKEY>EE225228-38E6-4E35-8266-CD69B5370675</ACCESSKEY>
</SONRS>
</S1GNONMSGSRSV1>
- <I--All other transaction responses-->
</0OFX>

On subsequent calls, client will return ACCESSKEY in SONRQ.

The following series shows the OFX 2.2 exchanges that occur when a server requires the client to
collect answers to MFA Challenge questions.

Client sends OFX request to server.

<OFX>
<SIGNONMSGSRQV1>
<SONRQ>
<DTCLIENT>20060321083010</DTCLIENT>
<USERID>12345</USERID>
<USERPASS>MyPassword</USERPASS>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</0RG>
<FID>000111222</FID>
</FI>
<APPI1D>MyApp</APPI1D>
<APPVER>1600</APPVER>
<CLIENTUID>22576921-8E39-4A82-9E3E-EDDB121ADDEE</CLIENTUID>
</SONRQ>
</SI1GNONMSGSRQV1>

OFX 2.2 Specification Public Draft 05/17/2016 67

e <I--Other message sets-->
</OFX>

Server accepts credentials but wants additional challenge data.

<OFX>
<SIGNONMSGSRSV1>
<SONRS>
<STATUS>
<CODE>3000</CODE>
<SEVERITY>ERROR</SEVERITY>
<MESSAGE>Further information required</MESSAGE>
</STATUS>
<DTSERVER>20060321083015</DTSERVER>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</0ORG>
<FID>000111222</FI1D>
</FI>
</SONRS>
</SIGNONMSGSRSV1>
-—— <I--All other transaction responses return <CODE>15500</CODE>-->
</OFX>

Client requests challenge questions.

<OFX>
<SI1GNONMSGSRQV1>
<SONRQ>
<DTCLIENT>20060321083020</DTCLIENT>
<USERID>12345</USERID>
<USERPASS>MyPassword</USERPASS>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</ORG>
<FID>000111222</FI1D>
</FlI>
<APP1D>MyApp</APPI1D>
<APPVER>1600</APPVER>
<CLIENTUID>22576921-8E39-4A82-9E3E-EDDB121ADDEE</CLIENTUID>
</SONRQ>

68 2.5 The Sighon Message Set

<MFACHALLENGETRNRQ><!--MFA Challenge Transaction aggregate-->
<TRNUID>66D3749F-5B3B-4DC3-87A3-8F795EA59EDB</TRNU D>
<MFACHALLENGERQ><!--MFA Challenge aggregate-->

<DTCLIENT>20060321083020</DTCLIENT

</MFACHALLENGERQ>

</MFACHALLENGETRNRQ>

</SI1GNONMSGSRQV1>
</0OFX>

Server returns challenge answers which include:
* Enumerated phrase 1D requiring a user response
» Enumerated phrase 1D requiring only client response

» Custom question.

<OFX>
<SIGNONMSGSRSV1>
<SONRS>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<DTSERVER>20060321083025</DTSERVER>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</0ORG>
<FID>000111222</FI1D>
</Fl1>
</SONRS>
<MFACHALLENGETRNRS><!--MFA Challenge Transaction aggregate-->
<TRNUID>66D3749F-5B3B-4DC3-87A3-8F795EAS9EDB</TRNU D>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
<MESSAGE>SUCCESS</MESSAGE>
</STATUS>
<MFACHALLENGERS><!--MFA Challenge aggregate-->
<MFACHALLENGE>
<MFAPRHASE ID>MFA13</MFAPRHASE 1D>

OFX 2.2 Specification Public Draft 05/17/2016

69

<MFAPHRASELABEL>Please enter the last four digits of your
social security number.</MFAPHRASELABEL>
</MFACHALLENGE>
<MFACHALLENGE><!--MFA Challenge aggregate w/o a label-->
<MFAPRHASE ID>MFA107</MFAPRHASE 1 D>
</MFACHALLENGE>
<MFACHALLENGE><!--MFA Challenge aggregate-->
<MFAPRHASE ID>123</MFAPRHASE I D>
<MFAPHRASELABEL>With which branch is your account
associated?</MFAPHRASELABEL>
</MFACHALLENGE>
</MFACHALLENGERS>
<MFACHALLENGETRNRS>
</S1GNONMSGSRSV1>
</OFX>

Client collects the answers and returns them to server along with the original request.

<OFX>
<SIGNONMSGSRQV1>
<SONRQ>
<DTCLIENT>20060321083415</DTCLIENT>
<USERI1D>12345</USERID>
<USERPASS>MyPassword</USERPASS>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</0ORG>
<FID>000111222</FI1D>
</Fl1>
<APP1D>MyApp</APPI1D>
<APPVER>1600</APPVER>
<CLIENTUID>22576921-8E39-4A82-9E3E-EDDB121ADDEE</CLIENTUID>
<MFACHALLENGEANSWER><!--MFA Challenge answer-->
<MFAPRHASE ID>MFA13</MFAPRHASE 1D
<MFAPHRASEA>1234</MFAPHRASEA>
</MFACHALLENGEANSWER>
<MFACHALLENGEANSWER><!--MFA Challenge answer-->
<MFAPRHASE ID>MFA107</MFAPRHASE 1 D>
<MFAPHRASEA>Cl ientUserAgent</MFAPHRASEA>
</MFACHALLENGEANSWER>
<MFACHALLENGEANSWER><!--MFA Challenge answer-->

70 2.5 The Sighon Message Set

<MFAPRHASE1D>123</MFAPRHASE 1D>
<MFAPHRASEA>Anytown</MFAPHRASEA>
</MFACHALLENGEANSWER>
</SONRQ>
</SI1GNONMSGSRQV1>
- <I--Other message sets-->
</OFX>

Server accepts requests and returns an ACCESSKEY.

<OFX>
<SIGNONMSGSRSV1>
<SONRS>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
<MESSAGE>Success</MESSAGE>
</STATUS>
<DTSERVER>20060321083445</DTSERVER>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</0ORG>
<FID>000111222</FI1D>
</Fl1>
<ACCESSKEY>EE225228-38E6-4E35-8266-CD69B5370675</ACCESSKEY>
</SONRS>
</SIGNONMSGSRSV1>
-——- <I--All other transaction responses-->
</OFX>

On subsequent calls, client will return ACCESSKEY in SONRQ.

2.6 External Data Support

Some data, such as binary data, cannot easily be sent within XML. For these situations, the specification
defines an element that references some external data. The way that clients pick up the external data
depends on the transport used. For the HTTP-based transport described in this document, servers can send
the data in one of two ways:

» Send the same response, using multipart MIME types to separate the response into the Open Financial
Exchange file and one or more external data files

OFX 2.2 Specification Public Draft 05/17/2016 71

« Client can make a separate HTTP get against the supplied URL, if it really needs the data

For example, to retrieve a logo, a <GETMIMERS> might answer a <GETMIMERQ> as follows:

<GETMIMERS>

<URL>https://www.Ti.com/xxx/yyy/zzz . jpg</URL>
</GETMIMERS>

If the file includes the same response using multipart MIME, clients must have the local file, zzz.jpg.

72 2.6 External Data Support

2.7 Extensions to Open Financial Exchange

An organization that provides a customized client and server that communicate by means of Open
Financial Exchange might wish to add new requests and responses or even specific elements to existing
requests and responses. To ensure that each organization can extend the specification without the risk of
conflict, Open Financial Exchange defines a style of tag naming that lets each organization have its own
naming convention. OFX 2.2 adds a second mechanism to support these enhancements.

2.7.1 Private Tag Extension

This mechanism has existed since OFX 1.0 and continues to be supported within OFX 2.2. Organizations
can register a specific tag name prefix. (The specific procedure or organization to manage this registration
will be detailed at a later time.) If an organization registers “ABC,” then they can safely add new elements
and aggregates named <ABC.SOMETHING> without:

» Colliding with another party wishing to extend the specification

» Confusing a client or server that does not support the extension

The extensions are not considered proprietary. An organization is free to publish their extensions and
encourage client and server implementors to support them.

All tag names that do not contain a period (.) are reserved for use in future versions of the Open Financial
Exchange specification.

Note: Because OFX 2.2 forces XML compliance, unrecognized tags (per the DTD) are no
longer allowed in OFX documents. If a client or server wishes to send an OFX document with
tags or elements not found in the official OFX DTD, a modified DTD must be sent with the
OFX document containing the new content so that validating parsers will not fail on parsing the
new tags or elements.

The requirement to send a modified DTD with the document itself can be relaxed for clients
and servers which do not use validating parsers. However, clients and servers using extensions
to OFX must still conform to a mutually agreed upon DTD.

OFX 2.2 Specification Public Draft 05/17/2016 73

2.7.2 <OFXEXTENSION> Aggregate

OFX 2.2 adds a new mechanism for extending OFX which avoids the potential issue of DTD coordination
with the private tag approach described in Section 2.7.1. This optional aggregate has been added in various
places in the specification: transaction wrappers, synchronization wrappers, profile responses, and within
selected request/response aggregates not subject to transaction wrappers.

Tag Description
<OFXEXTENSION> OFX Extension wrapper aggreate; optional in all cases
<OFXELEMENT> Custom element wrapper; 1 or more
<TAGNAME> Custom element name, A-32
<NAME> User-friendly display name for the custom element, A-32
<TAGTYPE> Any defined OFX type (date, amount, etc.) or standard format for defining an
alpha or numeric field (e.g. such as A-x, N-x), A-20
<TAGVALUE> Custom element data value, A-10000
</OFXELEMENT>

</OFXTENSION>

Itis STRONGLY recommended that all parties using the <OFXEXTENSION> mechanism follow the
guidelines from Section 2.7.1 about registering a prefix and using that prefix in <TAGNAME> in order to
avoid collisions.

For example, if an organization registered "ABC" as a prefix and they would return an <OFXELEMENT>
aggregate containing <TAGNAME>ABC.SOMETHING</TAGNAME>. A user-friendly display name
for the element may be returned in the optional <NAME> tag within the aggregate.

Note: <OFXEXTENSION> aggregates may be present in request or response aggregates.
When contained in a request aggregate it indicates the client is sending supplemental
information to the server. When present in a response aggregate it indicates the server is
sending supplemental information back to the client. Servers should not simply echo
<OFXEXTENSION> aggregates sent by the client in their response; if it is contained in the
response it should contain server specific additional information.

74 2.7 Extensions to Open Financial Exchange

2.7.3 <OFXEXTENSION> Example

A company has registered the prefix ABC and uses it to include a custom date field indicating when
the user last entered a physical branch:

<OFXEXTENS 10N>

<OFXELEMENT>
<TAGNAME>ABC . LASTBRANCHVISIT</TAGNAME>
<NAME>Date of last visit</NAME>
<TAGTYPE>DATE</TAGTYPE>
<TAGVALUE>20140203</TAGVALUE>
</OFXELEMENT>
</OFXEXTENSION>

2.8 Backward Compatibility with Pre-OFX 2.2 Systems

Post-OFX 2.0 differs from pre-OFX 2.0 mainly through the required use of end tags on all elements and
through the use of an XML compliant header. OF X 1.0.2 required any parser to accept end tags but did not
require clients or servers to send elements with end tags. Therefore, because the actual content of the OFX
message sets has not changed but has been extended only, the transformation between OFX 1.0.2 and post-
OFX 2.0 is fairly simple.

2.8.1 End Tag Usage

OFX 2.2 requires the use of end tags in the OFX block of requests and responses. This is necessary to
enforce XML compliance.

2.8.2 XML Compliant Header

Any client or server using OFX 2.2 will have to use the XML compliant header. Mapping between the old
and new style of OFX headers is straightforward.

The old OFX header looks like:

OFXHEADER:100
DATA:OFXSGML
VERSION:102
SECURITY :NONE
ENCODING:-USASCI 1
CHARSET :NONE
COMPRESSI0ON:NONE
OLDFILEUID:NONE
NEWFILEUID:NONE

OFX 2.2 Specification Public Draft 05/17/2016 75

The new XML compliant OFX header looks like:

<?0FX OFXHEADER="200" VERSION="220"" SECURITY=""NONE" OLDFILEUID=""NONE"
NEWFILEUID=""NONE"'?>

The old OFX header maps to the new header as follows:

e OFXHEADER has the same meaning in both versions.

« DATA is not necessary because XML is assumed.

¢ VERSION has the same meaning in both versions.

e SECURITY has the same meaning in both versions.

« ENCODING is not necessary because it is specified in the standard XML declaration.
e CHARSET is not necessary because it is handled by the XML declaration.

« COMPRESSION is not necessary because it will not be handled at this data level.

¢ OLDFILEUID has the same meaning in both versions.

* NEWFILEUID has the same meaning in both versions.

2.8.3 International Support

XML supports many different types of character encoding. An OFX 2.2 server would have to support the
full range of encoding specified in the XML 1.0 recommendation to be fully XML compliant. However,

OFX 1.x only required support for USASCII and UTF-8. Therefore, to guarantee compatibility with older
servers, it will be necessary to limit the encoding of characters to USASCII and UTF-8.

2.8.4 Message Set Versioning

OFX 2.2 supports all V1 message sets found in the OFX 1.6 specification plus the Loan and Image
message sets.

76 2.8 Backward Compatibility with Pre-OFX 2.2 Systems

CHAPTER 3 COMMON AGGREGATES, ELEMENTS, AND
DATA TYPES

3.1 Common Aggregates

This section describes aggregates used in more than one service of Open Financial Exchange (for example,
investments and payments).

3.1.1 Identification of Financial Institutions and Accounts

Open Financial Exchange does not provide a universal space for identifying financial institutions,
accounts, or types of accounts. The way to identify an FI and an account at that FI depends on the service.
For information about service-specific ID aggregates, see Chapter 11, "Banking," Chapter 12,
"Payments," and Chapter 13, "Investments."

3.1.2 Punctuation in Certain User-Supplied Values

This section discusses the addition or removal of punctuation in certain user-supplied values by a client or
server. The term punctuation is loosely used to pertain to the manipulation of these values in such a way as
to make them more readable to either a user or processor, or make them more precise or correct. Making
user-supplied values more readable to the user or processor involves the utilization of punctuation
characters, for example, the stripping out of dashes in a user-supplied account number. Making the values
more precise or correct might involve an actual syntactic change to data, for example, the extension of a
zip code to use the full zip+4 value.

3.1.2.1 Manipulation of User-Supplied Values by a Client

The user-supplied values under consideration here fall into three broad groups:
» Values provided for security reasons
» Values of critical ID fields

* Values of non-critical fields

3.1.2.1.1 Values provided for security reasons

This group pertains to values provided for security reasons such as <USERID> and <USERPASS>
elements. These values must never be manipulated by a client; they are sent without change to the server.

3.1.2.1.2 Values of critical ID fields

This group pertains to critical ID fields, generally account numbers, routing numbers and the like. These
values also should never be manipulated by a client unless the server has supplied the client with a

OFX 2.2 Specification Public Draft 05/17/2016 75

normalizing mask (not available to the customer) such as an <ACCTFORMAT> or <ACCEDITMASK>.
Values in this group, supplied to the client, must be in the correct format already if a server requires it. For
this reason, it is recommended that a server support <ACCTINFORQ> which supplies the information in
the form it is needed. In any event, as part of the enrollment process (either via OFX, the internet, or out of
band) a financial institution should communicate to the end-user which formatting is required. This is
recommended since there may be times when <ACCTINFO> is, for some reason, unavailable.

3.1.2.1.3 Values of non-critical fields

This third group of values relates to certain non-critical fields such as postal codes, addresses and
telephone numbers. Such values should not be manipulated by the client unless there is information that
the client has, which the user may not be aware of, for example, the four additional digits in a U.S. zip
code. In the case where such manipulated data is sent to the server (as opposed to simply displaying it
differently in the application) the client should inform the user that this change will be made, thereby
allowing the user to prevent the change if desired. An example of this would be the substitution of the
name of a township for the name of the larger city encompassing it, based on the postal code value.

3.1.2.2 Validation by a Server

When matching user-supplied text against stored information, servers are free to ignore all supplied
punctuation characters. For example, a server might remove all punctuation from an <ACCTID> before
performing validation. This temporary modification affects neither how the data would be returned, nor its
storage format. Such transformations should not occur with values provided for security reasons such as
<USERID> and <USERPASS> elements.

Servers are permitted to add or remove punctuation or otherwise modify client-supplied information, while
storing the data after processing a (successful) <xxxRQ> or <xxxMODRQ> request. For example, a server
might store only the first five digits of a US <POSTALCODE> value, abbreviate common address
components (storing "'St." when the request specified "Street™), or use a special address for well-known
payees. If a server does make such modifications, it must return the client-supplied values verbatim in the
initial response, and treat the modification as a server-initiated action. Therefore, a subsequent
synchronization should include a <xxxMODRS> with the server-stored values and <TRNUID>0 (zero) to
indicate that the server modified the client-supplied values.

This last requirement does not distinguish between insignificant changes (case or abbreviations) and
semantic differences (use of a completely different address for well-known payees). Although it is
recommended that clients be notified of all insignificant storage discrepancies and modifications, it is
required that clients be informed of all other such modifications.

In summary, if, for security reasons, a server will not accept a value that is punctuated differently than
expected, it must force compliance as described in section 3.1.2.1. In some cases where this is not possible,
sending a <xxxMODRS> to force a change on the client side might also be in order. (Note that a
PAYEEMODRS will not affect pending payments so a server may also have to send out-of-band payment
modifications, if applicable.)

76 3.1 Common Aggregates

3.1.3 Echoing in Responses

A server should echo back unedited element values in the immediate response, but may store values in
edited form. In the cases where the stored value is changed, it is recommended that the server respond with
an out-of-band modification synchronization response whenever possible. For example, if a client sends a
payee name of “Sears” but the server stores it as “SEARS”, the server should send a <PAYEEMODRS> in
the next sync response. (See Chapter 12, "Payments"” for clarification of payee issues.) However, if the
server simply edits punctuation in or out of client-supplied numbers such as account numbers and will
match both forms in future requests, it is not required to notify the client.

Any intermediate software should avoid any modifications to these values, thus avoiding the need to
resolve this issue out-of-band.

3.1.4 Balance Records <BAL>

Several responses allow Fls to send an arbitrary set of balance information as part of a response, for
example a bank statement download. Fls might want to send information on outstanding balances,
payment dates, interest rates, and so forth. Balances can report the date balance reflects in <DTASOF>.

Tag Description

<BAL> Balance-response aggregate
<NAME> Balance name, A-32
<DESC> Balance description, A-80
<BALTYPE> Balance type.

DOLLAR = dollar (value formatted DDDD.cc)
PERCENT = percentage (value formatted XXXX.YYYY)
NUMBER = number (value formatted as is)

<VALUE> Balance value.

Interpretation depends on <BALTYPE> field, amount

<DTASOF> Effective date of the given balance, datetime
<CURRENCY> If dollar formatting, can optionally include currency, see section 5.2
</CURRENCY>

</BAL>

Note: Historically, <BAL> aggregates and the enclosing <BALLIST>, have had limited
adoption by OFX Servers and clients. Out-of-band coordination is typically required in order to
ensure appropriate usage and display. Due to this, OFX 2.2 added multiple new tags and
aggregates to statement download which could, alternatively, be mapped into <BAL>, in order
to increase adoption and simplify implementation for those elements. It is recommended that
OFX 2.2 implementations use these new tags instead of the <BALLIST> implementation.

OFX 2.2 Specification Public Draft 05/17/2016 77

3.1.5 Error Reporting <STATUS>

To provide as much feedback as possible to clients and their users, Open Financial Exchange defines a
<STATUS> aggregate. The most important element is the code that identifies the error. Each response
defines the codes it uses. Codes 0 through 2999 have common meanings in all Open Financial Exchange
transactions. Codes from 3000 and up have meanings specific to each transaction.

Clients should assume the burden of checking the profile and not sending a transaction which the server
does not support. If the client goes ahead and sends such a transaction, the server may either return an
HTTP 400 syntax error, or ignore unsupported elements and aggregates. In the latter case, assuming no
other problems occur in processing that request, servers may return warning code 2028 (Request element
unknown). The response file should not contain the unsupported elements or aggregates.

The last 200 error codes in each assigned range of 1000 are reserved for server-specific status codes. For
example, of the general status codes, 2800-2999 are reserved for status codes defined by the server. Of the
banking status codes, codes 10800-10999 are reserved for the server. If a client receives a server-specific
status code of <SEVERITY> ERROR that it does not know, it must handle it as a general error 2000.

Tag Description
<STATUS> Error-reporting aggregate.
<CODE> Error code, N-6

<SEVERITY> Severity of the error:

INFO = Informational only

WARN = Some problem with the request occurred but a valid response still present
ERROR = A problem severe enough that response could not be made

<MESSAGE> A textual explanation from the FI. Note that clients will generally have messages of their
own for each error ID. Use this element only to provide more details or for the general
errors. A-255

</STATUS>

78 3.1 Common Aggregates

For general errors, the server can respond with one of the following <CODE> values. However, not all
codes are possible in a specific context. See section 2.5.1.7 for a complete list.

Code Meaning

0 Success (INFO)
2000 General error (ERROR)

Note: Servers should provide a more specific error whenever possible. Error 2000
should be reserved for cases in which a more specific code is not available.

2021 Unsupported version (ERROR)

2028 Requested element unknown (WARNING)

3000 MFA challenge authentication is required (ERROR)

6502 Unable to process embedded transaction due to out-of-date <TOKEN> (ERROR)
15500 Signon invalid (see section 2.5.1) (ERROR)

15512 OFX server requires AUTHTOKEN in signon during the next session (ERROR)

Note: Clients will generally have error messages that are based on <CODE>. Therefore, do not
use <MESSAGE> to replace that text. Use <MESSAGE> only to explain an error not well
described by one of the defined codes, or to provide some additional information.
<MESSAGE> should be returned whenever the <CODE> can be refined. For example,
<CODE>2000 should always be accompanied with a <MESSAGE> explaining the problem.

3.1.6 Common Aggregates related to Images

3.1.6.1 Image Data Aggregate <IMAGEDATA>

Several OFX request and response pairs allow clients to request, and Fls to send, instructions for accessing
images. These instructions contain image retrieval information but not the actual images themselves. This
information is returned in the <IMAGEDATA> aggregate, and is used by the client to retrieve the actual
images, as described in Chapter 15, “Image Download”.

Tag Description
<IMAGEDATA> Image information
<IMAGETYPE> Type of image. Use one of the following:

STATEMENT: the image is a statement image
TRANSACTION: the image is a transaction image (e.g. a check image)

TAX: the image is a tax image

OFX 2.2 Specification Public Draft 05/17/2016 79

Tag

<IMAGEREF>

<IMAGEREFTYPE>

Account-from options.
Choose either
<IMAGEDELAY=> or
<DTIMGAVAIL>.

Description

Server specified unique identifier for the image to be used during the request for
the image. Can be either image identifier or URL, depending on the value of
<IMAGEREFTYPE>, A-1024

Type of reference, see section 3.1.6.1.1.

<IMAGEDELAY>

_Or-

<DTIMAGEAVAIL>

Number of calendar days from <DTSERVER> (for statement images) or
<DTPOSTED> (for transaction images) when image will become available, N-5

Image availability date, datetime

<IMAGETTL>

<CHECKSUP>

</IMAGEDATA>

Number of calendar days the image will remain available on the host once the
image becomes available, N-5

Check image information. Use one of the following:

FRONTONLY: The image contains the front of the check.

BACKONLY: The image contains the back of the check.

FRONTANDBACK: The image contains both the front and back of the check.

Each image corresponds to one <IMAGEDATA> aggregate. The number of <IMAGEDATA> aggregates
returned in a statement download or closing response depends upon the type of response. A closing
statement will be contained in one image. A check image, however, will be contained in one or two
images, depending on whether the front and back are concatenated. Therefore, only one <IMAGEDATA>
aggregate will be returned in the various <xxxSTMTENDRS> responses and one or two <IMAGEDATA>
aggregates will be returned in the <xxxSTMTTRN> responses since the latter correspond to individual

transactions (e.g. checks).

If <IMAGEDELAY>, <DTIMAGEAVAIL> and/or <IMAGETTL> are missing from the <IMAGEDATA>
aggregate, and corresponding default tags are missing from the <IMAGEMSGSET> profile aggregate, the
presumption should be made that the images are available immediately and will remain available for an

indeterminate number of days.

80

3.1 Common Aggregates

3.1.6.1.1 Values for <IMAGEREFTYPE> Element

Value Description

OPAQUE The image is accessed via an explicit OFX <IMAGERQ> request,
which will be followed by the image data. See section 15.2.1 for
more information

URL The image is accessed directly via the URL provided. The image
cannot be retrieved via an OFX image request. The expectation is
that the client will not provide authentication and will simply
follow the URL provided. See section 15.2.2 for more information.

FORMURL The image is accessed directly via an encoded URL. The image
cannot be retrieved via an OFX image request. The expectation is
that the client will send authentication to the server. See section
15.2.3 for more information.

3.1.6.2 Image Profile Aggregate <IMAGEPROF>

The following aggregate may appear in various profile responses and will be referred to in those profile
sections where appropriate.

Tag Description
<IMAGEPROF> Image Profile (if supported)
<CLOSINGIMGAVAIL> Whether the server supports closing statement images, Boolean
<TRANIMGAVAIL> Whether the server supports transaction images, Boolean
</IMAGEPROF>

OFX 2.2 Specification Public Draft 05/17/2016

3.2 Common Elements

This section defines elements used in several services of Open Financial Exchange. The format of the
value is either character (A-n) or numeric (N-n) with a maximum length n; or as a named type. Section
3.2.8 describes the named types.

3.2.1 Client-Assigned Transaction UID <TRNUID>
Format: A-36

Open Financial Exchange uses <TRNUID>s to identify transactions within transaction wrappers
(<XxxXTRNRQ>, </xxxTRNRQ>).

In most cases, clients originate <TRNUID>s. When a client originates a <TRNUID>, the value of the
<TRNUID> is always set to a unique identifier. The server must return the same <TRNUID> in the
corresponding response and any later synchronization responses that include this response. Clients may
use this <TRNUID> to match up requests and responses or to recognize synchronized responses for
transactions they did not initiate. Servers can use <TRNUID>s to reject duplicate requests. Because
multiple clients might be generating requests to the same server, transaction 1Ds must be unique across
clients. Thus, <TRNUID> must be a globally unique ID.

In some cases, servers can originate a transaction that was not specifically requested by a client. For
instance, a client might set up a recurring payment model. Although the client originates the payment
model, the server originates the individual payments. Whenever the server originates a transaction, the
value of the <TRNUID> must be set to zero. Lite synchronization servers (see Chapter 6, "Data
Synchronization™) must respond to synchronization requests with information about all changes of this

type.

The Open Software Foundation Distributed Computing Environment standards specify a 36-character
hexadecimal encoding of a 128-bit number and an algorithm to generate it. Clients are free to use their own
algorithm, to use smaller <TRNUID>s, or to relax the uniqueness requirements. However, it is
RECOMMENDED that clients allow for the full 36 characters in responses to work better with other
clients.

For example: A client creates a new recurring payment using <KRECPMTRQ> in a <RECPMTTRNRQ>
with <TRNUID>123. Later, the same client might cancel the model using <KRECPMTCANRQ> in a
<RECPMTTRNRQ> with <TRNUID>456. The server would inform the client of any spawned payments
using <PMTRS> responses with <TRNUID>0 in later payment synchronization responses
(KPMTSYNCRS>).

Usage: All services

3.2.2 Server-Assigned ID <SRVRTID>

Format: A-10 for <SRVRTID>

82 3.2 Common Elements

A <SRVRTID> is a server-assigned ID for an object that is stored on the server. It should remain constant
throughout the lifetime of the object on the server. The client will consider the SRVRTID as its “receipt” or
confirmation and will use this ID in any subsequent requests to change, delete, or inquire about this object.

A <SRVRTID> is not unique across FI’s or Service Providers, and clients might need to use FI +
<SPNAME> + <SRVRTID> when a unigue key is necessary.

A <SRVRTID> must be unique across users for joint accounts. Therefore, it is not sufficient to just keep
the <SRVRTID> unique to an account if it is shared by more than one user.

Where the context allows, a server may use the same value for a given server object for both <SRVRTID>
and <FITID>, but the client will not know this. In this case, the server must assign <SRVRTID> and
<FITID> values that are more unique than otherwise required. Because of the differing uniqueness
constraints on the individual elements, such a reused value must be unique throughout the FI.

For example: The server creates the new recurring model from the example in section 3.2.1 with
<RECSRVRTID>1234:5687. The server uses this identifier in the initial <KRECPMTRS> and any
synchronization responses that reference this model. The client references the same <RECSRVRTID> in
the later <KRECPMTCANCRQ>.

If any payments are spawned from this model before it is cancelled, they would each have their own
<SRVRTID> value (for example, <SRVRTID>8765:4321 and <SRVRTID>8765:4322). The <SRVRTID>
value for one of the spawned payments may match the <KRECSRVRTID> of the model. Such a match is not
required for any spawned payment. To guarantee uniqueness of the payment identifiers, no more than one
spawned payment may use the <RECSRVRTID> value of its model.

Usage: Banking, Payments, Investments, Bill Presentment, Tax

Elements of this type: RECSRVRTID and SRVRTID

3.2.3 Financial Institution Transaction ID <FITID>
Format: A-255

An FI (or its Service Provider) assigns an <FITID> to uniquely identify a financial transaction that can
appear in an account statement. Its primary purpose is to allow a client to detect duplicate responses. Open
Financial Exchange intends <FITID> for use in statement download applications, where every transaction
(not just those that are client-originated or server-originated) requires a unique ID.

An <FITID> also uniquely identifies the closing statement in <CLOSINGRS> and <CCCLOSINGRS>.
Again, the OFX client should detect repeated closing statements (duplicate downloads) using these
identifiers.

FITIDs must be unigue within the scope of an account but need not be sequential or even increasing.
Clients should be aware that FITIDs are not unique across Fls. If a client performs the same type of request
within the same scope at two different Fls, clients will need to use FI + <ACCTID> + <FITID> as a

OFX 2.2 Specification Public Draft 05/17/2016 83

globally unique key in a client database. That is, the <FITID> value must be unique within the account and
Financial Institution (independent of the service provider).

Note: Although the specification allows FITIDs of up to 255 characters, client performance
may significantly improve if servers use fewer characters. It is recommended that servers use
32 characters or fewer.

For example: The two spawned payments mentioned in section 3.2.1 are processed and later downloaded
in a <STMTRS>. The first payment’s <STMTTRN> would list <SRVRTID>8765:4321,
<RECSRVRTID>1234:5678, and <FITID>9999:8888:7777. The second payment would be described in a
<STMTTRN> containing <SRVRTID>8765:4322, <RECSRVRTID>1234:5678, and
<FITID>6666:5555:4444.

Usage: Bank statement download, investment statement download

Elements of this type: <CORRECTFITID>, <FITID>, <RELFITID>, and <REVERSALFITID>

84 3.2 Common Elements

3.2.4 Token <TOKEN>
Format: A-10 for <TOKEN>, used in V1 message sets

Open Financial Exchange uses <TOKEN> as part of data synchronization requests to identify the point in
history that the client has already received data, and in responses to identify the server’s current end of
history. See Chapter 6, “Data Synchronization,” for more information.

<TOKEN-> is unigue within an FI and the scope of the synchronization request. For example, if the
synchronization request includes an account 1D, the <TOKEN> needs to be unique only within an account.
Servers are free to use a <TOKEN> that is unique across the entire FI. Clients must save separate
<TOKEN->s for each account, FI, and type of synchronization request.

Usage: All synchronization requests and responses

3.2.5 Transaction Amount <TRNAMT>

Format: Amount

Open Financial Exchange uses <TRNAMT> in any request or response that reports the total amount of an
individual transaction.

Usage: Bank statement download, investment statement download, payments

3.2.6 Memo <MEMO>

Format: A-255 for <MEMO=>, used in V1 message sets
A <MEMO> provides additional information about a transaction.

Usage: Bank statement download, transfers, payments, investment statement download, bill presentment
tables

OFX 2.2 Specification Public Draft 05/17/2016 85

3.2.7 Date Start and Date End <DTSTART> <DTEND>

Format: Datetime

Clients use these elements in requests to indicate the range of response that is desired. Servers use these
elements in responses to let clients know what the FI was able to produce.

In requests, the following rules apply:

If <DTSTART> is absent, the client is requesting all available history (up to the <DTEND>, if
specified). Otherwise, it indicates the inclusive date and time in history where the client expects servers
to start sending information.

If <DTSTART> is absent, the client is requesting all available history (up to the <DTEND>, if
specified). Otherwise, it indicates the inclusive date and time in history where the client expects servers
to start sending information. This inclusiveness also applies to the time element. And, because servers
and clients may store time elements to differing degrees of precision, the server should include
transactions in the response using the highest degree of precision possible. For example:

 If the request does not include a time element, then all transactions on or after the date portion
should be returned.

 If the request includes time specified to milliseconds but the bank system only has time specified to
seconds on its transactions, then all transactions on or after the date/time (specified to seconds)
should be returned.

If <DTEND> is absent, the client is requesting all available history (starting from <DTSTART>, if
specified). Otherwise, it indicates the exclusive date and time in history where the client expects servers
to stop sending information. This exclusiveness also applies to the time element. And, because servers
and clients may store time elements to differing degrees of precision, the server should include
transactions in the response using the highest degree of precision possible. For example:

« If the request does not include a time element, then all transactions before the date portion should be
returned.

« If the request includes time specified to milliseconds but the bank system only has time specified to
seconds on its transactions, then all transactions before the date/time (specified to seconds) should
be returned.

In responses, the following rules apply:

<DTSTART> is the date and time where the server began looking for information, not necessarily the
date of the earliest returned information. If the response <DTSTART> is later than the requested
<DTSTART?>, clients can infer that the user has not signed on frequently enough to ensure that the
client has retrieved all information. If the user has been calling frequently enough, <DTSTART> in the
response will match <DTSTART> in the request.

<DTEND?> is the date and time that, if used by the client as the next requested <DTSTART>, it would
pick up exactly where the current response left off. It is the exclusive date and time in history where the
server stopped looking for information, based on the request <DTEND> rules.

86

3.2 Common Elements

Because the system add date for a transaction is not necessarily the post date for the transaction (the latter
occurring when the account is actually debited or credited), a server should consider the <DTSTART> and
<DTEND> dates in a <(CC)STMTRQ> as a request for any transactions that were posted or added to the
FI system at that time. In addition, the transactions returned should probably span a greater window of time
than that included in the <DTSTART>/<DTEND> dates since a transaction might be added to the system
after a statement download request was made for that time period. (Clients should be able to filter out the
unnecessary transactions.) If a client is always requesting a download sequentially, through time, is never
requesting an end date using <DTEND> and is always substituting <DTEND> in the response for
<DTSTART> in the next request, it is safe for a server to return only those transactions that had a system
add date on or after <DTSTART> in the request. In all cases, servers are minimally required to use a
“system add datetime” as the basis for deciding which details match the requested date range. For example,
if an FI posts a transaction dated Jan 3 to a user’s account on Jan 5, and a client connects on Jan 4 and
again on Jan 6, the server is required to return that Jan 3-dated transaction when the client calls on Jan 6.

Usage: Bank statement download, investment statement download, 401(k) summary, bill presentment list
request

OFX 2.2 Specification Public Draft 05/17/2016 87

3.2.8 Common Data Types

3.2.8.1 Dates, Times, and Time Zones
There is one format for representing dates, times, and time zones. The complete form is:
YYYYMMDDHHMMSS. XXX [gmt offset[:tz name]]

3.2.8.1.1 Ranges for Years, Months, Days, Hours, Seconds

Portion of Date/Time Field Range

YYYY 0000 - 9999
MM 1-12
DD 1-31
HH 0-23
MM 0-59
SS 0-60
60 is only used in the case of the leap second

3.2.8.2 Date and Datetime

Elements specified as type date or datetime and generally starting with the letters “DT” accept a fully
formatted date-time-timezone string. For example, “19961005132200.124[-5:EST]” represents October 5,
1996, at 1:22 and 124 milliseconds p.m., in Eastern Standard Time. This is the same as 6:22 p.m.
Greenwich Mean Time (GMT).

Date and datetime also accept values with fields omitted from the right. They assume the following
defaults if a field is missing:

Specified date or datetime Assumed defaults

YYYYMMDD 12:00 AM (the start of the day), GMT
YYYYMMDDHHMMSS GMT
YYYYMMDDHHMMSS. XXX | GMT

Note that times zones are specified by an offset and optionally, a time zone name. The offset defines the
time zone. Valid offset values are in the range from —12 to +12 for whole number offsets. Formatting is
+12.00 to -12.00 for fractional offsets, plus sigh may be omitted.

Take care when specifying an ending date without a time. For example, if the last transaction returned for a
bank statement download was Jan 5 1996 10:46 am and if the <DTEND> was given as just Jan 6, the next
statement download request would have a <DTSTART> of just Jan 6, causing any transactions posted on

88 3.2 Common Elements

Jan 5 after 10:46 am to be missed. If results are available only daily, then just using dates and not times will
work correctly.

Note: Open Financial Exchange does not require servers or clients to use the full precision
specified. However, they are REQUIRED to accept any of these forms without complaint.

Some services extend the general notion of a date by adding special values, such as “TODAY.” These
special values are called “smart dates.” Specific requests indicate when to use these extra values, and list
the element as having a special data type.

OFX 2.2 Specification Public Draft 05/17/2016 89

3.2.8.3 Time

Elements specified as type time and generally ending with the letters “TM” accept times in the following
format:

HHMMSS. XXX[gmt offset[:tz name]]

The milliseconds and time zone are still optional, and default to GMT.

3.2.8.4 Time Zone Issues

Several issues arise when a customer and FI are not in the same time zone, or when a customer moves a
computer into new time zones. In addition, it is generally unsafe to assume that computer users have
correctly set their time or time zone.

Although most transactions are not sensitive to the exact time, they often are sensitive to the date. In some
cases, time zone errors lead to actions occurring on a different date than intended by the customer. For this
reason, servers should always use a complete local time plus GMT offset in any datetime values in a
response. If a customer’s request is for 5 p.m. EST, and a server in Europe responds with 1 a.m. MET the
next day, a smart client can choose to warn the customer about the date shift.

Clients that maintain local state, especially of long-lived server objects, should be careful how they store
datetime values. If a customer initiates a repeating transaction for 5 p.m. EST, then moves to a new time
zone, the customer might have intended that the transaction remain 5 p.m. in the new local time, requiring
a change request to be sent to the server. If, however, the customer intended it to remain fixed in server
time, this would require a change in the local time stored in the client.

Client software that doesn’t know the current local time zone for the user, or client proxies that don’t know
the current local time zone of their end users, should maintain and display the datetime value in the time
zone indicated by the originator of the value and explicitly marked with that time zone. As an example,
consider <DTPMTDUE> in section 11.5.4.2. If the biller gave a due date of 23:59pm EST on Dec. 29,
1997, this is best displayed as 23:59pm EST rather than rendered in local time if there is any doubt at all as
to the current local time zone of the end user looking at the due date.

90 3.2 Common Elements

When considering timezone conversions, remember the following differences between the date and
datetime datatypes:

» Date = A date without time; this date is explicit. Clients and servers will not convert the value in any
way. Examples include birth date and billing date.

» Datetime = A date and time format; clients and servers may convert this date to their local timezone.
Examples include last account update date and bill summary fetch date.

Note: Developers should consider the possibility of a date change due to timezone conversion.
A datetime value in the GMT timezone with a time of 12:00:00 (noon) would be converted to
another time on the same date in every timezone. For example, 199812251200 remains
Christmas Day in every timezone.

3.2.9 Amounts, Prices, and Quantities

3.2.9.1 Basic Format
Format: A-32

This section describes the format of numerical values used for amounts, prices, and quantities. In all cases,
a numerical value that does not contain a decimal point has an implied decimal point at the end of the
value. For example, a numerical value of “550” is equivalent to “550.” Trailing and leading spaces should
be stripped. Number format uses a leading sign. Negative number format uses a minus sign (-). Positive
number format uses a plus sign (+). The plus sign is implied for all amounts and can be omitted.

The following types are defined to have a maximum of 32 characters, including alphabetic characters,
digits and punctuation. However, clients and servers may have specific limits for the maximum number of
digits to the left or right of a decimal point. If a server cannot support a client request due to the size or
precision of a number, the server should return status code 2012.

Amount: Amounts that do not represent whole numbers (for example, 540.32), must include a decimal
point or comma to indicate the start of the fractional amount. Amounts should not include any punctuation
separating thousands, millions, and so forth. The maximum value accepted depends on the client.

Quantity: Use decimal notation.
Unitprice: Use decimal notation. Unless specifically noted, prices should always be positive.

Rate: Use decimal notation, with the rate specified out of 100%. For example, 5.2 is 5.2%. Rates can be
greater than 100 and can be negative.

Some services define special values, such as INFLATION, which you can use instead of a designated
value. Open Financial Exchange refers to these as “smart types,” and identifies them in the specification.

OFX 2.2 Specification Public Draft 05/17/2016 91

3.2.9.2 Positive and Negative Signs

Most OFX transaction aggregates describe the flow of funds. Amounts in transactions which clearly
describe the flow of funds should normally be positive. For example, bank transfers (KINTRARQ>), bill
payments (<PMTRQ>) and investment buys/sells (<BUYSTOCK>, <SELLSTOCK?>) should all have
positive amounts. An exception to this is the sign of the amount in statement download transactions,
wrapped within <STMTTRN></STMTTRN> tags. The amounts in these transactions should be signed on
the basis of how the account is affected, e.g. a <TRNTYPE>DEBIT should have a negative <TRNAMT>
value.

Servers should sign amounts from the perspective of the user in cases where the flow of funds cannot be
determined from the transaction aggregate alone. For example, interest amounts can be either positive or
negative, depending on whether the interest is earned or paid.

3.2.10 Language

Language identifies the human-readable language used for such things as status messages and e-mail.
Language is specified as a three-letter code based on 1SO-639.

3.2.11 Other Basic Data Types

Boolean: Y = yes or true, N = no or false.

currsymbol: A three-letter code that identifies the currency used for a request or response. The currency
codes are based on 1SO-4217. For more information about currencies, refer to section 5.2.

URL: String form of a World Wide Web Uniform Resource Location. It should be fully qualified including
protocol, host, and path. A-255

92 3.2 Common Elements

CHAPTER 4 OFX SECURITY

OFX provides several options for ensuring the security of customer transactions. This chapter describes the
OFX security framework, security goals, types of security, and financial institution (FI) responsibilities.

4.1 Security Concepts in OFX

4.1.1 Architecture

OFX security applies to the communication paths between a client and the profile server, a client and the
Web server, and, when the OFX server is separate from the Web server, a client and the OFX server. The
diagram below illustrates the initial order in which these communications occur, assuming that the client
already has the URL for the FI profile server.

The bootstrap process for a client is:

- From the FI Profile Server, the client gets the URL of the FI Web server, so that it can retrieve a
particular message set.

. The client sends an OFX request to the FI1 Web Server URL, from which it is forwarded to the OFX
Server.

. The OFX Server sends back a response to the client via the Web Server.

Financial Institution or Third Party

—| F1 Identifier |—|—P

FI Profile
le— including
Web Server URL

PROFILE
SERVER

CLIENT | = mmm e e e s m e e m e mm————— — ——— — —
Financial Institution or 3rd Party

f

—| OFX Request

SERVER SERVER
e— OFX Response |—

I
]
I
]
I
WEB OFX :
]
I
I
]
I
]

OFX 2.2 Specification Public Draft 05/17/2016 93

4.1.2 Security Goals

The main goals of OFX security are:

- Privacy: Only the intended recipient can read a message. Encryption is a technique often used to
ensure privacy.

. Authentication: The recipient of a message can verify the identity of the sender. In OFX, passwords
allow an FI to authenticate a client, and certificates allow a client to authenticate a server.

. Integrity: A message cannot be altered after it is created A cryptographic hash is often used to assist
integrity verification.

OFX specifies the minimum security required for Internet transactions and provides several security
options, based on existing standards. Through its choice of security techniques and related options, an Fl
can achieve privacy, authentication, and integrity with varying degrees of assurance. For example, there
are many kinds of encryption algorithms, most of which can be strengthened or weakened by changing the
key size.

4.1.3 Security Standards

Several standards underlie Type 1 security:

. Certificates (X.509 v3) are used to identify and authenticate servers, and to convey their public keys.
. PKCS #1 block type 2 is the encryption format specified by the recipe (See section 4.2.2.4.3).

- RSAis the encryption algorithm.

4.1.3.1 Certificates and Certification Authorities

A certificate is a digitally signed document that binds a public key to an identity. It contains a public key
that identifies information such as the name of the person or organization to whom the key belongs, an
expiration date, a unique serial number, and additional descriptive information.

A certificate is useful for authentication because it is signed by a trusted third-party. This assures the
verifier that the certificate has not been changed since it was signed. The entity which signs certificates is
called a certification authority, or CA. A CA acts somewhat like a notary public: the reader of a document
stamped by a notary public knows that the notary has checked the identity of the person who originated the
document. By digitally signing someone’s identity and public key, the CA affirms that the two go together.

If the client and server do not share a common CA, the client cannot validate the server’s certificate. For
this reason, OF X specifies a number of trusted CAs that all clients must accept and all servers must use.

Certificates are used in Type 1 security, as well as channel-level security through SSL. The format for
these is defined by X.509 version 3. For more information, refer to ITU-T Rec. X.509, ISO/IEC 9594-8.

94 4.1 Security Concepts in OFX

4.1.3.2 PKCS #1

The acronym, PKCS, stands for “Public Key Cryptography Standards,” a set of standards developed by a
consortium and hosted by RSA. PKCS #1 is the RSA Encryption Standard, the rules for using RSA public
key encryption. For the complete syntax of the PKCS #1 standard, refer to “Public-Key Cryptography
Standards (PKCS)” published by RSA Data Security, Inc. at http://www.rsa.com/.

4.1.4 Fl Responsibilities

OFX is designed with the understanding that there must be a security policy in place at each supporting
financial institution. That policy must clearly delineate how customer data is secured, and how transactions
are managed such that all parties to the transaction are protected according to accepted and recognized best
common practices.

The decision regarding which users may perform a given operation on a given account must be determined
by the financial institution. For example, is the specified user authorized to perform a transfer from the
specified account? The financial institution must also determine whether the user has exceeded allowed
limits on withdrawals, whether the activity on this account is unusual given past history, and other context-
sensitive issues.

Although OFX provides many security options, an FI must support a minimal level of security. To ensure
the proper security configuration, an FI must follow the steps outlined below.

1. Obtain one certificate for the profile server. This certificate must be rooted in one of the approved
Certification Authorities (CAs). Establish appropriate safeguards for this certificate and its private key.

2. Obtain a certificate, rooted in an acceptable CA, for each OFX server, whether it is operated by the FI
or by a third party.

3. Decide whether to use Type 1 application-level security for any message sets. For each message set to
be secured by Type 1, obtain a certificate.

Type 1 security can be used on any message set, except for the Profile message set.

There are a number of other security issues beyond OFX proper, especially those relating to the Internet
and network engineering. These issues are beyond the scope of this document. Fls are advised to conduct a
complete security review of all servers associated with OFX.

OFX 2.2 Specification Public Draft 05/17/2016 95

4.1.5 Security Levels: Channel vs. Application

With OFX, security can be applied at two different levels in the message exchange process.

- Channel level: Generally transparent to a client or server, channel-level security is built into the
communication process, protecting messages between two ends of the “pipe.” To secure messages
during HTTP transport, client and server applications use the Secure Sockets Layer (SSL) protocol.
SSL transparently protects messages exchanged between the client and the destination Web server. SSL
authenticates the destination Web server using the Web server’s certificate. Additionally, it provides
privacy via encryption, and SSL-record integrity, i.e. the block of data sent in each transmission cannot
be altered without detection.

. Application level: Transparent to and independent of the transport process, application-level security
protects the user password sent from the client application all the way to the server application that
handles the OFX messages. The server application typically resides beyond the destination Web server,
secured behind an Internet firewall. Application-level security requires channel-level security.

The following diagram illustrates how channel-level and application-level security relate. The diagram
shows the path of a request from the client to the server when application-level encryption is used.

Passwords are encrypted by the The Web server removes the
client application and by the SSL encryption and forwards
SSL Protocol the encrypted password and

plaintext OFX data

SSL Encryption

OFX Data OFX Data
CLIENT Encrypted WEB Encrypted OFX
Password SERVER Password '| SERVER

Channel-level security is sufficient for most message sets, provided that the network architecture at the
destination is adequately secure; however, application-level password encryption can allow a more flexible
back-end architecture with a high level of security.

96 4.1 Security Concepts in OFX

4.2 Security Implementation in OFX

4.2.1 Channel-Level Security

4.2.1.1 Specification in FI Profile

For each message set listed in the FI profile response, the <MSGSETCORE> aggregate describes the
channel-level security required for that message set.

The <TRANSPSEC> element defines whether or not channel-level security is required. It can have one of
the following values:

Description
N Do not use any channel-level security
Y Use channel-level security

All currently defined message sets require channel-level security.

4.2.1.2 SSL Protocol

Secure Sockets Layer (SSL) is a cryptographic protocol commonly used for channel-level security on the
Internet. Central to the security of SSL is the server certificate. This certificate assures clients that the
server is who it claims to be. It contains the public key of the server, which the client uses to encrypt the
session keys it generates as part of each connection.

All of this function is available without significant software development on either the client or server side;
however, the client and server must be configured to use appropriate encryption algorithms (CipherSuites).
In addition, clients and servers must share a trusted root certificate, or the client will not be able to validate
the server’s certificate.

Note: Although SSL supports client-side certificates to allow a server to authenticate a client,
OFX does not require them at this time. To identify and authenticate a customer, servers should
use the information provided in the signon request <SONRQ>.

Setting the <TRANSPSEC> element to Y means that the client must use SSL v3 or higher.

OFX 2.2 Specification Public Draft 05/17/2016 97

4.2.1.3 Trusted Certificate Authorities

Both channel-level and application-level security rely on clients and servers having at least one trusted
certification authority (CA) in common. To ensure that clients can test the validity of a certificate, servers
must have their certificates signed by an approved OFX CA. Clients are assumed to have access to this
trusted CA.

4.2.1.4 CipherSuites

The following SSL CipherSuites are approved for use with OFX:

SSL_RSA WITH_RC4_128 SHA
SSL_RSA WITH_IDEA_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA WITH_3DES_EDE_CBC_SHA
SSL_DH_DSS_WITH_DES_CBC_SHA
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DH_RSA WITH_DES_CBC_SHA
SSL_DH_RSA WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA WITH_DES_CBC_SHA
SSL_DHE_RSA WITH_3DES_EDE_CBC_SHA

Other CipherSuites are not approved.

4.2.1.5 Key Size

Signing keys must be either RSA with a minimum 1024-bit modulus, or DSS with a 1024-bit modulus.

Server RSA keys and Diffie-Hellman keys must both have a minimum 1024-bit modulus. The Diffie-
Hellman base must be primitive.

98

4.2 Security Implementation in OFX

4.2.2 Application-Level Security

4.2.2.1 Specification in FI Profile

For each message set listed in the FI profile response, the <MSGSETCORE> aggregate describes the
security required for that message set.

The <OFXSEC> element defines the type of application-level security required for the message set.
<OFXSEC> can have one of the following values, which also are used in the SECURITY element of the
OFX headers:

Description
NONE Do not use any application-level security
TYPE1 Use Type 1 application-level security

Application-level security requires channel-level security.

4.2.2.2 Type 1 Protocol Overview

The goal of the Type 1 protocol is to protect the user password all the way to the destination OFX server. In
the absence of client certificates, this password is the primary vehicle for client authentication and is
therefore worthy of special consideration.

Type 1 requires channel-level security, i.e. SSL. Though the password is well protected by SSL alone in
the client to Web server connection, the server-side network architecture may render the password less
secure while it is in transit between the Web and OFX servers. With Type 1, the user password is not
decrypted until the request reaches the OFX server.

Type 1 applies only to the request part of a message; the server response is unaffected.

A simple approach would be to deliver the server’s Type 1 certificate in the profile and use it to encrypt the
password, but that would permit a replay attack. An attacker could capture a transaction, including
encrypted password, and replay it to the server. It wouldn’t matter that the password remained unknown.

To prevent the replay attack, the server introduces some random data to the process, data which is
unpredictably different for each transmission. The client asks for the random data with a challenge request.
The server sends it, along with its Type 1 certificate, in the challenge response. The client then uses that
random data in the encryption process, thereby assuring the server that the client response is associated
with this and only this interaction.

The following diagram illustrates:

OFX 2.2 Specification Public Draft 05/17/2016 99

—| Challenge request I—’

Challenge response | |
WEB w/ random data OEX
CLIENT SERVER SERVER

OFX request w/
encrypted password

‘—| OFX response I—

4.2.2.3 Type 1 Protocol Notation

In this section, the expression, C = E5 (M), means that plain text M is encrypted either symmetrically or
asymmetrically with key A into ciphertext C. The expression, M = DA (C) signifies the inverse operation

(decryption), in which ciphertext C is decrypted into plain text M using key A. If C was encrypted
asymmetrically, then A in the latter case is understood to be the private component of the key. The
expression, A || B, indicates that B is concatenated to A.

4.2.2.4 Type 1 Protocol Implementation

Type 1 application-level security provides additional password secrecy. These are the steps for conducting
a Type 1 transaction (unless otherwise noted, the term “Server” in this section refers to the Financial
Institution Server):

1. Client obtains the Server’s profile from the Profile Server (see Chapter 7, "FI Profile")
2. Client establishes an SSL connection with the Server (see section 4.2.1)

3. Client sends <CHALLENGERQ> to Server (see section 4.2.2.4.1)
4

Server sends <CHALLENGERS> which contains a nonce and the Server’s Type 1 certificate (see
section 4.2.2.4.2)

Client builds a transaction request and sends it to the Server (see section 4.2.2.4.3)

o

6. Server parses the request, verifying the user password, and either rejects or processes the transaction
(see section 4.2.2.4.4)

100 4.2 Security Implementation in OFX

The following table lists data elements used in the Type 1 protocol:

Field Type Description
BT octet, length 1 Block Type byte.
BT = 0x02
CT1 octet string, length 128 Ciphertext: the PKCS #1 RSA encryption of EB with KS.

CTl= EKS(EB)

CT2 printable ASCII, length 171 Encoded Ciphertext: the RADIX-64 encoding of CT1 (see
RFC 1113, 84.3.2.4 and §4.3.2.5).

CT2 = RADIX64(CT1)

D octet string, length 68 Data: the user data to be encrypted.
D=NC|P|T

EB octet string, length 128 Encryption Block: the formatted plain text block, ready for
encryption.

EB = 0x00 || BT || PS || 0x00 || D

KS RSA key, modulus length 1,024 bits Server’s Type 1 RSA key

NC octet string, length 16 Client Nonce: string of random octets generated by the
Client

NS octet string, length 16 Server Nonce: string of random octets generated by the
Server

P printable ASCII, null-padded, length 32 | Password: shared by the Client and Financial Institution,
null-padded on the right

PS octet string, length 57 Padding String: each octet is pseudo-random and non-zero

T octet string, length 20 Authentication Token.

T =SHAL(NS||P||NC)

OFX 2.2 Specification Public Draft 05/17/2016 101

struct {

unsigned char nc[16];
unsigned char p[32];
unsigned char t[20];

} D;

struct {
unsigned char nulll = 0x00;
unsigned char bt = 0x02;
unsigned char ps[57];
unsigned char null2 = 0x00;
struct D d;

} EB;

4.2.2.4.1 Challenge request

Client sends a <CHALLENGERQ> to the Server.

4.2.2.4.2 Challenge response

Server sends a <CHALLENGERS> to the client. This response contains the Server’s Type 1 certificate and
NS.

4.2.2.4.3 Building the OFX Request

1. Client generates 16 random octets and places them in NC (see RFC 1750 for recommendations on
entropy generation)

2. Client obtains the User’s password (P)
3. Client computes T = SHAL(NS || P || NC)

4. Client generates 57 pseudo-random, non-zero octets and places them in PS (NC may be used to seed
the pseudo-random number generator)

5. ClientsetsD=NC|P| T
6. Client sets EB =0x00 || BT || PS || 0x00 || D

7. Client RSA-encrypts EB using the Server’s Type 1 public key (obtained from the Server’s Type 1
certificate): CT1 = Exg(EB) (see PKCS #1, §88.2-8.4)

8. Client encodes the ciphertext for transport: CT2 = RADIX64(CT1). See RFC 1113, §4.3.2.4 and
84.3.2.5. This is a standard encoding method supported by RSA’s Bsafe library and others.

9. Client constructs the body of its OFX request
10. Client copies CT2 to the <USERPASS> field of the OFX <SONRQ>
11. Client sends the complete OFX request to the Server

In <PINCHRQ>, the steps are identical, except that in step 2, P is set to <NEWUSERPASS> and in step
10, CT2 is copied to the <NEWUSERPASS> field of the <PINCHRQ>.

102 4.2 Security Implementation in OFX

The diagram below illustrates the creation of CT2.

Legend NS P NC
16 bytes 32 bytes 16 bytes
. SHA-1 hash
SHA-1
concatenation
RSA encryption with Server's
public key
NC P T
16 bytes 32 bytes 20 bytes
‘ RADIX-64 encoding
0x00 BT PS 0x00 D
1 byte 1 byte 57 bytes 1 byte 68 bytes
EB CT1 CT2
128 bytes 128 bytes 171 bytes
OFX 2.2 Specification Public Draft 05/17/2016 103

4.2.2.4.4 Parsing the OFX Request

1. Server reads the OFX SECURITY header in the request file to ascertain whether Type 1 processing
should be used on this message. If Type 1 is not used, skip to step 6.

2. Server extracts CT2 from the <USERPASS> field of the OFX <SONRQ> and removes the encoding to
obtain CT1 (see RFC 1113, 84.3.2.4 and 84.3.2.5)

3. Server decrypts CT1 to obtain EB: EB = Dk g(CT1) (see PKCS #1, §9)

4. Server extracts D from EB, then extracts NC, P, and T from D

5. Server looks up the Client’s password in its database, and computes SHAL1(NS || P || NC). If the result
does not match T, Server terminates the session and reports the error to the client

6. Server processes the request and returns confirmation to the Client
In <PINCHRQ>, the steps are identical except that in step 2, CT2 is obtained from the

<NEWUSERPASS> field of the <PINCHRQ> and in step 5, the server does not look up the extracted new
password in a database.

104 4.2 Security Implementation in OFX

CHAPTER 5 INTERNATIONAL SUPPORT

5.1 Language and Encoding

Most of the content in OFX is language-neutral. However, some error messages, balance descriptions, and
similar elements contain text meant to appear to the financial institution customers. There are also cases,
such as e-mail records, where customers need to send text in other languages. To support worldwide
languages, OF X relies on standard XML mechanisms to encode text.

The encoding declaration of the standard XML declaration specifies the character set being used. Servers
should respond to clients using the same encoding as was sent in the client’s request.

Clients identify the language in the signon request. OFX specifies languages by three-letter codes as
defined in 1SO-639. Servers report their supported languages in the profile (see Chapter 7, "FI Profile"). If a
server cannot support the language requested by the client, it must return an error and not process the rest
of the transactions.

5.2 Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>

In each transaction involving amounts, responses include a default currency identification, <CURDEF>.
The values are based on the 1SO-4217 three-letter currency identifiers.

Within each transaction, specific parts of the response might need to report a different currency. Where
appropriate, aggregates include an optional <CURRENCY > aggregate. The scope of a <CURRENCY>
aggregate is everything within the same aggregate that the <CURRENCY > aggregate appears in, including
nested aggregates, unless overridden by a nested <CURRENCY> aggregate. For example, specifying a
<CURRENCY> aggregate in an investment statement detail means that the unit price, transaction total,
commission, and all other amounts are in terms of the given currency, not the default currency.

Note that there is no way for two or more individual elements that represent amounts—and are directly
part of the same aggregate—to have different currencies. For example, there is no way in a statement
download to have a different currency for the <LEDGERBAL> and the <AVAILBAL>, because they are
both directly members of <STMTRS>. In most cases, you can use the optional <BAL> aggregates to
overcome this limitation, since <BAL> aggregates accept individual <CURRENCY > aggregates.

The default currency for a request is the currency of the source account. For example, the currency for
<BANKACCTFROM>,

The <CURRATE> should be the one in effect throughout the scope of the <CURRENCY> aggregate. It is
not necessarily the current rate. Note that the <CURRATE> needs to take into account the choice of the FI
for formatting of amounts (that is, where the decimal is) in both default and overriding currency, so that a

OFX 2.2 Specification Public Draft 05/17/2016 105

client can do math. This can mean that the rate is adjusted by orders of magnitude (up or down) from what
is commonly reported in newspapers.

Tag Description

<CURRENCY> or Currency aggregate

<ORIGCURRENCY>
<CURRATE> Ratio of <CURDEF> currency to <CURSYM> currency, in decimal notation, rate
<CURSYM> 1ISO-4217 3-letter currency identifier, currsymbol

</CURRENCY> or
</ORIGCURRENCY>

In some cases, OFX defines transaction responses so that amounts have been converted to the home
currency. However, OFX allows Fls to optionally report the original amount and the original (foreign)
currency. In these cases, transactions include a specific aggregate for the original amount, and then an
<ORIGCURRENCY> aggregate to report the details of the foreign currency.

Again, <CURRENCY> means that OFX has not converted amounts. Whereas, <ORIGCURRENCY >
means that OF X has already converted amounts.

106 5.2 Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>

5.3 Country-Specific Element Values

Some of the elements in OFX have values that are country-specific. For example, <USPRODUCTTYPE>
is useful only within the United States. OFX will extend in each country as needed to provide elements that
accept values useful to that country. Clients in other countries that do not know about these elements must
simply skip them.

In some cases, an element value represents a fundamental way of identifying something, yet there does not
exist a world-wide standard for such identification. Examples include bank accounts and securities. In
these cases, OFX must define a single, extensible approach for identification. For example, CUSIPs are
used within the U.S., but not in other countries. However, CUSIPs are fundamental to relating investment
securities, holdings, and transactions. Thus, a security 1D consists of a two-part aggregate: one to identify
the naming scheme, and one to provide a value. OFX will define valid naming schemes as necessary for
each country.

OFX 2.2 Specification Public Draft 05/17/2016 107

108 5.3 Country-Specific Element Values

CHAPTER 6 DATA SYNCHRONIZATION

6.1 Overview

Currently, some systems provide only limited support for error recovery and no support for backup files or
multiple clients. This chapter defines OFX’s powerful means of data synchronization between clients and
Servers.

OFX data synchronization addresses the following problems:
* Error recovery
» Use of multiple data files, including multiple client applications

» Restoring from an outdated backup file

This chapter first provides a brief introduction to synchronization problems and then presents the strategy
used in OFX to ensure data integrity. Additional details about synchronization requests and responses may
be found in the relevant sections of this document. The final section in this chapter discusses alternatives to
full synchronization and summarizes the options for each.

6.2 Background

When a connection between the client and the server does not successfully complete, there are two main
areas of concern:

» Unconfirmed requests
If a client does not receive a response to work it initiates, it has no way of knowing whether the server
processed the request. It also does not have any server-supplied information about the request, such as a
server ID number.

* Unsolicited data
Some message sets allow a server to send data to the client without first receiving a request. OFX
assumes that the first client to connect after the unsolicited data is available receives it. If the
connection fails, this information could be forever lost to the client. Examples of unsolicited data
include updates to the status of a bill payment and e-mail messages.

Unsolicited data presents problems beyond error recovery. Because the first client that connects to a server
is the only one to receive unsolicited data, this situation precludes use of multiple clients without a data
synchronization method. For example, if a user has a computer at work and one at home, and wants to
perform online banking from both computers, a bank server could send unsolicited data to one but not the
other.

An even greater problem occurs when a user resorts to an outdated backup copy of the client data file. This
backup file may be missing recent unsolicited data with no way to retrieve it from the server again.

OFX 2.2 Specification Public Draft 05/17/2016 109

6.3 Data Synchronization Approach

A simple solution is to make sure that clients can always obtain information from the server for a
reasonable length of time after it is initially sent. Clients can request recent responses—whether due to
client-initiated work or other status changes on the server—by supplying the previous endpoint in the
response history. Servers should always supply a new endpoint whenever they supply responses. These
endpoints are described by the <TOKEN> element.

To ensure a consistent state after a failure (for example, dropped client connections or a client crash before
updating its database), the client must store all data returned in a sync response before updating the saved
token for that account and object type. After a failure, the next sync attempt using the old token might
download information already reflected in the client database. But, re-integration of that data is much
preferred over losing all changes between the old and new token values.

If a user switches to an outdated backup file, then the most recent endpoint known to the client will be
older than the most recent endpoint known to the server.

If multiple clients are in use, each will send requests based on its own current endpoint, so that both clients
will obtain complete information from the server. This is one reason why OFX responses carry enough
information from the request to enable them to be processed independent from the requests. The diagram
below shows the interaction between clients and servers.

DATA SERVER

(Financial Institution)

Transaction 9
Transaction 8
Transaction 7
Transaction 6
Transaction 5
Transaction 4
Transaction 3
Transaction 2
Transaction 1

Client sends
token #4

Client sends
token #7

Server responds
with transactions 8-9

Server responds
with transactions 5-9

CLIENT #1

(Customer)

Transaction 7
Transaction 6
Transaction 5
Transaction 4
Transaction 3
Transaction 2
Transaction 1

CLIENT #2

(Customer)

Transaction 4
Transaction 3
Transaction 2
Transaction 1

110

6.3 Data Synchronization Approach

OFX relieves the server from maintaining any special error-recovery state information. However, OFX
requires the server to maintain a history of individual responses and a <TOKEN> to identify a position in
the history. This token is commonly a time stamp, but it need not be. Because of the freedom a server has
in choosing values for its <TOKEN>s, a client must not assume any sequential relationship between
<TOKEN>s based on the <TOKEN> values.

Note: OFX does not require servers to store responses based on individual connections. Also,
not all requests are subject to synchronization. For example, OFX does not require servers to
store statement-download responses separately for data synchronization.

6.4 Data Synchronization Specifics

OFX performs synchronization separately for each type of response. In addition, a synchronization request
might include further identifying information, such as a specific account number. This specification
defines the additional information for each synchronization request.

Each OFX service identifies the objects that are subject to data synchronization. For example, a bank-
statement download is a read-only operation from the server. A client can request it again; consequently,
there is no data synchronization for this type of response.

6.4.1 Tokens

The basis for synchronization is a token as defined by the <TOKEN> element. The server can create a
token in any way it wishes. The client simply holds the token for possible use in a future synchronization
request.

The server can derive a token from one of the following:

e Time stamp

» Sequential number

» Unique nonsequential number

» QOther convenient values for a server

OFX reserves the following tokens:

» <TOKEN>0 (zero) from the client requests all available history for the referenced account (if specified)
and object type. Servers should send all relevant transactions that are accessible, allowing a new client
to know about work done by other clients. If a user’s account has never been used with OFX, the server
returns no history.

» Servers should return <TOKEN>-1 (negative one) in the event they must respond with an error. For
more information, see section 6.4.4.

In all other cases, the server can use different types of tokens for different types of responses, if suitable for
the server.

OFX 2.2 Specification Public Draft 05/17/2016 111

Clients must send either a <REFRESH>Y request (if supported by the server) or <TOKEN>0 in their
initial synchronization request for each account (if necessary) and object type. As described in section 6.6,
a server’s response to either request should bring the client up-to-date. The <REFRESH>Y response would
not detail how or when an object reached its current state. But, the <TOKEN>0 response might not list
every relevant object (for example, some early history that the server has already purged, which might
include a payment that was scheduled far in the past, but not yet due.) Should the client require full history
information initially, OFX recommends a <REFRESH>Y request together with a <TOKEN>0 request.

Tokens can contain up to 10 characters in V1 message sets; see Chapter 3, "Common Aggregates,
Elements, and Data Types." Tokens must be unique only with respect to the type of synchronization
request and the additional information in that request. For example, a bill payment synchronization request
takes an account number; therefore, a token needs to be unique only within payments for the account. In
sync requests which do not include an account number, token values are scoped to the current user. For
example, a token in a payee synchronization request needs to be unique only within payees for the signed
on user.

The server can use different types of tokens for different types of responses, if suitable for the server.

Servers will not have infinite history available, so synchronization responses can optionally include a
<LOSTSYNC>Y (yes) if the old token in the synchronization request was older than the earliest available
history. This element allows clients to alert users that some responses have been lost.

Note: Tokens are unrelated to <TRNUID>s, <SRVRTID>s, and <FITID>s, each of which
serves a specific purpose and has its own scope and lifetime.

A <SRVRTID> is not appropriate as a <TOKEN> for bill payment. A single payment has a single
<SRVRTID>, but it can undergo several state changes over its life and thus have several entries in the
token history.

6.4.2 The Synchronization Process

There are three different ways a client and a server can conduct their requests and responses:

« Explicit synchronization—A client can request synchronization without sending any other OFX
requests. The client sends a synchronization request, including the current token for that type of
request. The response includes responses more recent than the given token, along with the current
token.

« Synchronization with new requests—A client can request synchronization as part of any new request.
The client gives the latest token it has. The response includes responses to the new requests plus any
others that became available since the time of the token in the request, along with the current token. An
aggregate contains the requests so that the server can process the new requests and update the token as
a single action.

* New requests without synchronization—A client can make new requests without providing a token. In
this case, it expects only responses to the new requests. A subsequent request for synchronization will
cause the server to send this response again, because the client did not receive the current token.

112 6.4 Data Synchronization Specifics

SYNC responses should return a new <TOKEN> only if new activity was generated for a set of
transactions (e.g. payee, payment, intrabank transfers, payment email, etc.). Alternatively, if a server
always returns a new <TOKEN> even if no new activity was generated, the server should remember that
the old and new <TOKEN> values are both up-to-date with respect to <REJECTIFMISSING>Y

Each request and response that requires data synchronization will define a synchronization aggregate. The
aggregate tells the server which kind of data it should synchronize. By convention, these aggregates
always have SYNC as part of their names, for example, <PMTSYNCRQ>. These aggregates can be used
on their own to perform explicit synchronization, or as wrappers around one or more new transactions. For
example, <PMTSYNCRQ> aggregates request synchronization and may include new work.

Some clients can choose to perform an explicit synchronization before sending any new requests. This
practice allows clients to be up-to-date before sending any new requests. Other clients can simply send
new requests as part of the synchronization request.

If a client synchronizes in one file, then sends new work inside a synchronization request in a second file,
there is a small chance that additional responses became available between the two connections. There is
an even smaller chance that these would be conflicting requests, such as modifications to the same object.
However, some clients and some requests might require absolute control, so that the user can be certain
that they are changing known data. To support this, synchronization requests can optionally specify
<REJECTIFMISSING> element. The element tells a server that it should reject all enclosed requests if the
supplied <TOKEN?> is out of date before considering the new requests. That is, if any new responses
became available, whether related to the incoming requests or not (but in scope of the synchronization
request), the server should immediately reject the requests. It should still return the new responses. A client
can then try again until it finds a stable window to submit the work. See section 6.5 for more information
about conflict detection and resolution.

Note: If <REJECTIFMISSING>Y causes enclosed requests to be rejected, this rejection can

be done in one of two ways:

» Embedded requests are completely ignored — they are not included in the response.

» Embedded requests are returned with a 2000 (or 6502 for recent servers) error. This is the preferred

approach.

The password change request and response present a special problem. See section 2.5.2 for further
information.

OFX 2.2 Specification Public Draft 05/17/2016 113

6.4.3 Synchronizable Objects

OFX allows synchronization of email (in all message sets), service activations, changes to user
information, stop checks, banking notifications, transfers (both types), recurring transfers (both types),
wire transfers, payees, payments, and recurring payments. OFX includes the following synchronization
request/response pairs.

Section Request Response

8.6.4 <ACCTSYNCRQ> <ACCTSYNCRS>

8.7 <CHGUSERINFOSYNCRQ> <CHGUSERINFOSYNCRS>
9.24 <MAILSYNCRQ> <MAILSYNCRS>
11.12.1 <STPCHKSYNCRQ> <STPCHKSYNCRS>
11.12.2 <INTRASYNCRQ> <INTRASYNCRS>
11.12.3 <INTERSYNCRQ> <INTERSYNCRS>
11.12.4 <WIRESYNCRQ> <WIRESYNCRS>
11.12.5 <RECINTRASYNCRQ> <RECINTRASYNCRS>
11.12.6 <RECINTERSYNCRQ> <RECINTERSYNCRS>
11.12.7 <BANKMAILSYNCRQ> <BANKMAILSYNCRS>
11.12.8 <LOANMAILSYNCRQ> <LOANMAILSYNCRS>
12.8.2 <PMTMAILSYNCRQ> <PMTMAILSYNCRS>
12.9.4 <PAYEESYNCRQ> <PAYEESYNCRS>
12.10.1 <PMTSYNCRQ> <PMTSYNCRS>
12.10.2 <RECPMTSYNCRQ> <RECPMTSYNCRS>
13.11.2 <INVMAILSYNCRQ> <INVMAILSYNCRS>
14.6 <PRESMAILSYNCRQ> <PRESMAILSYNCRS>

6.4.4 Token and Full Synchronization Summary

In review, tokens are used to identify a point in an activity continuum. Each client maintains a current
token that identifies a place on that continuum. When sent to the server, the server can determine whether
or not the client is up-to-date and send history if not. For instance, if ten activities have occurred for a
particular type of synchronized activity and a client knows about the first eight activities, the token sent in
the request will show this and the server will respond with the missing two, along with the newest token,
thus bringing the client up to date. Several clients may be kept up-to-date with each other in this way,
presuming all are accessing the same userid/accountid (depending on the activity) within the same FI.

114 6.4 Data Synchronization Specifics

The term "activity" denotes a discrete unit before which and after which a token is generated. It is not
necessary for a server to generate a new token for each OFX response it sends. Rather, a server can
generate a token to identify several responses as long as there is no chance that these two or more
responses were generated by two different clients. For instance, if an OFX block is sent containing three
bank transfer requests, one token can be generated to represent all three activities. If all requests fail, a
server does not need to update the token unless failed requests are reported in sync history. However, if
even one activity succeeds, a new token must be generated for the next sync. (If the server updates a token
when there is no activity representing that token, for example when all requests fail or the request is for
sync only, the server must remember that now the current and newer tokens are both "up to date” with
respect to REJECTIFMISSING.)

Note that tokens are not ordered, that is, a client should not assume that they are either incremented or
decremented in succeeding updates. The server determines how the tokens are updated/changed based on
its own algorithm.

If a request(s) is sent which is subject to synchronization but the request(s) is not "wrapped" in a
synchronization request, the server must still generate a new token internally to represent the activity that
occurred. This token is returned in the next synchronization response.

Some OFX transactions are not associated with tokens and no synchronization history is kept for them. An
example is bank statement download (STMTRQ/STMTRS). A statement download is a read-only
operation from the server. A client can request it again; consequently, there is no data synchronization for
this type of response.

In other cases, one OFX transaction is associated exclusively with a particular synchronization response.
That is, synchronization is associated with only one OFX request/response pair. An example of this is
PMTMAILR[Q/S]. PMTMAILRS is the only type of OFX response that will appear in the payment mail
synchronization response (PMTMAILSYNCRS).

Finally, there are several OFX transactions that will cause activity to be saved for later synchronization
under the umbrella of one synchronization response. An example of this is payment synchronization,
where payment responses (PMTRS), payment modification responses (PMTMODRS) and payment delete
responses (PMTCANCRS) can all appear in a payment synchronization response (PMTSYNCRS).

Tokens are generated, maintained and recognized only within the scope of the synchronization request/
response pair. For instance a <TOKEN>50511 sent in a payee synchronization request is unrelated to a
<TOKEN>50522 sent in a payment synchronization request because the tokens are associated with
different synchronization transactions (PAYEESYNC versus PMTSYNC). While clients must keep track
of the most up-to-date token within each synchronization type, servers must also keep a history of tokens
and associated activity within each type.

Note that server-initiated activity will also appear in a synchronization response, in addition to user/client-
initiated activity. In a token-based sync, this activity is identified by a response containing a <TRNUID>0.
(In a refresh, all TRNUID values are 0.) A payment spawned by a model and appearing in the payment
synchronization response is an example of such activity. In this case, the server will update the payment
synchronization token (associated with PMTSYNCR[Q/S] but not the recurring payment synchronization

OFX 2.2 Specification Public Draft 05/17/2016 115

token (associated with RECPMTSYNCR[Q/S]). The next time a client syncs on payments, its token will
be out-of-date and the server will return the newer token along with the spawned payment.

This summary pertains to full synchronization implementations only.

6.5 Conflict Detection and Resolution

Conflicts arise whenever two or more clients or servers modify the same data. This can happen to any
object that has a <SRVRTID> that supports change or delete requests. For example, two spouses might
independently modify the same recurring bill payment model. From a server perspective, there is usually
no way to distinguish between the same user making two intended changes and two separate users making
perhaps unintended changes. Therefore, OFX provides enough tools to allow clients to detect and resolve
conflicts.

A careful client always synchronizes before sending any new requests. If any responses come back that
could affect a user’s pending requests, the client can ask the user whether it should still send those pending
requests. Because there is a small chance for additional server actions to occur between the initial
synchronization request and sending the user’s pending requests, extremely careful clients can use the
<REJECTIFMISSING> element. Clients can iterate sending pending requests inside a synchronization
request with <REJECTIFMISSING> and testing the responses to see if they conflict with pending
requests. A client can continue to do this until a window of time exists wherein the client is the only agent
trying to modify the server. In reality, this will almost always succeed on the first try.

6.6 Synchronization Options

There are some situations and some types of clients for which it is preferable that the client ask the server
to send—by way of a refresh—everything it knows, rather than just a set of changes by way of a synch

response. For example, a client that has not connected often enough may have lost synchronization, a user
may create a new data file, or the user might be using a completely stateless client, such as a Web browser.

Note: OFX does not require a client to refresh just because it has lost synchronization.

Clients will mainly want to refresh lists of long-lived objects on the server; generally objects with a
<SRVRTID>. A brand new client, or a client that lost synchronization, might want to learn about in-
progress payments by doing a synchronization refresh of the payment requests. It would almost certainly
want to do a synchronization refresh of the recurring payment models, because those often live for months
or years.

A client may request a refresh by using <REFRESH>Y instead of the <TOKEN> element. Servers must
send responses that emulate a client creating or adding each of the objects governed by the particular
synchronization request.

When responding to a <REFRESH>Y sync request, servers must send <TRNUID>0 in each contained
transaction wrapper, the standard value for server-generated responses (except responses for embedded
transactions).

116 6.5 Conflict Detection and Resolution

There is no need to recreate a stream of responses that emulate the entire history of the object. An add
response that reflects the current state is sufficient. For example, if you create a model and then modify it
several times, even if this history would have been available for a regular synchronization, servers should
only send a single add that reflects the current state.

Due to the large volume of data which might be included in the response, clients should not perform
<MAILSYNCRQ> (or, one of the service-specific equivalents such as <BANKMAILSYNCRQ>) with
<REFRESH>Y.

A client that wants only the current token, without refresh or synchronization, makes requests with
<TOKENONLY>Y.

In all cases, servers should send the current ending <TOKEN> for the synchronization request in refresh
responses. This allows a client to perform regular synchronization requests in the future.

The following table summarizes the options in a client synchronization request:

Tag Description

Client synchronization

option; <TOKEN>,

<TOKENONLY>, or

<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; O for first-time requests; token

<TOKENONLY> Request for just the current <TOKEN> without the history, Boolean

<REFRESH> Request for refresh of current state, Boolean

<REJECTIFMISSING> IfY, do not process requests if client <TOKEN> is out of date, Boolean

Note: Compliant clients should not send synchronization requests matching those listed
below. Nonetheless, servers should handle such requests and respond as described.

* <TOKENONLY>N has no useful meaning and clients should not send such a request. Servers may
interpret <TOKENONLY>N in the sync request the same as <TOKENONLY>Y.

e <REFRESH>N has no useful meaning and clients should not send such a request. Servers may
interpret <REFRESH>N in the sync request the same as <KREFRESH>Y.

» If a client embeds transaction requests in a <REFRESH> or <TOKENONLY> sync request, the
server should respond in such a way that the <REFRESH> data or returned <TOKEN> reflects a
specific state, after the transactions have processed. Since servers are not required to reduce the data
about any particular object to a single addition response, embedded transactions may be processed
before or after the <KREFRESH> data is retrieved. As with all synchronization responses, the
returned <TOKEN> must reflect the actions of all embedded transactions.

OFX 2.2 Specification Public Draft 05/17/2016 117

e <REJECTIFMISSING>Y is illegal unless accompanied by <TOKEN>. If received in the same
wrapper as <TOKENONLY> or <REFRESH>, the server should fail that synchronization request
(as described in section 6.6.1).

6.6.1 Synchronization Errors

When a client sends an unrecognized or “bad” token, the server response should be one of the following.
(Note that <LOSTSYNC> is an optional element):

e Return <TOKEN>-1, <LOSTSYNC>Y, with no history
* Return <TOKEN>X (the current token), <LOSTSYNC>Y, with no history

¢ Return <TOKEN>X (the current token), <LOSTSYNC>Y, with full history (i.e. treat as if it were a
<TOKEN>0)

If the synchronization request included a bad account number or BANKID, or signon failed, or an account
was closed, etc. the response should include <TOKEN>-1, optionally <LOSTSYNC>N, and no history.

6.7 Typical Server Architecture for Synchronization

This section describes how an FI can approach supporting synchronization based on the assumption that
modifications to an existing financial server will be kept to a minimum.

The simplest approach is to create a history database separate from the existing server. This history could
consist of the actual OFX transaction responses (<xxxTRNRS> aggregates) that are available to a
synchronization request, or simply the information required to re-create the responses upon request from
the client. The history database could index records by token, response type, and any other identifying
information for that type, such as account number. Clearly, this database must include all <TRNUID>s for
all transactions it contains. OFX recommends that <TRNUID>s be stored for as long as possible so that
they may be used to detect duplicate client requests even after the original requests have been purged from
the synch database.

The diagram below shows a high-level model of the OFX architecture for a financial institution. Notice
that the diagram shows the presence of a history journal.

118 6.7 Typical Server Architecture for Synchronization

FINANCIAL INSTITUTION
ENVIRONMENT

...

Teller
Services

OFX
Server

Transaction
Manager

Bank Server

Synchronization
Request/Response

Account
Records

' History Journal

The server adds responses to the history journal for any action that takes place on the existing server. This
is true whether the OFX requests initiate the action or, in the case of recurring payments, it happens
automatically on the server. Once added to the history journal, the server can forget them.

The areas of the OFX server that process synchronization requests need only search this history database
for matching responses that are more recent than the incoming token.

For a refresh request, an OFX server would access the actual bank server to obtain the current state rather
than recent history.

Periodically the bank server would purge the history server of older entries.

OFX 2.2 Specification Public Draft 05/17/2016 119

Only requests that are subject to synchronization need to have entries in the history database. Statement
downloads do not involve synchronization; therefore, the FI server should not add these responses to the
history database. Since statement downloads are usually the largest in space and the most frequent,
eliminating these saves much of the space a response history might otherwise require.

More sophisticated implementations can save even more space. The history database could save responses
in a coded binary form that is more compact than the full OFX response format. Some Fls might have
much or all of the necessary data already in their servers; consequently, they would not require new data.
An FI could regenerate synchronization responses rather than recall them from a database.

6.8 Typical Client Processing of Synchronization Results

The diagram below shows a general flowchart of what an OFX client would do with the results of a
synchronization request. Most requests and responses subject to data synchronization contain both
<TRNUID> and <SRVRTID>.

l The response is a modification or change in status.
Does the <SRVRTID> in v Client applies all updated
this response match one " linformation to its copy of
already recorded by the the matching transaction.
client?
No
The response is a new transaction created by another client.
Was the <TRNUID> N Client adds the transaction
returned in the response © ltoits local list of
created by this client? transactions.
Yes
The response is to an add request from this client.
This is a response to a The client should record the
request initiated by this associated <SRVRTID>, if
client. response status=SUCCESS

120 6.8 Typical Client Processing of Synchronization Results

6.9 Simultaneous Connections

Itis increasingly common for a server to get simultaneous or overlapping requests from the same user from
two different front ends. OFX requires a server to process each set of requests sent in a file as an atomic
action. Servers can deal with the problems that arise with simultaneous use in two ways:

» Allow simultaneous connections, ensure each is processed atomically, and use the data synchronization
mechanism to bring the two clients up to date. This is the preferred method.

» Lock out all but one user at a time, returning the error code 15501 for multiple users.

6.10 Synchronization Alternatives

Although it is RECOMMENDED that OFX servers implement full synchronization as described in this
chapter, an alternate approach, “lite synchronization,” could be easier for some servers to support. This
approach focuses only on error recovery and does not provide any support for multiple clients, multiple
data files, or use of backup files. The approach is to preserve the message sets while simplifying the
implementation.

In addition, some clients might prefer to use file-based error recovery with all servers, even if the client
and some servers support full synchronization. This section first describes file-based error recovery and
lite synchronization, and then explains the rules that clients and servers use to decide how to communicate.

Lite synchronizing servers may support both file-based error recovery and <REFRESH>Y. This type of
server is called a Refresh-capable Lite Synchronizing Server.

For information on how these types of synchronization are profiled, see section 7.2.1.

OFX 2.2 Specification Public Draft 05/17/2016 121

6.10.1 File-Based Error Recovery

Because only full synchronization supports error recovery, an alternative is needed for lite
synchronization. Servers using lite synchronization keep a copy of the entire response file they last sent.
This is the basis for what is often called “file-based error recovery.” Clients requesting that servers prepare
for error recovery generate a globally unique ID for each file they send. Two OFX headers are associated
with error recovery:

e OLDFILEUID—UID of the last request and response that was successfully received and processed by
the client

« NEWFILEUID—UID of the current file

The format of these is the same as used with <TRNUID> as documented in section 2.4.6.

Servers use the following rules:

« If NEWFILEUID is set to NONE, the client is not requesting file-based error recovery for this session.
The server does not need to save the response file. If NEWFILEUID is set to NONE and
OLDFILEUID matches a previous request file (see below), the client may be ending use of file-based
error recovery.

« If NEWFILEUID matches a previous request file, the client is requesting error recovery. The server
should send the matching saved response file.

Note: If NEWFILEUID matches a previous request file then the request file identified by the
NEWFILEUID must contain exactly the same set of transactions as the previous request file.
Servers can reject the file if it contains new or modified transactions. In particular, clients
should disallow new <PINCHRQ> transactions during error recovery. For more information
about <PINCHRQ> and synchronization, see section 2.5.2.

e If NEWFILEUID is not set to NONE and does not match a previous request file, the client is preparing
for error recovery. The server should save the response file in case the data does not reach the client.

« If OLDFILEUID is set to NONE, the server may ignore the presence of this header. The server should
not search for a response file to delete. Clients should initiate file-based error recovery by sending
OLDFILEUID set to NONE and NEWFILEUID set to a unique value.

e If OLDFILEUID matches a file saved on the server, then OLDFILEUID is a file that the client has
successfully processed and the server can delete it.

« If OLDFILEUID is not set to NONE and does not match a previous request file, the server should
ignore the presence of this header. Either the server has purged the associated request file without
explicit request from the client or the client is requesting error recovery with identical headers to the
initial request attempt (NEWFILEUID should match a previous request file in this case).

Note: While it may indicate a client error for OLDFILEUID and NEWFILEUID to hold
identical values other than NONE, the server should ignore this OLDFILEUID header. Earlier
rules in this list detail how the server should handle the request file (based solely upon the
NEWFILEUID value).

122 6.10 Synchronization Alternatives

A server should not save more than one file per client data file thread (history of FILEUID values). Servers
should purge response files in response to an explicit client request (reference in the OLDFILEUID
header) or after some long period (at least 2 months). Clients must not abuse this storage requirement by
(for example) setting OLDFILEUID to the header used three request files previously. The server should
preserve response files on a per-thread basis. This approach would support multiple clients or data files per
user. But, the server has the option to ignore these needs and purge response files as soon as another valid
request arrives for the same <USERID>. In either case, if an error recovery attempt comes after the
corresponding error recovery file is purged, the server will not recognize the request as an attempt at error
recovery. The server would simply process it as a new request. In this case, the server should recognize
duplicate transaction UIDs for client-initiated work, such as payments, and then reject them individually.
Server-generated responses would be lost to the client.

A server should not save a response file when it is useless to do so. Specifically, the server should not save
a response file when the request fails parsing or when the request was rejected due to a <SONRQ>
problem (e.g. invalid <USERID>).

If all accounts are shared between two (or more) users (for example, husband and wife have separate
online access to the same list of joint accounts and none others), some identifiers may differ and should be
maintained separately by the client. Thus, clients should initiate error recovery and maintain/generate
xxXFILEUID values on a per-user basis.

6.10.1.1 File-Based Error Recovery and Authentication

There are two aspects of error recovery authentication which must be considered, request validation and
password validation.

6.10.1.1.1 Request Validation

When error recovery is being attempted the server should first perform signon authentication on the
request file. Once this is done, it should validate that the rest of the transactions in the request file received
match those of the request file that was archived for the corresponding response file which was also
archived. Recommended matching is defined at two levels:

» Minimal—\Verify that the transactions correspond to the archived file

» Recommended—\Verify the current request and archived request files exactly match. It is recommended
that checksums for all characters after the </SONRQ> be used to verify an exact match. (The signon
request itself may change between attempts.)

6.10.1.1.2 Password Validation

In all cases, the server must not store response files for the purposes of file-based error recovery when the
<SONRQ> has failed. A saved response file matching the OLDFILEUID header (if any) must not be
deleted when this occurs.In error recovery situations, the possibility exists that the user will have entered
the correct password when a request was originally sent, but will mistype the password when prompted for
it again during the recovery attempt. The server should respond as it would whenever sign on fails: It
should return 15500 errors in all transaction response aggregates. The server should return synchronization

OFX 2.2 Specification Public Draft 05/17/2016 123

wrappers with <TOKEN>-1 and any embedded transaction response aggregates with the same 15500 error.
(The response file should contain no <xxxRS> aggregates apart from the <SONRS>.) This particular
situation (sign on failure during an error recovery attempt) merits careful attention to the rules described in
the previous paragraph.

6.10.2 Lite Synchronization

Lite synchronization requires servers to accept all synchronization messages, but does not require them to
keep any history or tokens. Responses need to be sent only once and then the server can forget them.
Responses to client requests, whether or not they are made inside a synchronization request, are processed
normally. Responses that represent server-initiated work, such as payment responses that arise from
recurring payments, are sent only in response to synchronization requests. A server does not have to hold
responses in case a second client makes a synchronization request.

Basic lite synchronization servers do not support <REFRESH>Y. Refresh-capable lite synchronizing
servers, however, do support <REFRESH>Y. That, in fact, is the only difference in function between a
Basic Lite Synch server and a Refresh-capable Lite Synch Server. The purpose of the distinction is to
allow a server to provide refresh capability without the burden of supporting full synchronization. (See
Section 6.10.2.1 for a discussion of refresh lite synch and older servers.)

Note: OFX requires a server to authenticate a client in Error Recovery.

6.10.2.1 Lite Synchronization and Older Clients/Servers

Basic lite synchronization servers (including all servers that support versions of OFX prior to 1.6) do not
support <REFRESH>Y. Such servers may interpret <TOKEN>0 requests, however, as if they were refresh
requests, and respond with the exact refresh information a refresh capable lite synch server would respond
with. Newer servers should always support <REFRESH>Y if that functionality is provided, by specifying
<REFRESHSUPT>Y in the profile response. This does not preclude, however, providing backward-
compatible refresh support for older clients sending <TOKEN>O0.

For more information on profiling synchronization support, see section 7.2.1.

6.10.3 Relating Synchronization and Error Recovery

Client and server developers should first decide whether or not they will support full synchronization. If
they can, then they can support file-based error recovery as well, or they can rely on synchronization to
perform error recovery. If they adopt only lite synchronization, OFX requires file-based error recovery. A
server describes each of these choices in its server profile records. The following combinations are valid:

« Full synchronization with file-based error recovery
« Full synchronization without separate file-based error recovery

« Lite synchronization with file-based error recovery (with or without <REFRESH>Y support)

124 6.10 Synchronization Alternatives

Clients request file-based error recovery by including the old and new session UIDs in the header. If these
are absent, servers need not save the response file for error recovery. Clients request synchronization by
using those synchronization requests defined throughout this specification.

OFX 2.2 Specification Public Draft 05/17/2016 125

6.11 Examples

Here is an example of full synchronization using bill payment as the service. OF X Payments provides two
different synchronization requests and responses, each with their own token; one for payment requests and
one for repeating payment model requests. Note that these simplified examples do not include the outer

<OFX> layer, <SONRQ>, and so forth.
Client A requests synchronization:

<PMTSYNCRQ>
<TOKEN>123</TOKEN>
<REJECTIFMISSING>N</REJECTIFMISSING>
<BANKACCTFROM>
<BANKI1D>121000248</BANKID>
<ACCTI1D>123456789</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
</PMTSYNCRQ>

The server sends in response:

<PMTSYNCRS>

<TOKEN>125</TOKEN>
<LOSTSYNC>N</LOSTSYNC>
<BANKACCTFROM>
<BANK1D>121000248</BANKI1D>
<ACCT1D>123456789</ACCTI1D>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<PMTTRNRS>
<TRNUID>123</TRNUID>
<STATUS>
... status details
</STATUS>
<PMTRS>
... details on a payment response
</PMTRS>
</PMTTRNRS>
<PMTTRNRS>
<TRNUI1D>546</TRNUID>
<STATUS>
... status details
</STATUS>

126

6.11 Examples

<PMTRS>
... details on another payment response
</PMTRS>
</PMTTRNRS>
</PMTSYNCRS>

Client A was missing two payment responses, which the server provides. At this point, client A is
synchronized with the server. Client A now makes a new payment request, and includes a synchronization
update as part of the request. This update avoids having to re-synchronize the expected response at a later
time

<PMTSYNCRQ>

<TOKEN>125</TOKEN>
<REJECTIFMISSING>N</REJECTIFMISSING>
<BANKACCTFROM>
<BANK1D>121000248</BANK1D>
<ACCTID>123456789</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<PMTTRNRQ>
<TRNUID>12345</TRNUID>
<PMTRQ>
... details of a new payment request
</PMTRQ>
</PMTTRNRQ>
</PMTSYNCRQ>

The response to this new request:

<PMTSYNCRS>

<TOKEN>126</TOKEN>
<LOSTSYNC>N</LOSTSYNC>
<BANKACCTFROM>
<BANKID>121000248</BANKI1D>
<ACCTID>123456789</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<PMTTRNRS>
... details on a payment response to the new request
</PMTTRNRS>
</PMTSYNCRS>

The client now knows that the server has processed the payment request it just made, and that nothing else
has happened on the server since it last synchronized with the server.

OFX 2.2 Specification Public Draft 05/17/2016 127

Assume client B was synchronized with respect to payments for this account up through token 125. If it
called in now and synchronized—with or without making additional requests—it would pick up the
payment response associated with token 126. It records the same information that was in client A, which
would give both clients a complete picture of payment status.

128 6.11 Examples

CHAPTER 7 Fl PROFILE

7.1 Overview

OFX clients use the profile to learn the capabilities of an OFX server. This information includes general
properties such as account types supported, user password requirements, specific messages supported, and
how the client should batch requests and where to send the requests. A client obtains a portion of the
profile when a user first selects an FI. The client obtains the remaining information prior to sending any
actual requests to that FI. The server uses a time stamp to indicate whether the server has updated the
profile, and the client checks periodically to see if it should obtain a new profile.

In more detail, a profile response contains the following sections, which a client can request
independently:

» Message Sets — list of services and any general attributes of those services. Message sets are collections
of messages that are related functionally. They are generally subsets of what users see as a service.

» Signon realms — FlIs can require different signons (user 1D and/or password) for different message sets.
Because there can only be one signon per <OFX> block, a client needs to know which signon the server
requires and then provide the right signon for the right batch of messages.

The profile message is itself a message set. In files, OFX uses the <PROFMSGSETV 1> aggregate to
identify this profile message set.

The following sections describe the general use of profile information.

7.1.1 Message Sets

A message set may be thought of as representing an available financial service. A message set itself is a
collection of related messages. For example, Chapter 11, "Banking," defines several message sets:
statement download, credit card statement download, intrabank transfers, and so forth. A server may route
all of the messages in a message set to a single URL and merge their versions together.

Clients and servers generally use message sets as the granularity to decide what functionality they will
support. A “banking” server can choose to support the statement download and intrabank transfer message
sets, but not the wire transfer message set. Attributes are available in many cases to further define how
OFX supports a message set.

The profile applies only to the requests a client might expect the server to honor. That is, clients should not
send requests to servers unless support is indicated. However, the server may send unsupported responses
in a sync response as information is entered out of band. A client is required to at least parse such a file.

Clients should assume the burden of checking the profile and not sending a transaction which the server
does not support. If the client goes ahead and sends such a transaction, the server may either return an
HTTP 400 syntax error, or ignore unsupported elements and aggregates. In the latter case, assuming no

OFX 2.2 Specification Public Draft 05/17/2016 129

other problems occur in processing that request, servers may return warning code 2028 (Request element
unknown). The response file should not contain the unsupported elements or aggregates.

Each portion of the OFX specification that defines messages also defines the message set to which those
messages belong. This includes what additional attributes are available for those messages and whether
OFX requires the message set or it is optional.

7.1.1.1 Profile Support for Downloading Images

Clients may request images in statement download and/or closing requests in various message sets. Prior
to requesting these images, clients must verify that support exists on the server for image download. This is
indicated by the presence of the <IMAGEMSGSET> aggregate in the profile response, as well as the
<IMAGEPROF> aggregate in the profile response for the specific message set in question. For instance, if
a client wishes to request transaction images in the banking statement download request, the client must
verify the presence of <IMAGEMSGSET> in the profile as well as transaction image support in the
<IMAGEPROF> aggregate in the <BANKMSGSET> in the profile. Image download requests are allowed
in OFX 2.2 in the Banking, Credit Card, Loan and Investments message sets.

7.1.2 Version Control

Message sets are the basis of version control. Over time there will be new versions of the message sets, and
at any given time servers will likely want to support more than one version of a message set. Clients should
also be capable of supporting as many versions as possible. Through the profile, clients discover which
versions are supported for each message set. Clients and servers exchange messages at the highest
common level for each message set.

If banking version 1 is at one URL (A) and billpay version 1 is at another URL (B), both may need version
1 of signon to be used. In that case, <MSGSETCORE> inside <BANKMSGSETV1> would refer to
<URL>A and <MSGSETCORE> inside <BILLPAYMSGSETV1> would refer to <URL>B, but
<MSGSETCORE> inside <SIGNONMSGSETV1>may refer to either URL or to some other. As
mentioned in Section 2.5.4, the <URL> included in <SIGNONMSGSETV1> does not restrict where the
<SIGNONMSGSRQV1> wrapper may be sent.

130 7.1 Overview

7.1.3 Batching and Routing

To allow Fls to set up different servers for different message sets, different versions, or to directly route
some messages to third party processors, message sets define the URL to which a server sends messages in
that message set. Each version of a message set can have a different URL. In the common case where
many or all message sets are sent to a single URL, clients will consolidate messages across compatible
message sets. Clients may consolidate when all of the following are true:

» Message sets have the same URL;
» Message sets have a common security level; and

» Message sets have the same signon realm.

Note: Signon messages can be sent with all other message sets even if the
<SIGNONMSGSET> contains incompatible settings for the URL, security level, or signon
realm. The message set information for signon messages is used only if the signon message is
sent by itself. Otherwise, the settings are inherited from the accompanying service message set.

The same message set may be supported by multiple servers. In this case, each server that supports a
particular message set must have a unique URL.

7.1.4 Client Signon for Profile Requests

Clients must include a signon request <SONRQ> with every message, including profile requests. The first
time that a client requests the FI profile, the signon request will be present, but the user ID and password
will not be valid and will be ignored by the server.

Note: Since elements cannot be set to a blank value, <USERID> and/or <USERPASS> may
be set to lower case “anonymous” followed by 23 zeroes.

Once the user has enrolled and received his or her user ID and password, the client must request the profile
again, even if the profile is not yet out-of-date. Once it has received a successful <PROFRS> (with or
without a profile download) while signed on as the user, the client must not log in anonymously when
sending any later <PROFRQ> to this server.

At this point, the server can respond with a profile response that indicates that the profile is up-to-date or
return a new FI profile in response. If the FI wants to return a customer-specific profile, the FI must use the
second approach. Servers must handle <PROFRQ> without an error whether or not a request arrives with
an anonymous <SONRQ>.

Note: OFX 1.0.2 business rules violate these restrictions, which were added in later versions.
Clients interacting with 2.2 servers based on 1.0.2 business rules should gracefully handle
<PROFRS> errors in their first per-user attempt, reverting to anonymous requests for
subsequent requests (until the next response with <STATUS><CODE>0, when they should
once again make a per-user attempt to retrieve the profile). Servers interacting with 2.2 clients
based on 1.0.2 business rules should not require support for customer-specific profiles. Servers

OFX 2.2 Specification Public Draft 05/17/2016 131

correcting problems with per-user <PROFRQ> requests (which previously caused error
responses) must update the FI Profile to tell compliant clients to retry.

For more information about signon requests, refer to section 2.5.

7.1.5 Profile Request <PROFRQ>

A profile request indicates which profile components a client desires. It also indicates what the client’s
routing capability is. Profiles returned by the FI must be compatible with the requested routing style, or the
server returns an error.

Profile requests are not subject to synchronization.
Profile requests must appear within a <PROFTRNRQ> transaction wrapper.
Tag Description

<PROFRQ> Profile-request aggregate

<CLIENTROUTING> | Identifies client routing capabilities, see table below

<DTPROFUP> Date and time client last received a profile update, datetime
</PROFRQ>
Tag Description
NONE Client cannot perform any routing. All URLs must be the same. All message sets share a
single signon realm.
SERVICE Client can perform limited routing. See details below.
MSGSET Client can route at the message-set level. Each message set can have a different URL and/

or signon realm.

The SERVICE option supports clients that can route bill payment messages to a separate URL from the
rest of the messages. Because the exact mapping of message sets to the general concept of bill payment can
vary by client and by locale, this specification does not provide precise rules for the SERVICE option.
Each client will define its requirements.

132 7.1 Overview

7.2 Profile Response <PROFRS>

To determine whether the client has the latest version of the FI profile, the server checks the date and time
passed by the client in <DTPROFUP>.

If the client has the latest version of the Fls profile, the server returns status code 1 in the <STATUS>
aggregate of the profile-transaction aggregate <PROFTRNRS>. The server does not return a profile-
response aggregate <PROFRS>.

Note: Not sending a response aggregate in this case is an exception to rules outlined in

sections 2.4.6 and 3.1.5.

If the client does not have the latest version of the FI profile, the server responds with the profile-response
aggregate <PROFRS> in the profile-transaction aggregate <PROFTRNRS>. The response includes
message set descriptions, signon information, and general contact information.

Tag
<PROFRS>
<MSGSETLIST>
<XXXMSGSET>
</XXXMSGSET>
</MSGSETLIST>
<SIGNONINFOLIST>

<SIGNONINFO>

</SIGNONINFO>
</SIGNONINFOLIST>
<DTPROFUP>
<FINAME>
<ADDR1>
<ADDR2>
<ADDR3>
<CITY>
<STATE>
<POSTALCODE>

<COUNTRY>

Description
Profile-response aggregate
Beginning list of message set information

One or more message set aggregates

Beginning of signon information

Zero or more signon information aggregates.

Though the DTD allows an empty <SIGNONINFOLIST>, servers should provide
at least one signon realm (include a minimum of one <SIGNONINFO> aggregate
in the <PROFRS> response).

Time this was updated on server, datetime

Name of institution, A-32

FI address, line 1, A-32

FI address, line 2, A-32

FI address, line 3. Use of <ADDR3> requires the presence of <ADDR2>, A-32
F1 address city, A-32

FI address state, A-5

FI address postal code, A-11

F1 address country; 3-letter country code from ISO/DIS-3166, A-3

OFX 2.2 Specification Public Draft 05/17/2016 133

Tag Description

<CSPHONE> Customer service telephone number, A-32
<TSPHONE> Technical support telephone number, A-32
<FAXPHONE> Fax number, A-32
<URL> URL for general information about FI (not for sending data), URL
<EMAIL> E-mail address for FI, A-80
</PROFRS>

7.2.1 Message Set

An aggregate describes each message set supported by an FI. Message sets in turn contain an aggregate for
each version of the message set that is supported. For a message set named xxx, the convention is to name
the outer aggregate <xxxMSGSET> and the tag for each version <xxxMSGSETVn>. The reason for
message set-specific aggregates is that the set of attributes depends on the message set. These can change
from version to version, so there are version-specific aggregates as well.

The general form of the response is:

Tag Description
<XXXMSGSET> Service aggregate

<XXXMSGSETVn> Version-of-message-set aggregate, <xxxMSGSETV1> is required. As mentioned in
Sections 14.7.2 and 14.7.3, <PRESDIRMSGSETV1> and <PRESDLVMSGSETV1>
may appear one or more times.

</xxXxMSGSETVn>

</XXXMSGSET>

The <xxxMSGSETVn> aggregate has the following form:

Tag Description
<xXXXMSGSETVn> Message-set-version aggregate

<MSGSETCORE> | Common message set information aggregate.

</MSGSETCORE>
Message-set Zero or more attributes specific to this version of this message set, as defined by each
specific message set

</XXXMSGSETVn>

134 7.2 Profile Response <PROFRS>

The common message set information <MSGSETCORE> is as follows:

Tag
<MSGSETCORE>

<VER>

<URL>

<OFXSEC>

<TRANSPSEC>

<SIGNONREALM>

<LANGUAGE>

<SYNCMODE>

<REFRESHSUPT>

<RESPFILEER>

<SPNAME>

<OFXEXTENSION>

</OFXEXTENSION>

</MSGSETCORE>

Description
Common-message-set-information aggregate

Version number of the message set, (for example, <VER>1 for version 1 of the
message set), N-5

Because this information is already provided by the surrounding <xxxMSGSETVn>
wrapper, <VER> should be ignored by OFX clients. Nonetheless, servers should use
the supported value (<VER>1) consistent with that wrapper.

URL where messages in this set are to be sent, URL

Security level required for this message set; see Chapter 4, "OFX Security." NONE
or TYPE 1.

Y if transport-level security must be used, N if not used; see Chapter 4, "OFX
Security." Boolean

Signon realm to use with this message set, A-32

1 or more.
Language supported, language.

If more than one language is supported, multiple <LANGUAGE> elements can be
sent.

FULL for full synchronization capability
LITE for lite synchronization capability
See Chapter 6, "Data Synchronization," for more information.

Y if server supports <REFRESH>Y within synchronizations. This option is irrelevant
for full synchronization servers. Clients must ignore <KREFRESHSUPT> (or its
absence) if the profile also specifies <SYNCMODE>FULL. For lite synchronization,
the default is N. Without <REFRESHSUPT>Y, lite synchronization servers are not
required to support <REFRESH>Y requests, Boolean

Y if server supports file-based error recovery, Boolean

See Chapter 6, "Data Synchronization," for more information.

Service provider name, A-32

Some financial institutions out-source their OFX servers to a service provider. In such
cases, the SPNAME element should be included in the MSGSETCORE.

OFX Extension aggregate; see Section 2.7.2 for more information

Note: For all message sets currently defined in OFX, <TRANSPSEC>Y must be specified.

OFX 2.2 Specification Public Draft 05/17/2016 135

Note: Within a <MSGSETCORE> aggregate, the <VER> element defines the version number
of that message set. It does not refer to the version number of the OFX specification or the
DTD files. For more information about message sets and version numbers, refer to section

2.4.5.

Note: Within a message set, there can be more than one <MSGSETCORE> aggregate with the
same value for <VER>, or the same value for <URL>, but not the same value for both. The pair
must be unique for each instance of <MSGSETCORE> within a message set. Multiple
<MSGSETCORE>s with the same value for <VER> are used in instances such as signon or
registration, which may have the same version sent to multiple URLs for different services.

7.2.2 Signon Realms

Assignon realm identifies a set of messages that can be accessed using the same password. Realms are used
to disassociate signons from specific services, allowing Fls to require different signons for different
message sets. In practice, FIs will want to use the absolute minimum number of realms possible to reduce

the user’s workload.

Tag

<SIGNONINFO>
<SIGNONREALM>
<MIN>
<MAX>

<CHARTYPE>

<CASESEN>

Description
Signon-information aggregate

Identifies this realm, A-32

Minimum number of password characters, N-2

Maximum number of password characters, N-2

Type of characters allowed in password:

ALPHAONLY

NUMERICONLY

ALPHAORNUMERIC

ALPHAANDNUMERIC

Y if password is case-sensitive, Boolean

Password may not contain
numeric characters. The server
would allow “abbc”, but not
“1223” or “al22”.

Password may not contain
alphabetic characters. The server
would allow *“1223”, but not
“abbc” or “al22”.

Password may contain alphabetic
or numeric characters (or both).
The server would allow “abbc”,
“1223”, or “al22”.

Password must contain both
alphabetic and numeric
characters. The server would
allow “al22”, but not “abbc” or
“1223".

136

7.2 Profile Response <PROFRS>

Tag
<SPECIAL>

<SPACES>

<PINCH>

<CHGPINFIRST>

<USERCREDI1LABEL>

<USERCRED2LABEL>

<CLIENTUIDREQ>

<AUTHTOKENFIRST>

<AUTHTOKENLABEL>

<AUTHTOKENINFOURL>

<MFACHALLENGESUPT>
<MFACHALLENGEFIRST>

<ACCESSTOKENREQ>

</SIGNONINFO>

Description

Y if special characters are allowed over and above those characters allowed
by <CHARTYPE> and <SPACES>, Boolean

Y if spaces are allowed over and above those characters allowed by
<CHARTYPE> and <SPECIAL>, Boolean

Y if server supports <PINCHRQ> (PIN change requests), Boolean

Y if server requires clients to change USERPASS as part of first signon.
Clients must ignore <CHGPINFIRST> if the profile indicates <PINCH>N.
Note that if <MFACHALLENGEFIRST> is also Y, this pin change request
should be sent immediately after the session containing MFACHALLENGE
authentication. Boolean

Text prompt for user credential. If it is present, a third credential
(USERCREDZ) is required in addition to USERID and USERPASS. A-64

Text prompt for user credential. If it is present, a fourth credential
(USERCRED?) is required in addition to USERID, USERPASS and
USERCREDL. If present, USERCRED1LABEL must also be present. A-64

Y if CLIENTUID is required, Boolean

Y if server requires clients to send AUTHTOKEN as part of the first signon,
Boolean

Text label for the AUTHTOKEN. Required if server supports AUTHTOKEN,
A-64

URL where AUTHTOKEN information is provided by the institution
operating the OFX server. Required if server supports AUTHTOKEN, A-255

Y if the server supports MFACHALLENGE functionality, Boolean

Y if the client is required to send MFACHALLENGERQ as part of the first
signon, before sending any other requests, Boolean

Y if the server requires ACCESSTOKEN for all requests except profile

OFX 2.2 Specification Public Draft 05/17/2016 137

7.2.3 Status Codes

Meaning
0 Success (INFO)
1 Client is up-to-date (INFO)
2000 General error (ERROR)

7.3 Profile Message Set Profile Information

The profile message set functions the same way as all other message sets; therefore, it contains a profile
description for that message set. Because <PROFMSGSET> is always part of a message set response, it is
described here. Servers must include the <PROFMSGSET> as part of the profile response
<MSGSETLIST>. There are no attributes, but the aggregate must be present to indicate support for the
message set.

Tag Description
<PROFMSGSET> Message-set-profile-information aggregate
<PROFMSGSETV1> Opening tag for V1 of the message set profile information

<MSGSETCORE> Common message set information
</MSGSETCORE>
</PROFMSGSETV1>

</PROFMSGSET>

138 7.3 Profile Message Set Profile Information

CHAPTER 8 ACTIVATION & ACCOUNT INFORMATION

8.1 Overview

The Signup message set defines three messages to help users get setup with their FI:
» Enrollment — informs FI that a user wants to use OFX and requests that a password be returned
» Accounts — asks the FI to return a list of accounts and the services supported for each account

« Activation — allows a client to tell the FI which services a user wants on each account
There is also a message to request name and address changes.

Clients use the account information request on a regular basis to look for changes in a user’s account
information. A time stamp is part of the request so that a server has to report only new changes. Account
activation requests are subject to data synchronization, and will allow multiple clients to learn how the
other clients have been enabled.

In OFX request files, the <SIGNUPMSGSRQV 1> aggregate identifies the Signup messages.

8.2 Approaches to User Sign-Up with OFX

The message sets in this chapter are designed to allow both Fls and clients to support a variety of sign-up
procedures. There are four basic steps a user needs to go through to complete the sign-up:

1. Select the FI. OFX does not define this step or provide message sets to support it. Client developers
and Fls can let a user browse or search this information on a web site, or might define additional
message sets to do this within the client. At the conclusion of this step, the client will have some
minimal profile information about the FI, including the set of services supported and the URL to use
for the next step.

2. Enrollment and password acquisition. In this step, the user identifies and authenticates itself to the
FI without a password. In return, the user obtains a password (possibly temporary) to use with OFX.
Fls can perform this entire step over the telephone, through a combination of telephone requests and a
mailed response, or at the FI web site. Fls can also use the OFX enrollment message to do this by
means of the client. The response can contain a temporary password or users can wait for a mailed
welcome letter containing the password.

3. Account Information. In this step, the user obtains a list of accounts available for use with OFX, and
which specific services are available for each account. Even if users have enrolled over the telephone,
clients will still use this message set to help users properly set up the accounts within the client. Clients
periodically check back with the FI for updates.

4. Service Activation. The last step is to activate specific services on specific accounts. The activation
messages support this step. Synchronization is applied to these messages to ensure that other clients
are aware of activated services.

OFX 2.2 Specification Public Draft 05/17/2016 139

The combination of media-interface through which an FI accomplishes these steps can vary. Fls might
wish to do steps two through four over the telephone. Clients will still use OFX messages in steps 3 and 4
to automatically set up the client based on the choices made by the user over the phone. Other Fls might
wish to have the entire user experience occur within the client. Either way, the OFX sign-up messages
support the process.

8.3 Users and Accounts

To support the widest possible set of FIs, OFX assumes that individual users and accounts are in a many-
to-many relationship. Consider a household with three accounts:

e Checking 1 - held individually by one spouse
* Checking 2 — held jointly by both
e Checking 3 — held individually by the other spouse

Checking 2 should be available to either spouse, and the spouse holding Checking 1 should be able to see
both Checking 1 and 2.

OFX expects Fls to give each user their own user ID and password. Each user will go through the
enrollment step separately. A given account need only be activated once for a service; not once for each
user. Clients will use the account information and activation messages to combine information about
jointly held accounts.

If an FI prefers to have a single user 1D and password per household or per master account, it will have to
make this clear to users through the enrollment process. It is up to the FI to assign a single user 1D and
password that can access all three of the checking accounts described above.

8.4 Enrollment and Password Acquisition

The main purpose of the enrollment message is to communicate a user’s intent to access the FI by way of
OFX and to acquire a password for future use with OFX. Some Fls might return a user ID and an initial
password in the enrollment response, while others will send them by way of regular mail.

Note: The client may not know the user ID and password when it sends the enrollment
request, in such a case the <USERID> and/or <USERPASS> may be set to lower case
“anonymous” followed by 23 zeroes.

Enrollment requests are not subject to synchronization. If the client does not receive a response, it will
simply re-request the enrollment. If a user successfully enrolls from another client before the first client
obtains a response, the server should respond to subsequent requests from the first client with status code:

13501 - user already enrolled.

140 8.3 Users and Accounts

8.4.1 User IDs

The OFX <SONRQ> requires a user ID to uniquely identify a user to an FI. The server must accept the
user 1D with or without punctuation.

UserlIDs are assigned in various ways. Some Fls have existing user IDs that they use for other online
activities that they want to use for OFX as well. Others might create new IDs specifically for OFX. Finally,
some Fls might assign IDs while others might allow users to create them. To ensure security and help prevent
identity fraud, Financial Institutions are discouraged from using Social Security Number for Customer ID or PIN/
Password.

Because users do not usually know either their OFX sign-on user ID or their password at time of
enrollment, the enrollment response is designed to return both. The enrollment request allows users to
optionally provide a user ID, which an FI can interpret as their existing online ID or a suggestion for what
their new user ID should be. Ideally, the enrollment process should explain ID syntax to users.

8.4.2 Enrollment Request <ENROLLRQ>

The enrollment request captures enough information to identify and authenticate a user as being legitimate
and that it has a relationship with the FI.

Fls might require that an account number be entered as part of the identification process. However, this is
discouraged since the account information request is designed to automatically obtain all account
information, avoiding the effort and potential mistakes of a user-supplied account number.

It is RECOMMENDED that Fls provide detailed specifications for user IDs and passwords along with
information about the services available when a user is choosing an FI.

OFX 2.2 Specification Public Draft 05/17/2016 141

The enrollment request must appear within an <ENROLLTRNRQ> transaction wrapper.

Tag

<ENROLLRQ>
<FIRSTNAME>
<MIDDLENAME>
<LASTNAME>
<ADDR1>
<ADDR2>
<ADDR3>
<CITY>
<STATE>
<POSTALCODE>
<COUNTRY>
<DAYPHONE>
<EVEPHONE>
<EMAIL>
<USERID>
<TAXID>
<SECURITYNAME>
<DATEBIRTH>

<XXXACCTFROM>

</xxxACCTFROM>

</ENROLLRQ>

Description

Enrollment-request aggregate

First name of user, A-32

Middle name of user, A-32

Last name of user, A-32

Address line 1, A-32

Address line 2, A-32

Address line 3. Use of <ADDR3> requires the presence of <ADDR2>, A-32
City, A-32

State or province, A-5

Postal code, A-11

3-letter country code from ISO/DI1S-3166, A-3

Daytime telephone number, A-32

Evening telephone number, A-32

Electronic e-mail address, A-80

Actual user ID if already known, or preferred user 1D if user can choose, A-32
ID used for tax purposes (such as SSN), may be same as user 1D, A-32
Mother’s maiden name or equivalent, A-32

Date of birth, date

An account description aggregate for an existing account at the FI, for
identification purposes only. For example, <BANKACCTFROM> or
<INVACCTFROM>.

This enrollment request is intended for use only by individuals. Business enroliment will be defined in a

later release.

8.4.3 Enrollment Response <ENROLLRS>

The main purpose of the enrollment response is to acknowledge the request. In those cases where Fls
permit delivery of an ID and a temporary password, the response also provides for this. Otherwise the
server will send the real response to the user by way of regular mail, electronic mail, or over the telephone.

142

8.4 Enrollment and Password Acquisition

If enrollment is successful, but the server does not return the ID and password in the response, a server is
REQUIRED to use status code 13000 and provide some information to the user by means of the
<MESSAGE> element in the <STATUS> aggregate about what to expect next.

The enrollment response must appear within an <ENROLLTRNRS> transaction wrapper.

Tag Description
<ENROLLRS> Enrollment-response aggregate

<TEMPPASS> Temporary password, A-32

<USERID> User ID, A-32

<DTEXPIRE> Time the temporary password expires (if <TEMPPASS> included), datetime
</ENROLLRS>

8.4.4 Enrollment Status Codes

Code Meaning

0
2000
13000
13500
13501

15508

Success (INFO)

General error (ERROR)

User ID & password will be sent out-of-band (INFO)
Unable to enroll user (ERROR)

User already enrolled (ERROR)

Transaction not authorized (ERROR)

OFX 2.2 Specification Public Draft 05/17/2016 143

8.4.5 Examples
An enroliment request:

<ENROLLTRNRQ>

<TRNUID>12345</TRNUID>

<ENROLLRQ>
<FIRSTNAME>Joe</FIRSTNAME>
<MIDDLENAME>Lee</MIDDLENAME>
<LASTNAME>Smi th</LASTNAME>
<ADDR1>21 Main St.</ADDR1>
<CITY>Anytown</CITY>
<STATE>TX</STATE>
<POSTALCODE>87321</POSTALCODE>
<COUNTRY>USA</COUNTRY>
<DAYPHONE>123-456-7890</DAYPHONE>
<EVEPHONE>987-654-3210</EVEPHONE>
<EMAIL>jsmith@isp.com</EMAIL>
<USERID>j Is</USERID>
<TAX1D>123-456-1234</TAXI1D>
<SECURITYNAME> jbmam</SECURITYNAME>
<DATEBIRTH>19530202</DATEBIRTH>

</ENROLLRQ>

</ENROLLTRNRQ>

And the reply might be:

<ENROLLTRNRS>

<TRNUID>12345</TRUNID>

<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>

</STATUS>

<ENROLLRS>
<TEMPPASS>changeme</TEMPPASS>
<USERID>j Is</USERID>
<DTEXPIRE>20060305</DTEXPIRE

</ENROLLRS>

</ENROLLTRNRS>

144

8.4 Enrollment and Password Acquisition

8.5 Account Information

Account information requests ask a server to identify and describe all of the accounts accessible by the
signed-on user. The definition of all is up to the FI. At a minimum, it is RECOMMENDED that a server
include information about all accounts that it can activate for one or more OFX services. To give the user a
complete picture of his relationship with an FI, Fls can give information on other accounts, even if those
accounts are available only for limited OFX services.

Some service providers do not have prior knowledge of user account information. The profile allows these
servers to report this, and clients then know to ask users for account information rather than reading it from
the server.

Clients can perform several tasks for users with this account information. First, the information helps a
client set up a user for online services by giving it a precise list of its account information and available
services for each. Clients can set up their own internal state as well as prepare service activation requests
with no further typing by users. This can eliminate data entry mistakes in account numbers, routing transit
numbers, and so forth.

Second, Fls can provide limited information on accounts that would not ordinarily be suitable to OFX
services. For example, a balance-only statement download would be useful for certificates of deposits even
though a customer or an FI might not want or allow CDs to be used for full statement download.

For each account, there is one <ACCTINFO> aggregate returned. The aggregate includes one service-
specific account information aggregate for each service available to that account. That, in turn, provides
the service-specific account identification. Common to each service-specific account information
aggregate is the <SVCSTATUS> element, which indicates the status of this service on this account.

A server should return joint accounts (accounts for which more than one user ID can be used to access the
account) for either user.

Requests and responses include a <DTACCTUP> element. Responses contain the last time a server
updated the information. If a user sets up all available accounts returned in an <ACCTINFORS>, clients
are REQUIRED to send the most recent <DTACCTUP> in a subsequent request, and servers are
REQUIRED to compare this to the current modification time and only send information if it is more
recent. If a user does not set up all available accounts returned in an <ACCTINFORS>, it is permissable
for a client to send the old <DTACCTUP> in order to receive active account information that may have
already been returned. Note that this account information may be different than what was returned
previously if some accounts have been added or removed from the active list since the last response. The
server sends the entire account information response if the client’s time is older; there is no attempt to
incrementally update specific account information. <ACCTINFORS> should not be sent when the client is
up-to-date.

Note: Not sending a response aggregate in the case of <ACCTINFORS> is an exception to the
rules outlined in 2.4.6 and 3.1.5.

OFX 2.2 Specification Public Draft 05/17/2016 145

8.5.1 Account Obfuscation

With increasing security concerns in the connectivity ecosystem some servers have begun obfuscating or
masking account number information (e.g. XXXX-XXXX-XXXX-1234 for a credit card number). While
more secure it can create display issues for client software. These issues are exacerbated as prior to OFX
2.2 the <ACCTINFO> aggregate did not contain an account name which could be used; it only contained a
description.

OFX 2.2 introduces changes which clients and servers that support OFX 2.2 can use to improve account
number security and ensure clients receive user-friendly information about their accounts.

The <NAME> element has been added as an optional tag in the <ACCTINFO> response. When it is
present it indicates several things:

« Aserver MAY be obfuscating account numbers. This could range from a simple mask to a tokenization
or reference 1D approach

e OFX 2.2 clients ARE REQUIRED, when <NAME> is present in the <ACCTINFO> response, to
display it to the user instead of the account number

¢ OFX 2.2 servers ARE REQUIRED to be able to properly identify user accounts for financial
operations using whatever value they returned to the client in the <ACCTINFO> response
<xxXACCTID> tags irrespective of any obfuscation scheme they implement

For example, a server may choose to completely replace account numbers in the OFX channel with some
type of reference ID and they signal the client this some type of obfuscation is occurring by returning
<NAME> elements in the <ACCTINFO> aggregates. A user who has 2 checking accounts at that
institution may receive <ACCTINFO> aggregates containing <ACCTID>1 for the first account, and
<ACCTID>2 for the second account. The client, per normal OFX rules, will send these values in
transaction requests for those accounts; the server must be able to properly interpret and "resolve"
whatever <ACCTID> value it returned back to the correct account for the user in order to process requests.

Note: <xxxACCTID> values are considered critical ID fields. Moving to a new obfuscation
model or changing <xxxACCTID> values could have significant impacts on client software
that has previously connected to the OFX Server. Financial Institutions should coordinate with
appropriate client software companies out-of-band when changing any critical 1D fields.

Note: Servers that support shared account access via OFX (the same account under 2 or more
user credentials/accounts) *MUST™ ensure that any obfuscation methodology they use results
in the same account having the same <xxxACCTID> for all users to avoid issues within client
software.

146 8.5 Account Information

8.5.2 Request <ACCTINFORQ>

The <ACCTINFORQ> request must appear within an <ACCTINFOTRNRQ> transaction wrapper.

Description
<ACCTINFORQ> Account-information-request aggregate
<DTACCTUP> Last <DTACCTUP> received in a response, datetime

</ACCTINFORQ>

8.5.3 Response <ACCTINFORS>

The <ACCTINFORS> response must appear within an <ACCTINFOTRNRS> transaction wrapper.

Tag Description

<ACCTINFORS> Account-information-response aggregate
<DTACCTUP> Date and time of last update to this information on the server, datetime
<ACCTINFO> Zero or more account information aggregates

Left out of the response when nothing is found for the current user.

Note: When <DTACCTUP> indicates the client is up-to-date, server should
not return surrounding <ACCTINFORS>.

</ACCTINFO>

</ACCTINFORS> End of account information response

OFX 2.2 Specification Public Draft 05/17/2016 147

8.5.4 Account Information Aggregate <ACCTINFO>

Tag Description
<ACCTINFO> Account-information-record aggregate
<NAME> Name/User defined nickname for the account, A-32. If present indicates
the server may be obfuscating account numbers per Section 8.5.1.
<DESC> Description of the account, A-80
<PHONE> Telephone number for the account, A-32
<HOLDERINFO> Opening HOLDERINFO opening tag
<PRIMARYHOLDER> Primary account holder information opening tag

</PRIMARYHOLDER>

<SECONDARYHOLDER> | Secondary account holder information opening tag;
<PRIMARYHOLDER> required if <SECONDARYHOLDER> present

</SECONDARYHOLDER>

</HOLDERINFO>

<xxXACCTINFO> Service-specific account information, defined in each service chapter.
Some services may include additional elements. Refer to service chapters
for details.
<xXXxACCTFROM> Service-specific account identification. For a given service xxx, there can

be at most one <xxxACCTINFO> returned. For example, you cannot
return two <BANKACCTINFO> aggregates.

</xxXACCTFROM>

<SVCSTATUS> AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use

</xxxACCTINFO>

</ACCTINFO>

Note: A server uses the <DESC> field to convey the FI’s preferred name for the account, such
as “PowerChecking.” It should not include the account number.

Note: If <HOLDERINFO> is supported then <PHONE> at the <ACCTINFO> level should be
considered deprecated and replaced with information from within <HOLDERINFO>

148 8.5 Account Information

8.5.4.1 <PRIMARYHOLDER> and <SECONDARYHOLDER>

Tag

<XXXHOLDER>

<FIRSTNAME>
<MIDDLENAME>
<LASTNAME>
<ADDR1>
<ADDR2>

<ADDR3>

<CITY>

<STATE>
<POSTALCODE>
<COUNTRY>
<DAYPHONE>
<EVEPHONE>
<EMAIL>

<HOLDERTYPE>

</xxXxHOLDER>

Description

Account holder information aggregate (<PRIMARYHOLDER> or
<SECONDARYHOLDER>

First name of user, A-32
Middle name of user, A-32
Last name of user, A-32
Address line 1, A-32
Address line 2, A-32

Address line 3. Use of <ADDR3> requires the presence of <ADDR2>, A-
32

City, A-32

State or province, A-5

Postal code, A-11

3-letter country code from 1SO/DIS-3166, A-3
Daytime telephone number, A-32

Evening telephone number, A-32

Electronic e-mail address, A-80

Type of account holder; see section 8.5.4.2

8.5.4.2 <HOLDERTYPE> Elements

Type Description

INDIVIDUAL Individual account

JOINT Joint account

CUSTODIAL Custodial account

TRUST Trust account

OTHER Other type of account relationship

OFX 2.2 Specification Public Draft 05/17/2016

149

8.5.5 Status Codes

Meaning
0 Success (INFO)
1 Client is up-to-date (INFO)
2000 General error (ERROR)

150

8.5 Account Information

8.5.6 Examples
An account information request:

<ACCTINFOTRNRQ>

<TRNUID>12345</TRNUID>
<ACCTINFORQ>
<DTACCTUP>20050101</DTACCTUP>
</ACCTINFORQ>
</ACCTINFOTRNRQ>

And a response for a user with access to one account, supporting banking:

<ACCTINFOTRNRS>

<TRNUID>12345</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<ACCTINFORS>
<DTACCTUP>20050301</DTACCTUP>
<ACCTINFO>
<DESC>Power Checking</DESC>
<PHONE>8002223333</PHONE>
<BANKACCT INFO>
<BANKACCTFROM>
<BANK1D>123456789</BANK1D>
<ACCTI1D>00001234</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<SUPTXDL>Y</SUPTXDL>
<XFERSRC>Y</XFERSRC>
<XFERDEST>Y</XFERDEST>
<SVCSTATUS>ACTIVE</SVCSTATUS>
</BANKACCT INFO>
</ACCTINFO>
</ACCTINFORS>
</ACCTINFOTRNRS>

OFX 2.2 Specification Public Draft 05/17/2016 151

An account information request with OFX 2.2 Account Obfuscation

<ACCTINFOTRNRQ>

<TRNUID>12345</TRNUID>
<ACCTINFORQ>
<DTACCTUP>20050101</DTACCTUP>
</ACCTINFORQ>
</ACCTINFOTRNRQ>

And a response for a user with access to one account, supporting banking:

<ACCTINFOTRNRS>

<TRNUID>12345</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<ACCTINFORS>
<DTACCTUP>20050301</DTACCTUP>
<ACCTINFO>
<NAME>Main Account</NAME> // Account nickname set by user
<DESC>Power Checking</DESC>
<PHONE>8002223333</PHONE>
<BANKACCT INFO>
<BANKACCTFROM>
<BANK1D>123456789</BANK1D>
<ACCTID>1</ACCTID> // Server reference ID
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<SUPTXDL>Y</SUPTXDL>
<XFERSRC>Y</XFERSRC>
<XFERDEST>Y</XFERDEST>
<SVCSTATUS>ACTIVE</SVCSTATUS>
</BANKACCT INFO>
</ACCTINFO>
</ACCTINFORS>
</ACCTINFOTRNRS>

152 8.5 Account Information

8.6 Service Activation

Clients inform Fls that they wish to start, modify, or terminate a service for an account by sending service
activation requests. These are subject to data synchronization, and servers should send responses to inform
clients of any changes, even if the changes originated on the server.

Clients use these records during the initial user sign-up process. Once a client learns about the available
accounts and services (by using the account information request above, or by having a user directly enter
the required information), it sends a series of service ADD requests.

If a user changes any of the identifying information about an account, the client sends a service activation
request containing both the old and the new account information. Servers should interpret this as a change
in the account, not a request to transfer the service between two existing accounts, and all account-based
information such as synchronization tokens should continue. If a user or FI is reporting that a service
should be moved between two existing accounts, service must be terminated for the old account and
started for the new account. The new account will have reset token histories, as with any new service.

Each service to be added, changed, or removed is contained in its own request because the same real-world
account might require different <xxxACCTFROM> aggregates depending on the type of service.

8.6.1 Activation Request <ACCTRQ>

The <ACCTRQ> request must appear within an <ACCTTRNRQ> transaction wrapper.

Tag Description
<ACCTRQ> Account-service-request aggregate

Action identification. Specify | Action aggregate, either <SVCADD>, <SVCCHG>, or <SVCDEL>
either <SVCADD>,
<SVCCHG>, or <SVCDEL>

<SVCADD> Service-addition aggregate
</SVCCADD>

_or-
<SVCCHG> Service-change aggregate
</SVCCHG>

_Or-
<SVCDEL> Service-deletion aggregate
</SVCDEL>
<SVC> Service to be added/changed/deleted

BANKSVC = Banking service
BPSVC = Payments service
INVSVC = Investments

PRESSVC = Bill presentment service

OFX 2.2 Specification Public Draft 05/17/2016 153

Description

</ACCTRQ>

8.6.1.1 Service Add Aggregate <SVCADD>

When a client sends a <SVCADD?> to a financial institution routing particular messages to another service
provider, it is up to the financial institution to determine whether or not an <ENROLLRQ> needs to be sent
to the service provider along with the <SVCADD>. The FI may choose to always send an <ENROLLRQ>
and ignore the 13550 error message responses, though this would only be reliable if <xxxACCTFROM> is
included in the <ENROLLRQ>. The FI may also choose to keep a database of enrolled services, so as to
send an <ENROLLRQ> only when the client is sending a <SVCADD> for a new service. The FI also has
the option of sending <ENROLLRQ>s to all service providers when the client sends the initial
<ENROLLRQ> to the FI.

Tag Description
<SVCADD> Service-addition aggregate
<xxXxACCTTO> Service-specific-account-identification aggregate (for example,
<BANKACCTTO> or <INVACCTTO>)
</xxXACCTTO>
</SVCADD>

8.6.1.2 Service Change Aggregate <SVCCHG>

Tag Description
<SVCCHG> Service-change aggregate
<xXXACCTFROM> Service-specific-account-identification aggregate (for example,
<BANKACCTFROM> or <INVACCTFROM>)
</xxXACCTFROM>
<XXXACCTTO> Service-specific-account-identification aggregate (for example, <BANKACCTTO>
or <INVACCTTO>)
</XXXACCTTO>
</SVCCHG>

8.6.1.3 Service Delete Aggregate <SVCDEL>

Description

<SVCDEL> Service-deletion aggregate

154 8.6 Service Activation

Tag Description

<xXxXxACCTFROM> Service-specific-account-identification aggregate (for example,
<BANKACCTFROM> or <INVACCTFROM>)
</xXxXACCTFROM>
</SVCDEL>

8.6.2 Activation Response <ACCTRS>

The <ACCTRS> response must appear within an <ACCTTRNRS> transaction wrapper.

Tag Description
<ACCTRS> Account-service-response aggregate

Action identification. Specify
either <SVCADD>,
<SVCCHG>, or <SVCDEL>

<SVCADD> Service-addition aggregate
</SVCADD>

Or

<SVCCHG> Service-change aggregate
</SVCCHG>

Or

<SVCDEL> Service-deletion aggregate
</SVCDEL>

<SVC> Service to be added/changed:

BANKSVC = Banking service
BPSVC = Payments service

INVSVC = Investments

PRESSVC = Bill Presentment service

<SVCSTATUS> AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use

</ACCTRS>

OFX 2.2 Specification Public Draft 05/17/2016

8.6.3 Status Codes

Code Meaning

0 Success (INFO)
2000 General error (ERROR)
2002 General account error (ERROR)
2006 Source account not found (ERROR)
2007 Source account closed (ERROR)
2008 Source account not authorized (ERROR)
2009 Destination account not found (ERROR)
2010 Destination account closed (ERROR)
2011 Destination account not authorized (ERROR)
6502 Unable to process embedded transaction due to out-of-date <TOKEN>
(ERROR)
13502 Invalid service (ERROR)
15508 Transaction not authorized (ERROR)
156 8.6 Service Activation

8.6.4 Service Activation Synchronization

Service activation requests are subject to the standard data synchronization protocol. The scope of these
requests and the <TOKEN?> is the user ID. The request and response tags are <ACCTSYNCRQ> and
<ACCTSYNCRS>.

8.6.4.1 Request <ACCTSYNCRQ>

Tag Description
<ACCTSYNCRQ> Activation synchronization request aggregate

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or

<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; 0 for first-time requests; token
<TOKENONLY> Request for just the current <TOKEN> without the history, Boolean
<REFRESH> Request for refresh of current state, Boolean

<REJECTIFMISSING> | IfY, do not process requests if client <TOKEN> is out of date, Boolean
<OFXEXTENSION> OFX extension aggregate; see Section 2.7.2 for more information

</OFXEXTENSION>
<ACCTTRNRQ> Account-service-request transactions (0 or more)
</ACCTTRNRQ>

</ACCTSYNCRQ>

8.6.4.2 Response <ACCTSYNCRS>

Tag Description
<ACCTSYNCRS> Payee-list-request aggregate
<TOKEN> New synchronization token, token

<OFXEXTENSION> | OFX extension aggregate; see Section 2.7.2 for more information
</OFXEXTENSION>
<ACCTTRNRS> Account-service-response transactions (0 or more)

</ACCTTRNRS>

OFX 2.2 Specification Public Draft 05/17/2016 157

Tag Description
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the
server’s history table. In this case, some responses have been lost.
N if the token in the synchronization request is newer than or matches a token in the
server’s history table. Boolean
</ACCTSYNCRS>

158

8.6 Service Activation

8.6.5 Examples
Activating a payment:

<ACCTTRNRQ>

<TRNUID>12345</TRNUI1D>
<ACCTRQ>
<SVCADD>
<BANKACCTTO>
<BANKID>123456789</BANKI1D>
<ACCTID>12345</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTTO>
</SVCADD>
<SVC>BPSVC
</ACCTRQ>
</ACCTTRNRQ>

A response:

<ACCTTRNRS>

<TRNUID>12345</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<ACCTRS>
<SVCADD>
<BANKACCTTO>
<BANK1D>123456789</BANKID>
<ACCTID>12345</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTTO>
</SVCADD>
<SVC>BPSVC</SVC>
<SVCSTATUS>ACTIVE</SVCSTATUS>
</ACCTRS>
</ACCTTRNRS>

OFX 2.2 Specification Public Draft 05/17/2016

159

8.7 Name and Address Changes

Users may request that an FI update the official name, address, phone, and e-mail information using the
<CHGUSERINFORQ>. All modified and unmodified elements are submitted in a change user
information request, <CHGUSERINFORQ>. The lack of inclusion of a field in a change user request
when that field was previously populated implies its deletion on the server. The response reports all of the
current values. If the USERID element is not present in CHGUSERINFO, then the USERID from the
SONRQ is assumed to be the identifier for the user in question. For security reasons, some of the fields in
the <ENROLLRQ> cannot be changed online, such as tax 1D and userID.

The transaction tags are <CHGUSERINFOTRNRQ> and <CHGUSERINFOTRNRS>. These messages
are subject to synchronization, <CHGUSERINFOSYNCRQ>, and <CHGUSERINFOSYNCRS>.

8.7.1 Change User Information Request <CHGUSERINFORQ>

Tag

<CHGUSERINFORQ>
<FIRSTNAME>
<MIDDLENAME>
<LASTNAME>
<ADDR1>
<ADDR2>
<ADDR3>
<CITY>
<STATE>
<POSTALCODE>
<COUNTRY>
<DAYPHONE>
<EVEPHONE>
<EMAIL>

</CHGUSERINFORQ>

Description

Change-user-information-request aggregate

First name of user, A-32

Middle name of user, A-32

Last name of user, A-32

Address line 1, A-32

Address line 2. Use of <ADDR2> requires the presence of <ADDR1>, A-32
Address line 3. Use of <ADDR3> requires the presence of <ADDR2>, A-32
City, A-32

State or province, A-5

Postal code, A-11

3-letter country code from 1SO/DI1S-3166, A-3

Daytime telephone number, A-32

Evening telephone number, A-32

Electronic e-mail address, A-80

160

8.7 Name and Address Changes

8.7.2 Change User Information Response <CHGUSERINFORS>

Tag Description
<CHGUSERINFORS> Change-user-information-request aggregate
<FIRSTNAME> First name of user, A-32
<MIDDLENAME> Middle name of user, A-32
<LASTNAME> Last name of user, A-32
<ADDR1> Address line 1, A-32
<ADDR2> Address line 2. Use of <ADDR2> requires the presence of <ADDR1>, A-32
<ADDR3> Address line 3. Use of <ADDR3> requires the presence of <ADDR2>, A-32
<CITY> City, A-32
<STATE> State or province, A-5
<POSTALCODE> Postal code, A-11
<COUNTRY> 3=letter country code from 1SO/DI1S-3166, A-3
<DAYPHONE> Daytime telephone number, A-32
<EVEPHONE> Evening telephone number, A-32
<EMAIL> Electronic e-mail address, A-80
<DTINFOCHG> Date and time of update datetime
</CHGUSERINFORS>

8.7.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

6502 Unable to process embedded transaction due to out-of-date <TOKEN>
(ERROR)

13503 Cannot change user information (ERROR)

15508 Transaction not authorized (ERROR)

OFX 2.2 Specification Public Draft 05/17/2016 161

8.7.4 Change User Information Synchronization

Change user information requests are subject to the standard data synchronization protocol. The scope of
these requests and the <TOKEN> is the user ID. The request and response tags are
<CHGUSERINFOSYNCRQ> and <CHGUSERINFOSYNCRS>.

8.7.4.1 Request <CHGUSERINFOSYNCRQ>

Tag Description
<CHGUSERINFOSYNCRQ> Activation synchronization request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or

<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests; token
<TOKENONLY> Request for just the current <TOKEN> without the history, Boolean
<REFRESH> Request for refresh of current state, Boolean
<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date, Boolean
<OFXEXTENSION> OFX extension aggregate; see Section 2.7.2 for more information

</OFXEXTENSION>
<CHGUSERINFOTRNRQ> Change user information request transactions (0 or more)

</CHGUSERINFOTRNRQ>

</CHGUSERINFOSYNCRQ>

8.7.4.2 Response <CHGUSERINFOSYNCRS>

Tag Description
<CHGUSERINFOSYNCRS> Payee-list-request aggregate
<TOKEN> New synchronization token, token
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry

in the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a
token in the server’s history table. Boolean

<OFXEXTENSION> OFX extension aggregate; see Section 2.7.2 for more information

</OFXEXTENSION>

<CHGUSERINFOTRNRS> Change user information response transactions (0 or more)

162 8.7 Name and Address Changes

Description

<CHGUSERINFOTRNRS>

</CHGUSERINFOSYNCRS>

OFX 2.2 Specification Public Draft 05/17/2016 163

8.8 Signup Message Set Profile Information

A server which supports this message set must include the following aggregates as part of the profile
<MSGSETLIST> response, since every server must support at least the account information and service
activation messages. Servers indicate how enrollment should proceed: via the client, a given web page, or
a text message directing users to some other method (such as a phone call).

Tag

<SIGNUPMSGSET>

<SIGNUPMSGSETV1>

<MSGSETCORE>

</MSGSETCORE>

Enrollment options. Choose one of

<CLIENTENROLL>,
<WEBENROLL>, or
<OTHERENROLL>.

<CLIENTENROLL>

<ACCTREQUIRED>

</CLIENTENROLL>

_Or-
<WEBENROLL>
<URL>

</WEBENROLL>

-0r-
<OTHERENROLL>

<MESSAGE>

</OTHERENROLL>

<CHGUSERINFO>

<AVAILACCTS>

<CLIENTACTREQ>

</SIGNUPMSGSETV1>

</SIGNUPMSGSET>

Description
Signup-message-set-profile-information aggregate
Opening tag for V1 of the message set profile information

Common message set information, defined in Chapter 7, "FI Profile"

Client-based enrollment supported

Y if account number is required as part of enrollment, Boolean

Web-based enrollment supported

URL to start enrollment process, URL

Some other enrollment process

Message to consumer about what to do next (for example, a phone
number), A-80

Y if server supports client-based user information changes, Boolean

Y if server can provide information on accounts with SVCSTATUS
available, N means client should expect to ask user for specific account
information, Boolean

Y if server allows clients to make service activation requests
(<ACCTRQ>), N if server will only advise clients via synchronization
of service additions, changes, or deletions. Boolean

164

8.8 Signup Message Set Profile Information

OFX 2.2 Specification Public Draft 05/17/2016 165

166 8.8 Signhup Message Set Profile Information

CHAPTER 9 CUSTOMER TO FI COMMUNICATION

9.1 The E-Mail Message Set

The e-mail message set includes two messages: generic e-mail and generic MIME requests by way of
URLSs. In OFX files, the message set name is EMAILMSGSV1.

9.2 E-Mail Messages

OFX allows consumers and Fls to exchange messages. The message body can be placed in HTML so that
Fls can provide some graphic structure to the message. Keep in mind that, as with regular World Wide Web
browsing, an OFX client might not support some or all of the HTML formatting, so the text of the message
must be clear on its own. Clients can request the server to send graphics (the images referenced in an
 tag) as part of the response file, or clients can separately request those elements. If a server sends
images, it should use the standard procedure for incorporating external data as described in Chapter 2,
""Structure." Servers are not required to support HTML or to send images, even if the client asks.

A user or an FI can originate a message. E-mail messages are subject to data synchronization so that a
server can send a response again if it is lost or if multiple clients use it.

Because e-mail messages cannot be replied to immediately, the response should just echo back the original
message (so that data synchronization will get this original e-mail message to other clients). When the Fl is
ready to reply, it should generate an unsolicited response (STRNUID>0) and the client will pick this up
during synchronization.

Client Sends Server Responds

Account information
From, To

Subject

Message

Account information
From, To

Subject

Message

Type

OFX 2.2 Specification Public Draft 05/17/2016 161

9.2.1 Regular vs. Specialized E-Mail

Several services with OFX define e-mail requests and responses that contain additional information
specific to that service. To simplify implementation for OFX clients and servers, this section defines a
<MAIL> aggregate that OFX uses in all e-mail requests and responses. For regular e-mail, the only
additional information is an account-from aggregate and whether to include images in the e-mail response

or not.

When users want to send messages about service-specific problems, service-specific messages are best.
However, when service-specific mail transactions are not available, general mail is acceptable.

9.2.2 Basic <MAIL> Aggregate

Tag Description
<MAIL> Core e-mail aggregate
<USERID> User identification, A-32
<DTCREATED> | When message was created, datetime
<FROM> Who the message is from, A-32
<TO> Who the message should be delivered to, A-32
<SUBJECT> Subject of message (plain text, not HTML), A-60
<MSGBODY> Body of message, HTML-encoded or plain text depending on <USEHTML>,
HTML-encoded text - A-10000
Plain text - A-2000
<INCIMAGES> Include images in the message body. Boolean
<USEHTML> Y for HTML-formatted text. N for plain text. See section 9.2.2.2 for more information.
Boolean
</MAIL>
162 9.2 E-Mail Messages

9.2.2.1 <INCIMAGES>

The meaning of the <INCIMAGES> element depends on whether the element appears in a request or
response.

When used in a request, <INCIMAGES> indicates whether the client accepts mail that includes images in
the message body.

When used in arequest... Description

<INCIMAGES>Y The client accepts mail that includes images in the message body. In this case,
the server can choose whether to send images in the response.

<INCIMAGES>N The client does not accept mail that includes images in the message body. In
this case, the server must not send images in the response.

When used in a response, <INCIMAGES> indicates whether the server included images in the message
body.

When used in aresponse... Description
<INCIMAGES>Y The server included images in the message body.
<INCIMAGES>N The server did not include images in the message body.

9.2.2.2 <USEHTML>

The meaning of the <USEHTML> element depends on whether the element appears in a request or
response.

When used in a request, <USEHTML> indicates whether the client sends and accepts HTML-formatted
text in the message body. If a server receives a <xxxMAILSYNCRQ> request with <USEHTML>Y set,
the server should process the request whether or not it supports HTML mail. If a server does not support
HTML mail, it should simply set the <USEHTML> flag to N in any transactions which are returned in the
sync response.

When used in arequest... Description

<USEHTML>Y The client is including HTML-formatted text in the message body. In addition,
the client will accept mail responses that include HTML-formatted text in the
message body. In this case, a server can choose whether to respond with
HTML-formatted text or plain text.

<USEHTML>N The client is not including HTML-formatted text in the message body. In
addition the client will not accept mail responses that include HTML-
formatted text in the message body.

OFX 2.2 Specification Public Draft 05/17/2016 163

When used in a response, <USEHTML> indicates whether the message body includes HTML-formatted
text or plain text.

When used in aresponse... Description
<USEHTML>Y The server is including HTML-formatted text in the message body.
<USEHTML>N The server is including only plain text in the message body.

Note: When using HTML for the message body, clients and servers are REQUIRED to
enclose the HTML in a CDATA section to protect the HTML markup: <![CDATA][... html ...
]1>. For an example, see section 9.2.5.

9.2.3 E-Mail <MAILRQ> <MAILRS>

E-mail is subject to synchronization. The transaction aggregate is <MAILTRNRQ>/ <MAILTRNRS> and
the synchronization aggregate is <MAILSYNCRQ> / <MAILSYNCRS>.

Tag Description

<MAILRQ> E-mail-message-request aggregate
<MAIL> Core e-mail aggregate
</MAIL>

</MAILRQ>

In a response, the <TRNUID> is zero if this is an unsolicited message or an out-of-band reply to a prior
email request. Immediate responses (acknowledgments) to a request should contain the <TRNUID> of the
user’s original message. It is RECOMMENDED that servers include the <MESSAGE> of the user’s
message as part of the reply <MESSAGE>. The <MESSAGE> contents can include carriage returns to

identify desired line breaks.

Tag Description

<MAILRS> E-mail-message-response aggregate
<MAIL> Core e-mail aggregate
</MAIL>

</MAILRS>

164 9.2 E-Mail Messages

9.2.3.1 Status Codes

0 Success (INFO)

2000 General error (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

15508 Transaction not authorized (ERROR)

16500 HTML not allowed (ERROR)

16501 Unknown mail To: (ERROR)

OFX 2.2 Specification Public Draft 05/17/2016 165

9.2.4 E-Mail Synchronization <MAILSYNCRQ> <MAILSYNCRS>

E-mail presents a special case with regards to synchronization. Since FlIs will not immediately reply to a
user’s e-mail, the response to the user’s e-mail only echoes the request and confirms that the e-mail was
successfully received. The client receives the real response to the e-mail following a synchronization

request.

Note that this synchronization action expects only the basic <MAILRS> responses. Specialized e-mail is
received by means of their own synchronization requests.

Tag
<MAILSYNCRQ>

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or
<REFRESH>

<TOKEN>

<TOKENONLY>

<REFRESH>

<REJECTIFMISSING>

<INCIMAGES>

<USEHTML>
<OFXEXTENSION>
</OFXEXTENSION>
<MAILTRNRQ>

</MAILTRNRQ>

</MAILSYNCRQ>

Description

E-mail-synchronization-request aggregate

Previous value of <TOKEN> received for this type of synchronization request
from server; 0 for first-time requests; token

Request for just the current <TOKEN> without the history, Boolean
Request for refresh of current state, Boolean
If Y, do not process requests if client <TOKEN> is out of date, Boolean

Y if the client accepts mail with images in the message body, N if the client does
not accept mail with images in the message body, Boolean

Y if client wants an HTML response, N if client wants plain text, Boolean

OFX extension aggregate; see Section 2.7.2 for more information

Mail-transaction-request aggregate (0 or more)

166

9.2 E-Mail Messages

Tag Description

<MAILSYNCRS> E-mail-synchronization-response. aggregate
<TOKEN> Server history marker, token
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the

server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in the
server’s history table. Boolean

<OFXEXTENSION> | OFX extension aggregate; see Section 2.7.2 for more information
</OFXEXTENSION>
<MAILTRNRS> Missing e-mail response transactions (0 or more)
</MAILTRNRS>

</MAILSYNCRS>

9.2.5 E-Mail Example

In this example, a consumer requests information about the checking statement just downloaded. Since the
financial institution will not immediately answer the inquiry, the immediate response only echoes the
consumer’s request and confirms that the request was successfully received.

The client receives the real response at a later time following a mail synchronization request. For an
example of the mail synchronization request and response, see section 9.2.5.1.

Note: This example omits the <OFX> top level and the signon <SONRQ>. Since this example
uses HTML for the message body, it must protect the HTML content in an CDATA-marked
section.

The request:

<MAILTRNRQ>

<TRNUID>54321</TRNUID>
<MAILRQ>
<MAIL>

<USERID>123456789</USERI1D>
<FROM>James Hackleman</FROM>
<TO>Noelani Federal Savings</TO>
<SUBJECT>What do I need to earn interest?</SUBJECT>
<DTCREATED>20050305</DTCREATED>

<MSGBODY><![CDATA[<HTML><BODY>1 didn’t earn any interest this
month. Can you please tell me what 1 need to do to earn interest on this
account?</BODY></HTML>

11></MSGBODY>

OFX 2.2 Specification Public Draft 05/17/2016 167

<INCIMAGES>N</ INCIMAGES>
<USEHTML>Y</USEHTML>
</MAIL>
</MAILRQ>
</MAILTRNRQ>

The response from the FI:

<MAILTRNRS>

<TRNUID>54321</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<MAILRS>
<MAIL>
<USERID>123456789</USERID>
<FROM>James Hackleman</FROM>
<TO>Noelani Federal Savings</TO>
<SUBJECT>What do I need to earn interest?</SUBJECT>
<DTCREATED>20050305</DTCREATED>

<MSGBODY><![CDATA[<HTML><BODY>1 didn”t earn any interest this _
month. Can you please tell me what | need to do to earn interest on this
account?</BODY></HTML>]]></MSGBODY>

<INCIMAGES>N</ INCIMAGES>
<USEHTML>Y</USEHTML>
</MAIL>
</MAILRS>
</MAILTRNRS>

9.2.5.1 E-Mail Synchronization Example

In the following example, the client has not yet received the reply to the e-mail sent in the previous
example, so its <TOKEN> is one less than the server’s. The server replies by giving the current <TOKEN>
and the missed response.

<MAILSYNCRQ>
<TOKEN>101</TOKEN>
<REJECTIFMISSING>N</REJECTIFMISSING>
<INCIMAGES>N</ INCIMAGES>
<USEHTML>Y</USEHTML>

</MAILSYNCRQ>

<MAILSYNCRS>

168 9.2 E-Mail Messages

<TOKEN>102</TOKEN>
<MAILTRNRS>

<TRNUID>0</TRNUID> <I-- server initiated response -->
<STATUS>

<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<MAILRS>
<MAIL>
<USERI1D>123456789</USERID>
<DTCREATED>20050307</DTCREATED>
<FROM>Noelani Federal Savings</FROM>
<TO>James Hackleman</TO>
<SUBJECT>Re: What do I need to earn iInterest?</SUBJECT>

) <MSGBODY><![CDATA[<HTML><BODY>You need to maintain $1000 in _
this account to earn interest. Because your balance was only $750 this
month, no interest was earned. You could also switch to our new Checking
Extra plan that always pays interest. Call us or check our web page
http://www.fi.com/check-plans.html for more information.

Sincerely,
Customer Service Department

Original message:

I didn”t earn any interest this month. Can you please tell _me what 1
need to do to earn interest on this account?</BODY></HTML>]]></MSGBODY>

<INCIMAGES>N</ INCIMAGES>
<USEHTML>Y</USEHTML>
</MAIL>
</MAILRS>
</MAILTRNRS>
</MAILSYNCRS>

OFX 2.2 Specification Public Draft 05/17/2016 169

9.3 Get HTML Page

Some responses (<KPROFRS> and <FINDBILLERRS> for example) contain values that are URLS
intended to be separately fetched by clients. Clients can use their own HTTP libraries to perform this fetch
outside of the OFX specification. However, to insulate clients against changes in transport technology, and
to allow for fetches that require the protection of an authenticated signon by a specific user, OFX defines a
transaction roughly equivalent to an HTTP Get. Any MIME type can be retrieved, including images as
well as HTML pages.

When a <GETMIMERQ> request appears in a request file and no error occurs in processing, the server
must return a response file containing multiple entities (defined in the MIME protocol to include the
MIME headers and content for one part of the transmission). Such a response file has content type
“multipart/x-mixed-replace”, as discussed in section 2.1. One entity contains the OFX response. Other
entities contain the content of individual retrievals corresponding to each <GETMIMERS> in the OFX
entity.

When multiple <GETMIMERS> responses (corresponding to successful <GETMIMERQ> requests)
appear in an OFX response entity, the server must return individual entities in the same order as the
corresponding response aggregates. Since the OFX response itself should be the only entity with content
type “application/x-ofx” in the response file, the client may find the retrieved information in predictable
locations within the multipart response.

9.3.1 MIME Get Request and Response <GETMIMERQ>
<GETMIMERS>

The following table lists the components of a request:

Description
<GETMIMERQ> Get-MIME-request aggregate
<URL> URL, URL

</GETMIMERQ>

The response simply echoes the URL. The actual response, whether HTML, an image, or some other type,
is always sent as a separate part of the file using multipart MIME.

Description
<GETMIMERS> Get-MIME-response aggregate
<URL> URL, URL

</GETMIMERS>

170 9.3 Get HTML Page

9.3.1.1 Status Codes

0 Success (INFO)

2000 General error (ERROR)
2019 Duplicate request (ERROR)
16502 Invalid URL (ERROR)
16503 Unable to get URL (ERROR)

9.3.2 MIME Example
A request:

<GETMIMETRNRQ>

<TRNUID>54321</TRNUID>
<GETMIMERQ>
<URL>http://www.Fi.com/apage.html</URL>
</GETMIMERQ>
</GETMIMETRNRQ>

A response — the full file is shown here to illustrate the use of multipart MIME:

HTTP 1.0 200 OK
Content-Type: multipart/x-mixed-replace; boundary =boundary =XYZZY24x7

--XYZZY24x7

Content-Type: application/x-ofx
Content-Length: 8732

<?xml version="1.0"?>

<?0FX OFXHEADER='200" VERSION="220" SECURITY="NONE'" OLDFILEUID=""NONE"
NEWFILEUID=""NONE"?>

<OFX>
<I-- signon not shown
message set wrappers not shown -->
<GETMIMETRNRS>
<TRNUID>54321</TRNUID>
<STATUS>
<CODE>0</CODE>

OFX 2.2 Specification Public Draft 05/17/2016 171

<SEVERITY>INFO</SEVERITY>
</STATUS>
<GETMIMERS>
<URL>http://www.Ffi.com/apage.html</URL>
</GETMIMERS>
</GETMIMETRNRS>
</OFX>

--XYZZY24x7
Content-Type: text/html
<HTML>

<I-- standard HTML page -->
</HTML>

--XYZZY24X7--

172 9.3 Get HTML Page

9.4 Message Sets and Profile

9.4.1 Message Set and Messages

The following tables show the OFX Email transactions and their corresponding transaction wrappers.

9.4.1.1 Email Message Set and Messages

9.4.1.1.1 Email Message Set Request Messages

Message Set Message

<EMAILMSGSRQV1>
MAILTRNRQ
MAILRQ
GETMIMETRNRQ
GETMIMERQ
MAILSYNCRQ
</EMAILMSGSRQV1>

9.4.1.1.2 Email Message Set Response Messages

Message Set Message

<EMAILMSGSRSV1>
MAILTRNRS
MAILRS
GETMIMETRNRS
GETMIMERS
MAILSYNCRS
</[EMAILMSGSRSV1>

9.4.2 E-Mail Message Set Profile

If either or both of the messages in the e-mail message set are supported, the following aggregate must be
included in the profile <MSGSETLIST> response. If <EMAILMSGSET> is supported by the server, you

OFX 2.2 Specification Public Draft 05/17/2016 173

must also support <MAILSYNCRQ>.

Tag Description
<EMAILMSGSET> E-mail-message-set-profile-information aggregate
<EMAILMSGSETV1> Opening tag for V1 of the message set profile information

<MSGSETCORE> Common message set information, defined in Chapter 7, "FI Profile"

</MSGSETCORE>

<MAILSUP> Y if server supports <MAILRQ> request. N if server supports only the
<MAILSYNCRQ> request. Boolean

<GETMIMESUP> Y if server supports get MIME message, Boolean

</EMAILMSGSETV1>

</EMAILMSGSET>

174 9.4 Message Sets and Profile

CHAPTER 10 RECURRING TRANSACTIONS

OFX enables users to automate transactions that occur on a regular basis. Recurring transactions are useful
when a customer has payments or transfers, for example, that repeat at regular intervals. The customer can
create a “model” at the server for automatic generation of these instructions. The model in turn creates
payments or transfers until it is canceled or expires. After the user creates a recurring model at the server,
the server can relieve the user from the burden of creating these transactions; it generates the transactions
on its own, based on the operating parameters of the model.

10.1 Creating a Recurring Model

The client must provide the following information to create a model:

» Type of transaction generated by the model (payment or transfer)

» Frequency of recurring transaction

» Total number of recurring transactions to generate

» Service-specific information, such as transfer date, payment amount, payee address

The model creates each transaction some time before its due date, usually thirty days. This allows the user

to retrieve the transactions in advance of posting. This also gives the user the opportunity to modify or
cancel individual transactions without changing the recurring model itself.

When a model is created, it can generate several transactions immediately. The model does not
automatically return responses for the newly created transactions. It returns a response only to the request
that was made to create the model. For this reason, clients should send a synchronization request along
with the request to create a model. This allows the server to return the newly created transaction responses,
as well as the response to the request to set up a new model.

OFX 2.2 Specification Public Draft 05/17/2016 175

10.2 Recurring Instructions <RECURRINST>

The Recurring Instructions aggregate is used to specify the schedule for a repeating instruction. It is passed
to the server when a recurring transfer or payment model is first created.

Tag Description
<RECURRINST> Recurring-Instructions aggregate
<NINSTS> Number of instructions

If this element is absent, the schedule is open-ended, N-3
<FREQ> Frequency, see section 10.2.1

</RECURRINST>

10.2.1 Values for <FREQ>

Value Description

WEEKLY Weekly
BIWEEKLY Biweekly
TWICEMONTHLY | Twice a month

MONTHLY Monthly
FOURWEEKS Every four weeks
BIMONTHLY Bimonthly
QUARTERLY Quarterly

SEMIANNUALLY Semiannually

ANNUALLY Annually

Rules for calculating recurring dates of WEEKLY, BIWEEKLY, and TWICEMONTHLY are as follows:
» WEEKLY = starting date for first transaction, starting date + 7 days for the second

e TWICEMONTHLY = starting date for first, starting date + 15 days for the second

BIWEEKLY = starting date for first, starting date + 14 days for the second

Note that servers are free to adjust the payment date of a spawned payment to accommodate weekends and
holidays. For instance, if August 1 falls on a Saturday, a MONTHLY model generating payments on the
1st of each month might change the due date of its August 1 payment to July 31.

176 10.2 Recurring Instructions <RECURRINST>

Examples:
Start date of May 2: next transaction date for WEEKLY is May 9; TWICEMONTHLY is May 17; next transfer
date for BIWEEKLY is May 16.

Start date of May 20: next date for WEEKLY is May 27; TWICEMONTHLY is June 4; next date for BIWEEKLY
is June 3.

TWICEMONTHLY recurring transactions will occur each month on those days adjusting for weekends and
holidays. BIWEEKLY will occur every 14 days.

10.2.2 Examples

The following example illustrates the creation of a repeating payment. The payment repeats on a monthly
basis for 12 months. All payments are for $395.

The request:

<RECPMTRQ>
<RECURRINST>
<NINSTS>12</NINSTS>
<FREQ>MONTHLY</FREQ>
</RECURRINST>
<PMT INFO>
<BANKACCTFROM>
<BANKID>555432180</BANK1D>
<ACCTID>763984</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>395.00</TRNAMT>
<PAYEEID>77810</PAYEEID>
<PAYACCT>444-78-97572</PAYACCT>
<DTDUE>20051115</DTDUE>
<MEMO>Auto loan payment</MEMO>
</PMTINFO>
</RECPMTRQ>

OFX 2.2 Specification Public Draft 05/17/2016 177

The response includes the <RECSRVRTID> that the client can
use to cancel or modify the model:

<RECPMTRS>
<RECSRVRT I1D>387687138</RECSRVRT ID>
<RECURRINST>
<NINSTS>12</NINSTS>
<FREQ>MONTHLY</FREQ>

</RECURRINST>
<PMTINFO>
<BANKACCTFROM>
<BANK1D>555432180</BANKI1D>
<ACCTID>763984</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>395.00</TRNAMT>
<PAYEEID>77810</PAYEEID>
<PAYACCT>444-78-97572</PAYACCT>
<DTDUE>20051115</DTDUE>

<MEMO>Auto loan payment</MEMO>
</PMTINFO>
</RECPMTRS>

178 10.2 Recurring Instructions <RECURRINST>

10.3 Retrieving Transactions Generated by a Recurring
Model

Once created, a recurring model independently generates instructions. At the time the instance is
generated, its status is pending. At this point, the pending/spawned transaction is treated as a single
transaction, and the rules for what happens to this transaction are the same as if it had been generated from
an explicit request. Since the client has not directly generated these transactions, the client has no record of
their creation. To enable users to modify and/or cancel these transactions, the client must use data
synchronization in order to retrieve these transactions. (Some message sets also support an inquiry request,
which may be used once the SRVRTID of the transaction is obtained via synchronization.)

The client has two purposes for synchronizing state with the server with respect to recurring models:
» Retrieve any added, modified, or canceled recurring models

» Retrieve any added, modified, or canceled transactions generated by any models

The client must be able to synchronize with the state of any models at the server, as well as the state of any
transactions generated by the server.

10.3.1 Models and Sync Behavior

When a model spawns a payment, the corresponding change may be reflected in the sync in the form of a
<RECPMTMODRS> with <TRNUID>0. The change would be reflected in a decremented <NINSTS> as
well as a changed <DTDUE> which would contain the date of the next payment to be spawned. If the
server chooses to send a last <RECPMTMODRS> containing <NINSTS>0, the client should use this to
know that the model is finished.

A recurring payments refresh should cause the current, not original, state of the model to be sent. The
remaining number of instances (KNINSTS>) and the date due (<DTDUE>) of the next payment to be
spawned should be returned. This assures that another client who may not know about payment history
relevant to the state of the model (such as payment cancellations) can know the current state of the model.

10.4 Modifying and Canceling Individual Transactions

Once created and retrieved by the customer, recurring payments and transfers are almost identical to
customer-created payments or transfers. As with ordinary payments or transfers, you can cancel or modify
transactions individually. However, because servers generate these transfers, they are different in the
following respects:

» Recurring transactions must be retrieved as part of a synchronization request.

» Recurring transactions are related to a model. A server can modify or cancel transactions if the model is
modified or canceled.

OFX 2.2 Specification Public Draft 05/17/2016 179

10.5 Modifying and Canceling Recurring Models

A recurring model can be modified or canceled. When a model is modified, all transactions that it
generates in the future will change as well. The client can indicate whether transactions that have been
generated, but have not been sent, should be modified as well. The actual elements within a transaction
that can be modified differ by service. See the recurring sections within Chapter 11, "Banking," and
Chapter 12, "Payments," for details. When a model is cancelled, the server cancels any transactions that it
has not yet sent.

If a client indicates that the modification or cancellation of a model should also affect its pending
transactions, those individual modifications/cancellations must appear in the appropriate synchronization
response the next time a synchronization request is made. For example, a recurring payment cancellation
request that affects pending payments should cause payment cancellation responses to show up in the
payment synchronization response for all pending payments belonging to the model.

10.5.1 Examples

Canceling a recurring payment model requires the client to pass the <RECSRVRTID> of the model. The
client requests that pending payments also be canceled. The server cancels the model immediately and
notifies the client that the model was canceled.

The request:

<RECPMTCANCRQ>
<RECSRVRT1D>387687138</RECSRVRTID>
<CANPEND ING>Y</CANPEND ING>
</RECPMTCANCRQ>

The response:

<RECPMTCANCRS>
<RECSRVRT1D>387687138</RECSRVRT ID>
<CANPEND ING>Y</CANPEND ING>
</RECPMTCANCRS>

180 10.5 Modifying and Canceling Recurring Models

The server also cancels any payments that have been generated but not executed. In the example shown
above, the client would not learn of this immediately. To receive notification that all pending payments
were canc