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1 Syntactic Objects

Programming languages are languages, a means of expressing computations in a form
comprehensible to both people and machines. The syntax of a language specifies the means
by which various sorts of phrases (expressions, commands, declarations, and so forth) may
be combined to form programs. But what sort of thing are these phrases? What is a program
made of?

The informal concept of syntax may be seen to involve several distinct concepts. The
surface, or concrete, syntax is concerned with how phrases are entered and displayed on a
computer. The surface syntax is usually thought of as given by strings of characters from
some alphabet (say, ASCII or Unicode). The structural, or abstract, syntax is concerned
with the structure of phrases, specifically how they are composed from other phrases. At
this level a phrase is a tree, called an abstract syntax tree, whose nodes are operators
that combine several phrases to form another phrase. The binding structure of syntax is
concerned with the introduction and use of identifiers: how they are declared and how
declared identifiers are to be used. At this level phrases are abstract binding trees, which
enrich abstract syntax trees with the concepts of binding and scope.

We do not concern ourselves in this book with matters of concrete syntax, but instead
work at the level of abstract syntax. To prepare the ground for the rest of the book, this
chapter begins by definining abstract syntax trees and abstract binding trees and some
functions and relations associated with them. The definitions are a bit technical, but are
absolutely fundamental to what follows. It is probably best to skim this chapter on first
reading, returning to it only as the need arises.

1.1 Abstract Syntax Trees

An abstract syntax tree, or ast for short, is an ordered tree whose leaves are variables and
whose interior nodes are operators whose arguments are its children. Abstract syntax trees
are classified into a variety of sorts corresponding to different forms of syntax. A variable
stands for an unspecified, or generic, piece of syntax of a specified sort. Ast’s may be
combined by an operator, which has both a sort and an arity, a finite sequence of sorts
specifying the number and sorts of its arguments. An operator of sort s and arity s1, . . . , sn

combines n ≥ 0 ast’s of sort s1, . . . , sn , into a compound ast of sort s. As a matter of
terminology, a nullary operator is one that takes no arguments, a unary operator takes one,
a binary operator takes two, and so forth.
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4 Syntactic Objects

The concept of a variable is central, and therefore deserves special emphasis. As in
mathematics a variable is an unknown object drawn from some domain, its range of
signficance. In school mathematics the (often implied) range of significance is the set of
real numbers. Here variables range over ast’s of a specified sort. Being an unknown, the
meaning of a variable is given by substitution, the process of “plugging in” an object from
the domain for the variable in a formula. So, in school, we might plug in π for x in a
polynomial and calculate the result. Here we would plug in an ast of the appropriate sort for
a variable in an ast to obtain another ast. The process of substitution is easily understood
for ast’s, because it amounts to a “physical” replacement of the variable by an ast within
another ast. We subsequently consider a generalization of the concept of ast for which the
substitution process is somewhat more complex, but the essential idea is the same and bears
repeating: A variable is given meaning by substitution.

For example, consider a simple language of expressions built from numbers, addition,
and multiplication. The abstract syntax of such a language would consist of a single sort
Exp and an infinite collection of operators that generate the forms of expression: num[n]
is a nullary operator of sort Exp whenever n ∈ N; plus and times are binary operators of
sort Exp whose arguments are both of sort Exp. The expression 2+ (3× x), which involves
a variable x , would be represented by the ast

plus(num[2]; times(num[3]; x))

of sort Exp, under the assumption that x is also of this sort. Because, say, num[4], is an ast
of sort Exp, we may plug it in for x in the preceding ast to obtain the ast

plus(num[2]; times(num[3]; num[4])),

which is written informally as 2 + (3 × 4). We may, of course, plug in more complex ast’s
of sort Exp for x to obtain other ast’s as a result.

The tree structure of ast’s supports a very useful principle of reasoning, called structural
induction. Suppose that we wish to prove that some property P(a) holds for all ast’s a of a
given sort. To show this, it is enough to consider all the ways in which a may be generated
and show that the property holds in each case, under the assumption that it holds for each
of its constituent ast’s (if any). So, in the case of the sort Exp just described, we must show
that

1. the property holds for any variable x of sort Exp; P(x);
2. the property holds for any number num[n]: For every n ∈ N; P(num[n]);
3. assuming the property holds for a1 and a2, it holds for plus(a1; a2) and times(a1; a2):

If P(a1) and P(a2), then P(plus(a1; a2)) and P(times(a1; a2)).

Because these cases exhaust all possibilities for the formation of a, we are assured that
P(a) holds for any ast a of sort Exp.

For the sake of precision and to prepare the ground for further developments, precise
definitions of the foregoing concepts are now given. LetS be a finite set of sorts. Let { Os }s∈S
be a sort-indexed family of operators o of sort s with arity ar(o) = (s1, . . . , sn). Let {Xs }s∈S
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5 1.1 Abstract Syntax Trees

be a sort-indexed family of variables x of each sort s. The family A[X ] = {A[X ]s }s∈S of
ast’s of sort s is defined as follows:

1. A variable of sort s is an ast of sort s: If x ∈ Xs , then x ∈ A[X ]s .
2. Operators combine ast’s: If o is an operator of sort s such that ar(o) = (s1, . . . , sn) and

if a1 ∈ A[X ]s1 , . . . , an ∈ A[X ]sn , then o(a1; . . . ;an) ∈ A[X ]s .

It follows from this definition that the principle of structural induction may be used to prove
that some property P holds for every ast. To show that P(a) holds for every a ∈ A[X ], it
is enough to show that

1. if x ∈ Xs , then Ps(x), and
2. if o ∈ Os and ar(o) = (s1, . . . , sn), then if Ps1 (a1) and . . . and Psn (an), then

Ps(o(a1; . . . ;an)).

For example, it is easy to prove by structural induction that if X ⊆ Y , then A[X ] ⊆ A[Y].
If X is a sort-indexed family of variables, we write X , x , where x is a variable of sort s

such that x /∈ Xs , to stand for the family of sets Y such that Ys = Xs ∪ { x } and Ys ′ = Xs ′

for all s ′ �= s. The family X , x , where x is a variable of sort s, is said to be the family
obtained by adjoining the variable x to the family X .

Variables are given meaning by substitution. If x is a variable of sort s, a ∈ A[X , x]s ′ ,
and b ∈ A[X ]s , then [b/x]a ∈ A[X ]s ′ is defined to be the result of substituting b for
every occurrence of x in a. The ast a is called the target and x is called the subject of the
substitution. Substitution is defined by the following equations:

1. [b/x]x = b and [b/x]y = y if x �= y.
2. [b/x]o(a1; . . . ;an) = o([b/x]a1; . . . ;[b/x]an).

For example, we may check that

[num[2]/x]plus(x ; num[3]) = plus(num[2]; num[3]).

We may prove by structural induction that substitution for ast’s is well defined.

Theorem 1.1. If a ∈ A[X , x], then for every b ∈ A[X ] there exists a unique c ∈ A[X ]
such that [b/x]a = c.

Proof By structural induction on a. If a = x , then c = b by definition; otherwise, if
a = y �= x , then c = y, also by definition. Otherwise, a = o(a1, . . . , an), and we have
by induction unique c1, . . . , cn such that [b/x]a1 = c1 and . . . [b/x]an = cn , and so c is
c = o(c1; . . . ;cn), by definition of substitution.

In most cases it is possible to enumerate all of the operators that generate the ast’s of
a sort up front, as we have done in the foregoing examples. However, in some situations
this is not possible—certain operators are available only within certain contexts. In such
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6 Syntactic Objects

cases we cannot fix the collection of operators O in advance, but rather must allow it to
be extensible. This is achieved by considering families of operators that are indexed by
symbolic parameters that serve as “names” for the instances. For example, in Chapter 34
we consider a family of nullary operators cls[u], where u is a symbolic parameter drawn
from the set of active parameters. It is essential that distinct parameters determine distinct
operators: If u and v are active parameters and u �= v , then cls[u] and cls[v] are
different operators. Extensibility is achieved by introducing new active parameters. So, if
u is not active, then cls[u] makes no sense, but if u becomes active, then cls[u] is a
nullary operator.

Parameters are easily confused with variables, but they are fundamentally different con-
cepts. As noted earlier, a variable stands for an unknown ast of its sort, but a parameter
does not stand for anything. It is a purely symbolic identifier whose only significance
is whether it is the same as or different from another parameter. Whereas variables are
given meaning by substitution, it is not possible, or sensible, to substitute for a param-
eter. As a consequence, disequality of parameters is preserved by substitution, whereas
disequality of variables is not (because the same ast may be substituted for two distinct
variables).

To account for the set of active parameters, the setA[U ;X ] is the set of ast’s with variables
drawn from X and with parameters drawn from U . Certain operators, such as cls[u], are
parameterized by parameters u of a given sort. The parameters are distinguished from the
arguments by the square brackets around them. Instances of such operators are permitted
only for parameters drawn from the active set U . So, for example, if u ∈ U , then cls[u]
is a nullary operator, but if u /∈ U , then cls[u] is not a valid operator. The next section
introduces the means of extending U to make operators available within that context.

1.2 Abstract Binding Trees

Abstract binding trees, or abt’s, enrich ast’s with the means to introduce new variables and
parameters, called a binding, with a specified range of significance, called its scope. The
scope of a binding is an abt within which the bound identifier may be used, either as a
placeholder (in the case of a variable declaration) or as the index of some operator (in the
case of a parameter declaration). Thus the set of active identifiers may be larger within a
subtree of an abt than it is within the surrounding tree. Moreover, different subtrees may
introduce identifiers with disjoint scopes. The crucial principle is that any use of an identifier
should be understood as a reference, or abstract pointer, to its binding. One consequence
is that the choice of identifiers is immaterial, so long as we can always associate a unique
binding with each use of an identifier.

As a motivating example, consider the expression let x be a1 in a2, which introduces
a variable x for use within the expression a2 to stand for the expression a1. The variable
x is bound by the let expression for use within a2; any use of x within a1 refers to a
different variable that happens to have the same name. For example, in the expression
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7 1.2 Abstract Binding Trees

let x be 7 in x + x , occurrences of x in the addition refer to the variable introduced by
the let. However, in the expression let x be x ∗ x in x + x , occurrences of x within the
multiplication refer to a variable different from those occurring within the addition. The
latter occurrences refer to the binding introduced by the let, whereas the former refer to
some outer binding not displayed here.

The names of bound variables are immaterial insofar as they determine the same bind-
ing. So, for example, the expression let x be x ∗ x in x + x could just as well have been
written as let y be x ∗ x in y + y without changing its meaning. In the former case the
variable x is bound within the addition, and in the latter it is the variable y, but the “pointer
structure” remains the same. The expression let x be y ∗ y in x + x has a different mean-
ing from these two expressions, because now the variable y within the multiplication refers
to a different surrounding variable. Renaming of bound variables is constrained to the
extent that it must not alter the reference structure of the expression. For example, the
expression let x be 2 in let y be 3 in x + x has a different meaning from the expression
let y be 2 in let y be 3 in y + y, because the y in the expression y + y in the second case
refers to the inner declaration, not the outer one, as before.

The concept of an ast may be enriched to account for binding and scope of a variable.
These enriched ast’s are called abstract binding trees. Abt’s generalize ast’s by allowing an
operator to bind any finite number (possibly zero) of variables in each argument position. An
argument to an operator is called an abstractor and has the form x1, . . . , xk.a. The sequence
of variables x1, . . . , xk is bound within the abt a. (When k is zero, we elide the distinction
between .a and a itself.) Written in the form of an abt, the expression let x be a1 in a2 has
the form let(a1; x.a2), which more clearly specifies that the variable x is bound within
a2 and not within a1. We often write 
x to stand for a finite sequence x1, . . . , xn of distinct
variables and write 
x.a to mean x1, . . . , xn.a.

To account for binding, the arity of an operator is generalized to consist of a finite
sequence of valences. The length of the sequence determines the number of arguments, and
each valence determines the sort of the argument and the number and sorts of the variables
that are bound within it. A valence of the form (s1, . . . , sk)s specifies an argument of sort
s that binds k variables of sorts s1, . . . , sk within it. We often write 
s for a finite sequence
s1, . . . , sn of sorts, and we say that 
x is of sort 
s to mean that the two sequences have the
same length and that each xi is of sort si .

Thus, for example, the arity of the operator let is (Exp, (Exp)Exp), which indicates that
it takes two arguments, described as follows:

1. The first argument is of sort Exp and binds no variables.
2. The second argument is of sort Exp and binds one variable of sort Exp.

The definition expression let x be 2 + 2 in x × x is represented by the abt

let(plus(num[2]; num[2]); x.times(x ; x)).

Let O be a sort-indexed family of operators o with arities ar(o). For a given sort-indexed
family X of variables, the sort-indexed family of abt’s B[X ] is defined similarly to A[X ],
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8 Syntactic Objects

except that the set of active variables changes for each argument according to which
variables are bound within it. A first cut at the definition is as follows:

1. If x ∈ Xs , then x ∈ B[X ]s .
2. If ar(o) = ((
s1)s1, . . . , (
sn)sn), and if, for each 1 ≤ i ≤ n, 
xi is of sort 
si and ai ∈

B[X , 
xi ]si , then o(
x1.a1; . . . ;
xn.an) ∈ B[X ]s .

The bound variables are adjoined to the set of active variables within each argument, with
the sort of each variable determined by the valence of the operator.

This definition is almost correct, but fails to properly account for the behavior of bound
variables. An abt of the form let(a1; x.let(a2; x.a3)) is ill-formed according to this
definition, because the first binding adjoins x to X , which implies that the second cannot
also adjoin x to X , x without causing confusion. The solution is to ensure that each of
the arguments is well-formed regardless of the choice of bound variable names. This is
achieved by altering the second clause of the definition using renaming as follows:1

If ar(o) = ((
s1)s1, . . . , (
sn)sn), and if, for each 1 ≤ i ≤ n and for each renaming πi :

xi ↔ 
x ′i , where 
x ′i /∈ X , we have πi ·ai ∈ B[X , 
x ′i ], then o(
x1.a1; . . . ;
xn.an) ∈ B[X ]s .

The renaming ensures that when we encounter nested binders we avoid collisions. This is
called the freshness condition on binders because it ensures that all bound variables are
“fresh” relative to the surrounding context.

The principle of structural induction extends to abt’s and is called structural induction
modulo renaming. It states that to show that P(a)[X ] holds for every a ∈ B[X ], it is enough
to show the following:

1. If x ∈ Xs , then P[X ]s(x).
2. For every o of sort s and arity ((
s1)s1, . . . , (
sn)sn), and if for each 1 ≤ i ≤ n, we have

P[X , 
x ′
i ]si (πi · ai ) for every renamingπi : 
xi ↔ 
x ′

i , thenP[X ]s(o(
x1.a1; . . . ;
xn.an)).

The renaming in the second condition ensures that the inductive hypothesis holds for all
fresh choices of bound variable names and not just the ones actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to mean that x
occurs free in a. Informally, this means that x is bound somewhere outside of a, rather than
within a itself. If x is bound within a, then those occurrences of x are different from those
occurring outside the binding. The following ensure conditions that this is the case:

1. x ∈ x .
2. x ∈ o(
x1.a1; . . . ;
xn.an) if there exists 1 ≤ i ≤ n such that for every fresh renaming
π : 
xi ↔ 
zi we have x ∈ π · ai .

The first condition states that x is free in x , but not free in y for any variable y other than x .
The second condition states that if x is free in some argument, independent of the choice

1 The action of a renaming extends to abt’s in the obvious way by replacing every occurrence of x by π (x),
including any occurrences in the variable list of an abstractor as well as within its body.
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9 1.2 Abstract Binding Trees

of bound variable names in that argument, then it is free in the overall abt. This implies, in
particular, that x is not free in let(zero; x.x).

The relation a =α b of α-equivalence (so-called for historical reasons), is defined to
mean that a and b are identical up to the choice of bound variable names. This relation is
defined to be the strongest congruence containing the following two conditions:

1. x =α x .
2. o(
x1.a1; . . . ;
xn.an) =α o(
x ′

1.a′
1; . . . ;
x ′

n.a′
n) if for every 1 ≤ i ≤ n, πi · ai =α

π ′
i · a′

i for all fresh renamings πi : 
xi ↔ 
zi and π ′
i : 
x ′

i ↔ 
zi .

The idea is that we rename 
xi and 
x ′
i consistently, avoiding confusion, and check that ai

and a′
i are α-equivalent. If a =α b, then a and b are said to be α-variants of each other.

Some care is required in the definition of substitution of an abt b of sort s for free
occurrences of a variable x of sort s in some abt a of some sort, written [b/x]a. Substitution
is partially defined by the following conditions:

1. [b/x]x = b, and [b/x]y = y if x �= y.
2. [b/x]o(
x1.a1; . . . ;
xn.an) = o(
x1.a′

1; . . . ;
xn.a′
n), where, for each 1 ≤ i ≤ n, we

require that 
xi �∈ b, and we set a′
i = [b/x]ai if x /∈ 
xi , and a′

i = ai otherwise.

If x is bound in some argument to an operator, then substitution does not descend into its
scope, for to do so would be to confuse two distinct variables. For this reason we must
take care to define a′

i in the preceding second condition according to whether x ∈ 
xi . The
requirement that 
xi �∈ b in the second equation is called capture avoidance. If some xi, j

occurred free in b, then the result of the substitution [b/x]ai would in general contain xi, j

free as well, but then forming 
xi.[b/x]ai would incur capture by changing the referent of
xi, j to be the j th bound variable of the i th argument. In such cases substitution is undefined
because we cannot replace x by b in ai without incurring capture.

One way around this is to alter the definition of substitution so that the bound variables in
the result are chosen fresh by substitution. By the principle of structural induction we know
inductively that, for any renaming πi : 
xi ↔ 
x ′

i with 
x ′
i fresh, the substitution [b/x](πi · ai )

is well-defined. Hence we may define

[b/x]o(
x1.a1; . . . ;
xn.an) = o(
x ′
1.[b/x](π1 · a1); . . . ;
x ′

n.[b/x](πn · an))

for some particular choice of fresh bound variable names (any choice will do). There is no
longer any need to take care that x /∈ 
xi in each argument, because the freshness condition
on binders ensures that this cannot occur, the variable x already being active. Noting that

o(
x1.a1; . . . ;
xn.an) =α o(
x ′
1.π1 · a1; . . . ;
x ′

n.πn · an),

another way we can avoid undefined substitutions is to first choose an α-variant of the
target of the substitution whose binders avoid any free variables in the substituting abt, and
then perform substitution without fear of incurring capture. In other words substitution is
totally defined on α-equivalence classes of abt’s.
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10 Syntactic Objects

To avoid all the bureaucracy of binding, we adopt the following identification convention
throughout this book:

Abstract binding trees are always to be identified up to α-equivalence.

That is, we implicitly work with α-equivalence classes of abt’s, rather than with abt’s
themselves. We tacitly assert that all operations and relations on abt’s respectα-equivalence,
so that they are properly defined onα-equivalence classes of abt’s. Whenever we examine an
abt, we are choosing a representative of its α-equivalence class, and we have no control over
how the bound variable names are chosen. Experience shows that any operation or property
of interest respects α-equivalence, so there is no obstacle to achieving it. Indeed, we might
say that a property or operation is legitimate exactly insofar as it respects α-equivalence!

Parameters, as well as variables, may be bound within an argument of an operator. Such
binders introduce a “new” or “fresh” parameter within the scope of the binder wherein it
may be used to form further abt’s. To allow for parameter declaration, the valence of an
argument is generalized to indicate the sorts of the parameters bound within it, as well as
the sorts of the variables, by writing ( 
s1; 
s2)s, where 
s1 specifies the sorts of the parameters
and 
s2 specifies the sorts of the variables. The sort-indexed family B[U ;X ] is the set of
abt’s determined by a fixed set of operators using the parameters U and the variables X .
We rely on naming conventions to distinguish parameters from variables, reserving u and
v for parameters and x and y for variables.

1.3 Notes

The concept of abstract syntax has its orgins in the pioneering work of Church, Turing, and
Gödel, who first considered the possibility of writing programs that act on representations
of programs. Originally programs were represented by natural numbers, using encodings,
now called Gödel numberings, based on the prime factorization theorem. Any standard
text on mathematical logic, such as that by Kleene (1952), contains a thorough account of
such representations. The Lisp language (McCarthy, 1965; Allen, 1978) introduced a much
more practical and direct representation of syntax as symbolic expressions. These ideas
were developed further in the language ML (Gordon et al., 1979), which featured a type
system capable of expressing abstract syntax trees. The AUTOMATH project (Nederpelt
et al., 1994) introduced the idea of using Church’s λ-notation (Church, 1941) to account
for the binding and scope of variables. These ideas were developed further in LF (Harper
et al., 1993).
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2 Inductive Definitions

Inductive definitions are an indispensable tool in the study of programming languages. This
chapter develops the basic framework of inductive definitions and gives some examples
of their use. An inductive definition consists of a set of rules for deriving judgments, or
assertions, of a variety of forms. Judgments are statements about one or more syntactic
objects of a specified sort. The rules specify necessary and sufficient conditions for the
validity of a judgment and hence fully determine its meaning.

2.1 Judgments

We start with the notion of a judgment, or assertion, about a syntactic object. We make use
of many forms of judgment, including examples such as these:

n nat n is a natural number
n = n1 + n2 n is the sum of n1 and n2

τ type τ is a type
e : τ expression e has type τ
e ⇓ v expression e has value v

A judgment states that one (or more) syntactic object has a property or stands in some
relation to another. The property or relation itself is called a judgment form, and the
judgment that an object (or objects) has that property or stands in that relation is said to
be an instance of that judgment form. A judgment form is also called a predicate, and the
objects constituting an instance are its subjects. We write a J for the judgment asserting
that J holds for a. When it is not important to stress the subject of the judgment, we write J
to stand for an unspecified judgment. For particular judgment forms, we freely use prefix,
infix, or mixfix notation, as illustrated by the preceding examples, in order to enhance
readability.

2.2 Inference Rules

An inductive definition of a judgment form consists of a collection of rules of the form

J1 . . . Jk

J
(2.1)
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12 Inductive Definitions

in which J and J1, . . . , Jk are all judgments of the form being defined. The judgments
above the horizontal line are called the premises of the rule, and the judgment below the
line is called its conclusion. If a rule has no premises (that is, when k is zero), the rule is
called an axiom; otherwise it is called a proper rule.

An inference rule may be read as stating that the premises are sufficient for the conclusion:
To show J , it is enough to show J1, . . . , Jk . When k is zero, a rule states that its conclusion
holds unconditionally. Bear in mind that there may be, in general, many rules with the same
conclusion, each specifying sufficient conditions for the conclusion. Consequently, if the
conclusion of a rule holds, then it is not necessary that the premises hold, for it might have
been derived by another rule.

For example, the following rules constitute an inductive definition of the judgment a nat:

zero nat
(2.2a)

a nat
succ(a) nat

. (2.2b)

These rules specify that a nat holds whenever either a is zero or a is succ(b), where
b nat for some b. Taking these rules to be exhaustive, it follows that a nat iff a is a natural
number.

Similarly, the following rules constitute an inductive definition of the judgment a tree:

empty tree
(2.3a)

a1 tree a2 tree

node(a1; a2) tree
. (2.3b)

These rules specify that a tree holds if either a is empty or a is node(a1; a2), where a1 tree

and a2 tree. Taking these to be exhaustive, these rules state that a is a binary tree, which is
to say it is either empty or a node consisting of two children, each of which is also a binary
tree.

The judgment a = b nat defining the equality of a nat and b nat is inductively defined
by the following rules:

zero = zero nat
(2.4a)

a = b nat
succ(a) = succ(b) nat

. (2.4b)

In each of the preceding examples we have made use of a notational convention for
specifying an infinite family of rules by a finite number of patterns, or rule schemes. For
example, Rule (2.2b) is a rule scheme that determines one rule, called an instance of the rule
scheme, for each choice of object a in the rule. We rely on context to determine whether a
rule is stated for a specific object a or is instead intended as a rule scheme specifying a rule
for each choice of objects in the rule.

A collection of rules is considered to define the strongest judgment that is closed under, or
respects, those rules. To be closed under the rules simply means that the rules are sufficient
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13 2.3 Derivations

to show the validity of a judgment: J holds if there is a way to obtain it using the given
rules. To be the strongest judgment closed under the rules means that the rules are also
necessary: J holds only if there is a way to obtain it by applying the rules. The sufficiency
of the rules means that we may show that J holds by deriving it by composing rules. Their
necessity means that we may reason about it using rule induction.

2.3 Derivations

To show that an inductively defined judgment holds, it is enough to exhibit a derivation
of it. A derivation of a judgment is a finite composition of rules, starting with axioms and
ending with that judgment. It may be thought of as a tree in which each node is a rule
whose children are derivations of its premises. We sometimes say that a derivation of J is
evidence for the validity of an inductively defined judgment J .

We usually depict derivations as trees with the conclusion at the bottom and with the
children of a node corresponding to a rule appearing above it as evidence for the premises
of that rule. Thus, if

J1 . . . Jk

J

is an inference rule and ∇1, . . . ,∇k are derivations of its premises, then

∇1 . . . ∇k

J

is a derivation of its conclusion. In particular, if k = 0, then the node has no children.
For example, this is a derivation of succ(succ(succ(zero))) nat:

zero nat
succ(zero) nat

succ(succ(zero)) nat
succ(succ(succ(zero))) nat

.

(2.5)

Similarly, here is a derivation of a node(node(empty; empty); empty) tree:

empty tree empty tree

node(empty; empty) tree empty tree

node(node(empty; empty); empty) tree
.

(2.6)

To show that an inductively defined judgment is derivable we need only find a deriva-
tion for it. There are two main methods for finding derivations, called forward chaining,
or bottom-up construction, and backward chaining, or top-down construction. Forward
chaining starts with the axioms and works forward toward the desired conclusion, whereas
backward chaining starts with the desired conclusion and works backward toward the
axioms.

More precisely, a forward chaining search maintains a set of derivable judgments and
continually extends this set by adding to it the conclusion of any rule all of whose premises
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14 Inductive Definitions

are in that set. Initially, the set is empty; the process terminates when the desired judgment
occurs in the set. Assuming that all rules are considered at every stage, forward chaining
will eventually find a derivation of any derivable judgment, but it is impossible (in general)
to decide algorithmically when to stop extending the set and conclude that the desired
judgment is not derivable. We may go on and on adding more judgments to the derivable
set without ever achieving the intended goal. It is a matter of understanding the global
properties of the rules to determine that a given judgment is not derivable.

Forward chaining is undirected in the sense that it does not take account of the end goal
when deciding how to proceed at each step. In contrast, backward chaining is goal-directed.
Backward chaining search maintains a queue of current goals, judgmnts whose derivations
are to be sought. Initially, this set consists solely of the judgment we wish to derive. At each
stage, we remove a judgment from the queue and consider all rules whose conclusion is
that judgment. For each such rule, we add the premises of that rule to the back of the queue
and continue. If there is more than one such rule, this process must be repeated, with the
same starting queue, for each candidate rule. The process terminates whenever the queue is
empty, all goals having been achieved; any pending consideration of candidate rules along
the way may be discarded. As with forward chaining, backward chaining will eventually
find a derivation of any derivable judgment, but there is, in general, no algorithmic method
for determining in general whether the current goal is derivable. If it is not, we may futilely
add more and more judgments to the goal set, never reaching a point at which all goals
have been satisfied.

2.4 Rule Induction

Because an inductive definition specifies the strongest judgment closed under a collection
of rules, we may reason about them by rule induction. The principle of rule induction states
that to show that a property P holds of a judgment J whenever J is derivable, it is enough
to show that P is closed under, or respects, the rules defining J . Writing P(J ) to mean that
the property P holds of the judgment J , we say that P respects the rule

J1 . . . Jk

J

if P(J ) holds whenever P(J1), . . . , P(Jk). The assumptions P(J1), . . . , P(Jk) are called
the inductive hypotheses, and P(J ) is called the inductive conclusion of the inference.

The principle of rule induction is simply the expression of the definition of an inductively
defined judgment form as the strongest judgment form closed under the rules comprising
the definition. This means that the judgment form defined by a set of rules is both (a) closed
under those rules and (b) sufficient for any other property also closed under those rules. The
former means that a derivation is evidence for the validity of a judgment; the latter means
that we may reason about an inductively defined judgment form by rule induction.
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15 2.4 Rule Induction

When specialized to Rules (2.2), the principle of rule induction states that to show
P(a nat) whenever a nat, it is enough to show that

1. P(zero nat), and
2. for every a, if a nat and P(a nat), then (succ(a) nat and) P(succ(a) nat).

This is just the familiar principle of mathematical induction arising as a special case of rule
induction.

Similarly, rule induction for Rules (2.3) states that to show P(a tree) whenever a tree,
it is enough to show that

1. P(empty tree), and
2. for every a1 and a2, if a1 tree and P(a1 tree), and if a2 tree and P(a2 tree), then

(node(a1; a2) tree and) P(node(a1; a2) tree).

This is called the principle of tree induction and is once again an instance of rule induction.
We may also show by rule induction that the predecessor of a natural number is also a

natural number. Although this may seem self-evident, the point of the example is to show
how to derive this from first principles.

Lemma 2.1. If succ(a) nat, then a nat.

Proof It suffices to show that the property P(a nat) stating that a nat and that a =
succ(b) implies b nat is closed under Rules (2.2).

Rule (2.2a). Clearly zero nat, and the second condition holds vacuously, because zero
is not of the form succ(−).

Rule (2.2b). Inductively we know that a nat and that if a is of the form succ(b), then
b nat. We are to show that succ(a) nat, which is immediate, and that if succ(a) is
of the form succ(b), then b nat, and we have b nat by the inductive hypothesis.

This completes the proof.

Using rule induction we may show that equality, as defined by Rules (2.4), is reflexive.

Lemma 2.2. If a nat, then a = a nat.

Proof By rule induction on Rules (2.2):

Rule (2.2a). Applying Rule (2.4a), we obtain zero = zero nat.
Rule (2.2b). Assume that a = a nat. It follows that succ(a) = succ(a) nat by an

application of Rule (2.4b).
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16 Inductive Definitions

Similarly, we may show that the successor operation is injective.

Lemma 2.3. If succ(a1) = succ(a2) nat, then a1 = a2 nat.

Proof Similar to the proof of Lemma 2.1.

2.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive definition builds on top
of another. In an iterated inductive definition the premises of a rule

J1 . . . Jk

J

may be instances of either a previously defined judgment form or the judgment form being
defined. For example, the following rules define the judgment a list, stating that a is a list
of natural numbers:

nil list
(2.7a)

a nat b list
cons(a; b) list

. (2.7b)

The first premise of Rule (2.7b) is an instance of the judgment form a nat, which was
defined previously, whereas the premise b list is an instance of the judgment form being
defined by these rules.

Frequently two or more judgments are defined at once by a simultaneous inductive
definition. A simultaneous inductive definition consists of a set of rules for deriving instances
of several different judgment forms, any of which may appear as the premise of any rule.
Because the rules defining each judgment form may involve any of the others, none of the
judgment forms may be taken to be defined prior to the others. Instead we must understand
that all of the judgment forms are being defined at once by the entire collection of rules.
The judgment forms defined by these rules are, as before, the strongest judgment forms that
are closed under the rules. Therefore the principle of proof by rule induction continues to
apply, albeit in a form that requires us to prove a property of each of the defined judgment
forms simultaneously.

For example, consider the following rules, which constitute a simultaneous inductive
definition of the judgments a even, stating that a is an even natural number, and a odd,
stating that a is an odd natural number:

zero even
(2.8a)

a odd
succ(a) even

(2.8b)

a even
succ(a) odd

. (2.8c)
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17 2.6 Defining Functions by Rules

The principle of rule induction for these rules states that to show simultaneously that
P(a even) whenever a even and P(a odd) whenever a odd, it is enough to show the
following:

1. P(zero even);
2. if P(a odd), then P(succ(a) even);
3. if P(a even), then P(succ(a) odd).

As a simple example, we may use simultaneous rule induction to prove that (1) if a even,
then a nat, and (2) if a odd, then a nat. That is, we define the property P by (1) P(a even)
iff a nat, and (2) P(a odd) iff a nat. The principle of rule induction for Rules (2.8) states
that it is sufficient to show the following facts:

1. zero nat, which is derivable by Rule (2.2a).
2. If a nat, then succ(a) nat, which is derivable by Rule (2.2b).
3. If a nat, then succ(a) nat, which is also derivable by Rule (2.2b).

2.6 Defining Functions by Rules

A common use of inductive definitions is to define a function by giving an inductive
definition of its graph relating inputs to outputs and then showing that the relation uniquely
determines the outputs for given inputs. For example, we may define the addition function
on natural numbers as the relation sum(a; b; c), with the intended meaning that c is the sum
of a and b, as follows:

b nat
sum(zero; b; b) (2.9a)

sum(a; b; c)
sum(succ(a); b; succ(c))

. (2.9b)

The rules define a ternary (three-place) relation sum(a; b; c) among natural numbers a, b,
and c. We may show that c is determined by a and b in this relation.

Theorem 2.4. For every a nat and b nat, there exists a unique c nat such that sum(a; b; c).

Proof The proof decomposes into two parts:

1. (Existence) If a nat and b nat, then there exists c nat such that sum(a; b; c).
2. (Uniqueness) If sum(a; b; c), and sum(a; b; c′), then c = c′ nat.
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18 Inductive Definitions

For existence, let P(a nat) be the proposition if b nat then there exists c nat such that
sum(a; b; c). We prove that if a nat then P(a nat) by rule induction on Rules (2.2). We
have two cases to consider:

Rule (2.2a). We are to show P(zero nat). Assuming b nat and taking c to be b, we
obtain sum(zero; b; c) by Rule (2.9a).

Rule (2.2b). Assuming P(a nat), we are to show that P(succ(a) nat). That is, we
assume that if b nat then there exists c such that sum(a; b; c), and we are to show that
if b′ nat, then there exists c′ such that sum(succ(a); b′; c′). To this end, suppose that
b′ nat. Then by induction there exists c such that sum(a; b′; c). Taking c′ = succ(c)
and applying Rule (2.9b), we obtain sum(succ(a); b′; c′), as required.

For uniqueness, we prove that if sum(a; b; c1), then if sum(a; b; c2), then c1 = c2 nat by
rule induction based on Rules (2.9).

Rule (2.9a). We have a = zero and c1 = b. By an inner induction on the same rules, we
may show that if sum(zero; b; c2), then c2 is b. By Lemma 2.2 we obtain b = b nat.

Rule (2.9b). We have that a = succ(a′) and c1 = succ(c′
1), where sum(a′; b; c′

1).
By an inner induction on the same rules, we may show that if sum(a; b; c2),
then c2 = succ(c′

2) nat, where sum(a′; b; c′
2). By the outer inductive hypothesis

c′
1 = c′

2 nat and so c1 = c2 nat.

2.7 Modes

The statement that one (or more) argument of a judgment is (perhaps uniquely) determined
by its other arguments is called a mode specification for that judgment. For example, we
have shown that every two natural numbers have a sum according to Rules (2.9). This fact
may be restated as a mode specification by saying that the judgment sum(a; b; c) has mode
(∀,∀, ∃). The notation arises from the form of the proposition it expresses: For all a nat

and for all b nat, there exists c nat such that sum(a; b; c). If we wish to further specify that
c is uniquely determined by a and b, we would say that the judgment sum(a; b; c) has mode
(∀,∀, ∃!), corresponding to the proposition that for all a nat and for all b nat, there exists
a unique c nat such that sum(a; b; c). If we wish to specify only that the sum is unique, if it
exists, then we would say that the addition judgment has mode (∀,∀, ∃≤1), corresponding
to the proposition for all a nat and for all b nat there exists at most one c nat such that
sum(a; b; c).

As these examples illustrate, a given judgment may satisfy several different mode specifi-
cations. In general the universally quantified arguments are to be thought of as the inputs of
the judgment, and the existentially quantified arguments are to be thought of as its outputs.
We usually try to arrange things so that the outputs come after the inputs, but it is not
essential that we do so. For example, addition also has the mode (∀, ∃≤1,∀), stating that the
sum and the first addend uniquely determine the second addend, if there is any such addend
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19 2.8 Notes

at all. Put in other terms, this says that addition of natural numbers has a (partial) inverse,
namely subtraction. We could equally well show that addition has mode (∃≤1,∀,∀), which
is just another way of stating that addition of natural numbers has a partial inverse.

Often there is an intended, or principal, mode of a given judgment, which we often
foreshadow by our choice of notation. For example, when giving an inductive definition of
a function, we often use equations to indicate the intended input and output relationships.
For example, we may restate the inductive definition of addition [given by Rules (2.9)]
using the following equations:

a nat
a + zero = a nat

(2.10a)

a + b = c nat
a + succ(b) = succ(c) nat

. (2.10b)

When using this notation we tacitly incur the obligation to prove that the mode of the
judgment is such that the object on the right-hand side of the equations is determined as
a function of those on the left. Having done so, we abuse notation, writing a + b for the
unique c such that a + b = c nat.

2.8 Notes

Aczel (1977) provides a thorough account of the theory of inductive definitions. The
formulation given here is strongly influenced by Martin-Löf’s development of the logic of
judgments (Martin-Löf, 1983, 1987).
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3 Hypothetical and General Judgments

A hypothetical judgment expresses an entailment between one or more hypotheses and a
conclusion. We consider two notions of entailment, called derivability and admissibility.
Both enjoy the same structural properties, but they differ in that derivability is stable
under extension with new rules, admissibility is not. A general judgment expresses the
universality, or generality, of a judgment. There are two forms of general judgment, the
generic and the parametric. The generic judgment expresses generality with respect to
all substitution instances for variables in a judgment. The parametric judgment expresses
generality with respect to renamings of symbols.

3.1 Hypothetical Judgments

The hypothetical judgment codifies the rules for expressing the validity of a conclusion
conditional on the validity of one or more hypothesis. There are two forms of hypothetical
judgment that differ according to the sense in which the conclusion is conditional on the
hypotheses. One is stable under extension with additional rules, and the other is not.

3.1.1 Derivability

For a given set R of rules, we define the derivability judgment, written J1, . . . , Jk �R K ,
where each Ji and K are basic judgments, to mean that we may derive K from the expansion
R[J1, . . . , Jk] of the rules R with the additional axioms

J1
. . .

Jk
.

We treat the hypotheses, or antecedents, of the judgment J1, . . . , Jn as “temporary axioms”
and derive the conclusion, or consequent, by composing rules in R. Thus evidence for a
hypothetical judgment consists of a derivation of the conclusion from the hypotheses using
the rules in R.

We use capital Greek letters, frequently � or �, to stand for a finite collection of basic
judgments, and we write R[�] for the expansion of R with an axiom corresponding to
each judgment in �. The judgment � �R K means that K is derivable from rules R[�],
and the judgment �R � means that �R J for each J in �. An equivalent way of defining
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21 3.1 Hypothetical Judgments

J1, . . . , Jn �R J is to say that the rule

J1 . . . Jn

J
(3.1)

is derivable from R, which means that there is a derivation of J composed of the rules in
R augmented by treating J1, . . . , Jn as axioms.

For example, consider the derivability judgment

a nat �(2.2) succ(succ(a)) nat (3.2)

relative to Rules (2.2). This judgment is valid for any choice of object a, as evidenced by
the derivation

a nat
succ(a) nat

succ(succ(a)) nat
(3.3)

that comprises Rules (2.2), starting with a nat as an axiom and ending with
succ(succ(a)) nat. Equivalently, the validity of (3.2) may also be expressed by stat-
ing that the rule

a nat
succ(succ(a)) nat

(3.4)

is derivable from Rules (2.2).
It follows directly from the definition of derivability that it is stable under extension with

new rules.

Theorem 3.1 (Stability). If � �R J , then � �R∪R′ J .

Proof Any derivation of J from R[�] is also a derivation from (R∪R′)[�], because any
rule in R is also a rule in R ∪ R′.

Derivability enjoys a number of structural properties that follow from its definition,
independently of the rules R in question.

Reflexivity. Every judgment is a consequence of itself: �, J �R J . Each hypothesis
justifies itself as conclusion.

Weakening. If � �R J , then �, K �R J . Entailment is not influenced by unexercised
options.

Transitivity If �, K �R J and � �R K , then � �R J . If we replace an axiom by a
derivation of it, the result is a derivation of its consequent without that hypothesis.

Reflexivity follows directly from the meaning of derivability. Weakening follows directly
from the definition of derivability. Transitivity is proved by rule induction on the first
premise.
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22 Hypothetical and General Judgments

3.1.2 Admissibility

Admissibility, written as � |=R J , is a weaker form of hypothetical judgment stating that
�R � implies �R J . That is, the conclusion J is derivable from rules R whenever the
assumptions � are all derivable from rules R. In particular if any of the hypotheses are not
derivable relative to R, then the judgment is vacuously true. An equivalent way to define
the judgment J1, . . . , Jn |=R J is to state that the rule

J1 . . . Jn

J (3.5)

is admissible relative to the rules in R. This means that given any derivations of J1, . . . , Jn

using the rules in R, we may construct a derivation of J using the rules in R.
For example, the admissibility judgment

succ(a) nat |=(2.2) a nat (3.6)

is valid, because any derivation of succ(a) nat from Rules (2.2) must contain a subderiva-
tion of a nat from the same rules, which justifies the conclusion. The validity of (3.6) may
equivalently be expressed by stating that the rule

succ(a) nat
a nat (3.7)

is admissible for Rules (2.2).
In contrast to derivability, the admissibility judgment is not stable under extension to the

rules. For example, if we enrich Rules (2.2) with the axiom

succ(junk) nat
(3.8)

(where junk is some object for which junk nat is not derivable), then the admissibility (3.6)
is invalid. This is because Rule (3.8) has no premises and there is no composition of rules
deriving junk nat. Admissibility is as sensitive to which rules are absent from an inductive
definition as it is to which rules are present in it.

The structural properties of derivability ensure that derivability is stronger than admissi-
bility.

Theorem 3.2. If � �R J , then � |=R J .

Proof Repeated application of the transitivity of derivability shows that if � �R J and
�R �, then �R J .

To see that the converse fails, observe that there is no composition of rules such that

succ(junk) nat �(2.2) junk nat,

yet the admissibility judgment

succ(junk) nat |=(2.2) junk nat

holds vacuously.
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23 3.2 Hypothetical Inductive Definitions

Evidence for admissibility may be thought of as a mathematical function transforming
derivations ∇1, . . . ,∇n of the hypotheses into a derivation ∇ of the consequent. Therefore
the admissibility judgment enjoys the same structural properties as derivability, and hence
is a form of hypothetical judgment:

Reflexivity. If J is derivable from the original rules then J is derivable from the original
rules: J |=R J .

Weakening. If J is derivable, from the original rules, assuming that each of the judg-
ments in � are derivable from these rules, then J must also be derivable, assuming
that � and also K are derivable from the original rules: If � |=R J , then �, K |=R J .

Transitivity. If �, K |=R J and � |=R K , then � |=R J . If the judgments in � are
derivable, so is K , by assumption, and hence so are the judgments in �, K , and hence
so is J .

Theorem 3.3. The admissibility judgment � |=R J enjoys the structural properties of
entailment.

Proof Follows immediately from the definition of admissibility as stating that if the
hypotheses are derivable relative to R, then so is the conclusion.

If a rule r is admissible with respect to a rule set R then �R,r J is equivalent to �R J .
For if �R J , then obviously �R,r J , by simply disregarding r . Conversely, if �R,r J , then
we may replace any use of r by its expansion in terms of the rules in R. It follows by
rule induction on R, r that every derivation from the expanded set of rules R, r may be
transformed into a derivation from R alone. Consequently, if we wish to show that P(J )
whenever �R,r J , it is sufficient to show that P is closed under the rules R alone. That is,
we need only consider the rules R in a proof by rule induction to derive P(J ).

3.2 Hypothetical Inductive Definitions

It is useful to enrich the concept of an inductive definition to permit rules with derivability
judgments as premises and conclusions. Doing so permits us to introduce local hypotheses
that apply only in the derivation of a particular premise and also allows us to constrain
inferences based on the global hypotheses in effect at the point where the rule is applied.

A hypothetical inductive definition consists of a collection of hypothetical rules of the
following form:

� �1 � J1 . . . � �n � Jn

� � J
. (3.9)

The hypotheses � are the global hypotheses of the rule, and the hypotheses �i are the local
hypotheses of the i th premise of the rule. Informally, this rule states that J is a derivable
consequence of � whenever each Ji is a derivable consequence of �, augmented with the
additional hypotheses �i . Thus one way to show that J is derivable from � is to show, in
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24 Hypothetical and General Judgments

turn, that each Ji is derivable from � �i . The derivation of each premise involves a “context
switch” in which we extend the global hypotheses with the local hypotheses of that premise,
establishing a new set of global hypotheses for use within that derivation.

In most cases a rule is stated for all choices of global context, in which case it is said to
be uniform. A uniform rule may be given in the implicit form

�1 � J1 . . . �n � Jn

J
(3.10)

which stands for the collection of all rules of the form (3.9) in which the global hypotheses
have been made explicit.

A hypothetical inductive definition is to be regarded as an ordinary inductive definition
of a formal derivability judgment � � J consisting of a finite set of basic judgments �
and a basic judgment J . A collection of hypothetical rules R defines the strongest formal
derivability judgment that is structural and closed under rules R. Structurality means that
the formal derivability judgment must be closed under the following rules:

�, J � J
(3.11a)

� � J
�, K � J (3.11b)

� � K �, K � J
� � J

. (3.11c)

These rules ensure that formal derivability behaves like a hypothetical judgment. By a slight
abuse of notation we write � �R J to indicate that � � J is derivable from rules R.

The principle of hypothetical rule induction is just the principle of rule induction applied
to the formal hypothetical judgment. So to show that P(� � J ) whenever � �R J , it is
enough to show that P is closed under both the rules of R and under the structural rules.
Thus, for each rule of the form (3.10), whether structural or in R, we must show that

if P(� �1 � J1) and . . . and P(� �n � Jn), then P(� � J ).

This is just a restatement of the principle of rule induction given in Chapter 2, specialized
to the formal derivability judgment � � J .

In practice we usually dispense with the structural rules by the method described in
Subsection 3.1.2. By proving that the structural rules are admissible, any proof by rule
induction may restrict attention to the rules in R alone. If all of the rules of a hypothetical
inductive definition are uniform, structural rules (3.11b) and (3.11c) are readily seen to
be admissible. Usually, Rule (3.11a) must be postulated explictly as a rule, rather than be
shown to be admissible on the basis of the other rules.

3.3 General Judgments

General judgments codify the rules for handling variables in a judgment. As in mathematics
in general, a variable is treated as an unknown ranging over a specified collection of
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25 3.3 General Judgments

objects. A generic judgment expresses that a judgment holds for any choice of objects
replacing designated variables in the judgment. Another form of general judgment codifies
the handling of parameters. A parametric judgment expresses generality over any choice
of fresh renamings of designated parameters of a judgment. To keep track of the active
variables and parameters in a derivation, we write � �U ;X

R J to indicate that J is derivable
from � according to rules R, with objects consisting of abt’s over parameters U and
variables X .

Generic derivability judgment is defined by


x | � �X
R J iff ∀π : 
x ↔ 
x ′ π · � �X ,
x ′

R π · J,

where the quantification is restricted to variables 
x ′ not already active in X . Evidence for
generic derivability consists of a generic derivation ∇ involving the variables 
x such that
for every fresh renaming π : 
x ↔ 
x ′, the derivation π · ∇ is evidence for π ·� �X ,
x ′

R π · J .
The renaming ensures that the variables in the generic judgment are fresh (not already
declared in X ) and that the meaning of the judgment is not dependent on the choice of
variable names.

For example, the generic derivation ∇
x nat

succ(x) nat
succ(succ(x)) nat

is evidence for the judgment

x | x nat �X
(2.2) succ(succ(x)) nat.

This is because every fresh renaming of x to y in ∇ results in a valid derivation of the
corresponding renaming of the indicated judgment.

The generic derivability judgment enjoys the following structural properties governing
the behavior of variables:

Proliferation. If 
x | � �X
R J , then 
x, x | � �X

R J .
Renaming. If 
x, x | � �X

R J , then 
x, x ′ | [x ↔ x ′] · � �X
R [x ↔ x ′] · J for any

x ′ /∈ X , 
x .
Substitution. If 
x, x | � �X

R J and a ∈ B[X , 
x], then 
x | [a/x]� �X
R [a/x]J .

(It is left implicit in the principle of substitution that sorts are to be respected in that the
substituting object must be of the same sort as the variable that is being substituted.) Pro-
liferation is guaranteed by the interpretation of rule schemes as ranging over all expansions
of the universe. Renaming is built into the meaning of the generic judgment. Substitution
holds as long as the rules themselves are closed under substitution. This need not be the
case, but in practice this requirement is usually met.

Parametric derivability is defined analogously to generic derivability, albeit by general-
izing over parameters rather than over variables. Parametric derivability is defined by


u; 
x | � �U ;X
R J iff ∀ρ : 
u ↔ 
u′ ∀π : 
x ↔ 
x ′ ρ · π · � �U ,
u′;X ,
x ′

R ρ · π · J .
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26 Hypothetical and General Judgments

Evidence for parametric derivability consists of a derivation ∇ involving the parameters

u and variables 
x , each of whose fresh renamings is a derivation of the corresponding
renaming of the underlying hypothetical judgment.

Recalling from Chapter 1 that parameters admit disequality, we cannot expect any sub-
stitution principle for parameters to hold of a parametric derivability. It does, however,
validate the structural properties of proliferation and renaming because the presence of
additional parameters does not affect the formation of an abt, and parametric derivability
is defined to respect all fresh renamings of parameters.

3.4 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgments in the premises of
rules, with the effect of augmenting the variables, as well as the rules, within those premises.
A generic rule has the form


x 
x1 | � �1 � J1 . . . 
x 
xn | � �n � Jn


x | � � J
. (3.12)

The variables 
x are the global variables of the inference, and, for each 1 ≤ i ≤ n, the
variables 
xi are the local variables of the i th premise. In most cases a rule is stated for
all choices of global variables and global hypotheses. Such rules may be given in implicit
form:


x1 | �1 � J1 . . . 
xn | �n � Jn

J
. (3.13)

A generic inductive definition is just an ordinary inductive definition of a family of formal
generic judgments of the form 
x | � � J . Formal generic judgments are identified up to
the renaming of variables, so that the latter judgment is treated as identical to the judgment

x ′ | π · � � π · J for any renaming π : 
x ↔ 
x ′. If R is a collection of generic rules, we
write 
x | � �R J to mean that the formal generic judgment 
x | � � J is derivable from
rules R.

When specialized to a collection of generic rules, the principle of rule induction states
that to show P(
x | � � J ) whenever 
x | � �R J , it is enough to show that P is closed
under the rules R. Specifically, for each rule in R of the form (3.12), we must show that

if P(
x 
x1 | � �1 � J1) . . . P(
x 
xn | � �n � Jn) then P(
x | � � J ).

By the identification convention (stated in Chapter 1) the propertyP must respect renamings
of the variables in a formal generic judgment.

To ensure that the formal generic judgment behaves like a generic judgment, we must
always ensure that the following structural rules are admissible:


x | �, J � J
(3.14a)


x | � � J

x | �, J ′ � J

(3.14b)
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27 3.5 Notes


x | � � J

x, x | � � J

(3.14c)


x, x ′ | [x ↔ x ′] · � � [x ↔ x ′] · J

x, x | � � J

(3.14d)


x | � � J 
x | �, J � J ′


x | � � J ′ (3.14e)


x, x | � � J a ∈ B[
x]

x | [a/x]� � [a/x]J

. (3.14f)

The admissibility of Rule (3.14a) is, in practice, ensured by explicitly including it. The
admissibility of Rules (3.14b) and (3.14c) is ensured if each of the generic rules is uniform,
as we may assimilate the additional parameter x to the global parameters and the additional
hypothesis J to the global hypotheses. The admissibility of Rule (3.14d) is ensured by the
identification convention for the formal generic judgment. Rule (3.14f) must be verified
explicitly for each inductive definition.

The concept of a generic inductive definition extends to parametric judgments as well.
Briefly, rules are defined on formal parametric judgments of the form 
u; 
x | � � J ,
with parameters 
u as well as variables 
x . Such formal judgments are identified up to the
renaming of their variables and their parameters to ensure that the meaning is independent
of the choice of variable and parameter names.

3.5 Notes

The concepts of entailment and generality are fundamental to logic and programming
languages. The formulation given here builds on the work of Martin-Löf (1983, 1987)
and Avron (1991). Hypothetical and general reasoning are consolidated into a single
concept in the AUTOMATH languages (Nederpelt et al., 1994) and in the LF Logical
Framework (Harper et al., 1993). These systems permit arbitrarily nested combinations of
hypothetical and general judgments, whereas the present account considers only general
hypothetical judgments over basic judgment forms.

The failure to distinguish parameters from variables is the source of many errors in
language design. The crucial distinction is that whereas it makes sense to distinguish cases
based on whether two parameters are the same or distinct, it makes no sense to do so for
variables, because disequality is not preserved by substitution. Adhering carefully to this
distinction avoids much confusion and complication in language design (see, for example,
Chapter 41).
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