The University of Western Australia Electrical, Electronic and Computer Engineering A/Prof. Thomas Bräunl

Embedded Systems ENGT2303

Lab Assignment 2

week 4

EQUIPMENT: PC with ReTrO simulation system

EXPERIMENT 1

Build a full working CPU with 8-bit data bus (8-bit op-codes, 8-bit operands, 8-bit addresses). Then write a program to calculate $1 + 2 + 3 \dots + m$, for a given value m. So:

$$result = \sum_{i=1}^{m} i$$

ALU: single accumulator, functions: nop / add / subtract

- **CU:** with the following op-codes:
 - 0 -- **nop**
 - 1 v load constant
 - 2 v add constant
 - 3 v subtract constant
 - 4 a **store** accumulator value to memory address a
 - 5 a **load** memory value from address a in accumulator
 - 6 a **add** memory value from address a in accumulator
 - 7 a **subtract** memoryvalue from address a in accumulator
 - 8 a branch unconditionally to address pc+a
 - 9 a branch conditionally if $acc \le 0$ to address pc+a
 - 10 v branch conditionally if acc = v to address pc+4
 - all other opcodes are "no operation"

Data locatior	ns: value m in loca result in locatio	ition \$F0 on \$F1
Algorithm:	clear result_value loop: add mem[m] to decrement men if (m≠0) branch	/* Assume m ≥ 1 */ o result m[m] o to loop
Example:	<u>m Result</u>	

=xample:	<u>m</u>	<u>Result</u>
-	3	3
	2	5
	1	6
	0	6

acc := v acc := acc + v acc := acc - v mem[a] := acc acc := mem[a] acc := acc + mem[a] acc := acc + mem[a] acc := acc = mem[a] pc := pc+a if acc \leq 0 then pc := pc+a if acc=v then pc := pc+4 else pc := pc+2