
1
\
i.

l

JAN/FEB $1.50

rnDoDrn SJrnDrnDD[ffi[]D[fr~rSJ
[SMALL SYSTEMS JOURNALVOWME2 on1 J
features page
INDEX T? PREVIOUS JOURNALS

WHAT'S A USR FUNCTION
Finally, that - long awaited explanation of BASIC's USR

function is here.

QUICKIES '.,
This month's -Quickie is an interesting exercise
mathematics, namely a decimal to binary converter.

CONTRIBUTED PROGRAM

in

~his month's contributed program is a small video BASIC
program called "Chessboard". It permits one to "move" the
chess pieces across the board that appears on the screen.

BUGS"& FIXES
The fixes for two bugs found in 9 digit BASIC as well as a
few notes on th. 430 and 500 boards.

HARD DISC DOS CONTROL
Here's how to ·modify those OS-05D Version ~.U disc programs
to work on the Hard Disc.

TRACK ZERO WRITER
With a few simple modifications the disc copy.utility found
on all OS-65D V2.0 diskettes can be modified to permit
changing of track zero.

NINE DIGIT BASIC
Heres how to modify 9 digit BASIC into an end user system.

500/510 UTILITIES
This program can p~ove to be invaluable for machine code
debugging.

510 TRACER
Though similar to the 500/510 utilities, p~ov1des some very
powerful additional features.

SPECIAL NEXT ISSUE * DON'T MISS IT!
I _

The n.xt issue will be a special issue on disk operating
·~ystems; comparing the features and applications of OS-65U,
OS-65D V2.2, OS-65D V2.0, OS-65D V2.0 9-DIGIT, DMS-1, and
OS-65D V2.4.

2

3

4

4

4

6

7

8

11

14

The magazine for 6502 computer enthusiasts!
"'-.,

•

INDEX TO VOLUME 1, July-December 1977
ARTICLES
Article Sponsorship Program

ASSEMBLER
Understanding and Using the 6502

Assembler

AUTO-LOAD
The Auto Load Cassette System

BASIC
ASCII Files under OS-65D
Bank Accoun'ts
BASIC in ROMs
Conventional Typewriter
Get the Most out of BASIC

Part 1, PEEK & POKE
Part 2, Files in BASIC

Memory Dump
Nine-Digit Precision BASIC
Resequencing via PEEK & POKE

BIG DISK
New Big Disk from OSI
74~Megabyte Disk Hardware Review

BUGS & FIXES

CPU Board s
500
510
510 Trade-In Offer
560Z Expander

DISASSEMBLER
The 6502 Disassembler

END USER SYSTEM
Constructing a Fool-Proof End User

System

GAMES
Bomber
Hamurabi
Shoot the Gluck
Star Wars
Surface-to-Air Missile

MEMOR,Y
Memory Technologies for Small

Computers
Part 1, Miss Storage Devices
Part 2, EPROMs, PROMs, and

ROMs
Part 3, RAMs

Odds & Ends

1K CORNER
Cassette Loader and Memory Block

Transfer
Close the Window
Hex Address & Offset Calbulator
Mini-Graphics
NIMB
Prime Number Generator

Dec. ,p. 7

July,p.4

July,p.9

Nov.,p.13
Nov.,p.15
Dec. ,p. 14
Oct. ,p. 8

Aug.,p.4
Sept.,p.4

Se pt. ,p. 12
Nov.,p.7

Sept. ,p.7

Aug. , p • 11
Dec., p. 2

July,p.8
Aug. ,p. 12

Sept.,p.16

July,p.15
July,p.15
Nov.,p.2

Sept.,p.14

July,p.14

Aug. ,p. 15

Nov.,p.10
Aug.,p.13

Dec. ,p. 8
Oct. ,p. 11
Nov.,p.8

Aug.,p.9

Se pt. ,p .8
Oct. ,p.4

July,p.13
Aug.,p.19

Sept. ,p.18

Nov. ,p . 3
Sept. ,p. 18

Oc t. ,p. 3
Aug. ,p. 20
July,p.8
Dec. ,p. 7

PRICE LISTS

QUESTIONNAIRE

TERMINAL/CASSETTE

Juty, p.17
Sept. ,p.21

Oc t. ,p. 15

Terminal/Cassette DOS Input Routine Dec.,p.13

TESTS
Cycle Time
Memory

USERS GROUP.
Floppy Disk Users Group

WORD PROCESSOR
OS-WP1

Sept.,p.12
Sept.,p.15

Dec'j'p.11

Nov.,p.4

Introduction
This issue of the journal finds itself with a
new editor. Namely; myself, Rick Whitesel. I
hope to always have something for everyone in
each issue of this journal. In order to do
this I ask that you, the readers, will drop
me a note on what you did or did not like in
this issue as well as the previous issuses.

This issue contains an index to the previous
journals, a long awaited explanation of 8K
BASIC's USR FUNCTION, and a article showing
how to adapt OS-65D V2.0 disc files to the
74-MEGABYTE HARD DISC. In the quickies
corner, chessboard, a video BASIC game that
displays a conventional chessboard on the
screen and permits each player to move thier
pieces by entering the from and to
coordinates. Further into this issue is a
"ho~ to" article on converting 9-Digit BASIC
into and end-user BASIC. Next is a outline of
the new OS-65U disc operating system. This is
followed by two debugging programs. The first
may be used on 500 or 510 systems while the
second is designed to be used on a 510
system with the software processor sel~ct
switch.

Ohio Scientific's Small Systems
Journal is issued bimonthly by Ohio
SCientific, Inc., P.O. Box 36,
Hiram, OH 44234. The subscription
rate is six dollars per six issues.
Individual copies are $1.50.
Published in Twinsburg, OH by the
Twinsburg Bulletin.

Jan./Feb., 19'7'7 Vol. 2, No.1
Editor-in-Chief
Production Manager
Contributing Editors

Rick Whitesel
Don Muchow
Mike Cheiky
Bob Coppedge
Eric Davis
Jim Halverson

Page 2 Ohio Scientific's Small Systems Journal Jan./Feb., 1978

What's a USB Function!
In the real world of computer applications,

BASIC has proved to be quite adequate.
However, there are applications where it
would be nice to have BASIC'S number
crunching capability with machine code's
speed. That is where OSI's USR function in
BASIC comes into play. Via the USR function,
one can have a.BASIC program which works in
conjunction with one or several machine code
programs. When BASIC executes the USR
function, it goes to VECTOR and VECTOR +1
(defined in the table below). There BASIC
"picks up" the address of the machine code

·program and jumps to it. Once in the machine
code program, one may execute two separate
routines. These routines allow variable
passing to and from BASIC. To pass a variable
from BASIC, the routine pointed to by the
contents of memory locations 6 and 7 must be
executed. The 15 bit signed number can then
be picked up at FACLO and FACHI. To pa.s a
variable back to BASIC the low byte is placed
in the Y - register and the high part is
placed in the accumulator. The routine
pointed to by the contents of memory
locations 8 and 9 must be executed.
Therefore, the following lines in BASIC would·
pass.the value of X to the machine code
program and upon returning to BASIC, X would
be equal the value passed back.

10 X=10
20 X=USR(X)
30 PRINT "X NOW EQUAt~";X

Below are the steps required to implement
the USR function.

,;.1) Set BASIC's memor.y size so it does not
overlap the machine

code program.
2) Set up VECTOR (low) and VECTOR +1 (high)

to point to the
machine code program.
3) In the machine code program, insert the

following code to
allow variable passing:
BEGIN JSR' GETVAR

GETVAR JMP (INVAR)

4) To pass a variable back, execute the
following machine code.

FINISH LOY LOWBYT
LOA HIGHBY
JMP (OUTUAR)

After execution of "FINISH", BASIC will
continue with (in this case) X=the number
passed in Y and A. Examples:

C2-4P or C2-8P
1) Set memory size=3000
2) Load the following machine code at $OFDO

A*RA

INIZ?N
A

113 01300
213 13131313
313 13131313
413 13131313

USR SUB
FACLO=$AF
FACHI=$AE
INVAR=$06

S0 1313130
60 00130
70 13131313
80 130130
913 0FOe

11313 eFOe
1113 eFOe
1213 0FOe 2eE4eF
1313 eF03 ASAF
140 0F05 BOE7eF
1513 eFD8 A5AE
1613 eFOA BOE8eF
1713 eFOO Aee1
1813 eFDF A900
190 eFE1 6C0800
2013 eFE4 6C06ee
21e.0FE7e0
220 eFE8 013

OUTVAR=$e8
LOWBYT=$01
HIGHB"'=$00

"',,!$0F00

BEGIN

GETVAR
TEMPL
TEMPH

JSR GETVAR
LOA FACLO·
STA TEMPL
LOA FACHI
STA TEMPH
LO." ILOWB."T
LOA tHIGHBY
JMP (OUTVAR)
JMP (INVAR)
:B."TE $00
. B."TE $1313

3) Load $OOOB with .00 an~
Load $OOOC with $OF

4) Execute·the fo~~owing BASI~ lines:
10 X=10
20 X:USR(X)
30 PRINT X
5) X now equals the value passed and TEMPL

contains the low part
passed from BASICwhlle the high part. is in

TEMPH. Note the value '
of the variable passed ranges from 32268

to +32268 (Bit 15 is the
sign Bit, 1=negative).

DISC BASED BASIC

1) Set memory sJze~15000
2) Load the f6llowing machine ~ode at $3FDO

. GET
FROM DRIVE, TRACK: B,71

A

10 0000 USR SUB
20 00130 FACLO=$B2
30 1313013 FACHI=$B1
40 0000 INVAR=$06
50 001313 OUTVAR=$08
60 00013 LOWB."T=$01
70 00130 HIGHB"'=$e0
80 0131313
90 3F00 *=$3F00

1130 3F00 J
110 3F00 J
120 3FOe 20E4.3F BEGIN JSR GETVAR
130 3F03 ASB2 LOA FACLO
140 3F05 80E73F STA TEMPL
1513 3F08 ASB1 LDA FACHI
160 3FOA 80E83F STA TEMPH
170 3FOO A0e1 LO." ILOWB."T
1813 3FOF Age0 LOA IHIGHB."
190 3FE1 6Ce80e JMP (OUTVAR)
21313 3FE4 6C0600 GETVAR JMP (INVAR)
210 '3FE7 00 TEMPL B."TE $130
220 3FE8 00 TE~IPH B."TE $00

3) Load VECTOR with $00 and VECTOR +1 with
$3F

4) Same as ·for C2-4P and C2-8P
5) Same as .for C2...;4P· and .C2-8P

Page 3 Ohio Scientific's Small Sys~ems Journal Jan./Feb., 1978

,.

Below are the various memory lo~ations for
the various BASIC's.

6-digit 9-digit ROM BASIC

VECTOR $023E $023E $OOOB
VECTOR+l $023F $023F $OOOC
OUTVAR ($08) ($08) ($08)
INVAR ($06) ($06) ($06)
FACLO $AF $Bl $AF
FACHI $AE $B2 $AE

Vector refers to the pOinter to the machine
code routine. OUTVAR is the location whose
contents point to the routine which passes a
variable to BASIC. INVAR contains a pointer
to the routine which passes a variable from
BASIC. FACLO and FACHI are the locations
where a machine code can pick up the variable
passed from BASIC. One final note, if you
have any special uses of the USR function,
please send us a letter on how you are using
it ..

QUICKIE,!
This months quickie is a decimal to
number converter. The program uses
rather clever tricks to implement
connversion routine. Be 'sure to follow

binary
some,

the
how

the connversion is don~.
50 PRINT
60 PRINT
70 PRINT "DECIMAL TO BINARY"
80 PRINT" CONVERTER"
96 PRINT
93 PRnlT
95 PRINT
100 INPUT X
101 IF X<O THEN GOTD 330
102 IF X>32767 THEN GOTO 330
~04 PRINT
105 PRINT .. X=" ;
110 '1-16384
120 A""INT<X/Y)
130 IF A=0 THEN GOTO 200
149 PRINT "1";
150 X"'X-Y
160 GOTO 300
21313 PRINT "0";
300 \'=Y/2
310 IF INT(Y)=0 THE~ GOTO 320
315 GOTO 120
320 GOTO 90
:330 ~ND

Sugs&Fixes
, If you are hav ing trouble with the 4K on
board RAM on the 500 CPU board, check the
ifo11 runs above IC-F9' (A 7404). There have
been cases of these runs overlaying each
other caUsing loss of bit 2 in the memory.

Two bugs have been found in 9 Digit BASIC.
The first causes the SPC function to act like

the TAB furiction ~nd the second is a bug in
the - string manipulation routines. The
corrections are as follows, respectively:

Locations Old New Contents
$OA3E $9F $2C
$OA3F $FO $18
$OA40 $68 $FO
$OA41 $C9 $59
$OA42 $2C $49
$OA43 $18 $9F
$OA45 $4C $63
$OA47 $3B $A4

AND

$OB70 $C4 $98
$OB72 $00 ,$99
$OBD6 $4C $98
$OBD7 $OB $99

C2-8Pers and C2-4Pers please make note that
Basic's USR function vector, is at decimal
locations 10 and 11 and not as stated in the
BASIC Manual.

If you are having any trouble with your 430B
cassette interface, try the following. Double
the 555's clock fr~quency and insert a 7474
in series with its output to obtain a
symetrical cloc~. - One might also try
inserting a RC noise filter to eliminate any
D.C. offset comin'g from the tape recorder's
output. ' .

Contributed Program
CHESSBOARD

This 1~, in effect, a computer chess board,
no more, n6 less. It. moves pieces and
displays the, new board. In most cases, it
will allow a player to cheat ,; as will a real

-chess board. .

The board is a standard 8 x 8 board with
locations given by the, values A,l through H,8
(see diagram).

1
2
3
4
5
6
7
8

A - B - C - 0 - E - F - G - H • • • • • • • • • • .' •
A - B - C - 0 - E - F - G - H

Initially, the board is set in the standard
way with white occupying the top two rows.

Moves are achieved through giving the initial
position of the piece and the final position

Page 4 Ohio Scientific's Small Systems Journal Jan./Feb., 1978

I
I

~
f' ,

of the piece separatea by a dash ("~"). For
example, to mov~ the, wh~te king's pawn from
its initial position to the fourth row in the
same column, (P-K4) would take a command
"02-04". Castleing ~s achieved by the FC and
QC commands, KC being king side castle and QC
being queen side castle. The program
automatically checks ,for white or black in
these commands.

Suggestions: A routine that could interpret
standard English chess notation would be
nice.

Initialize Board
Input Command
Options

If a pawn achieve~ the hom~ 'row of the
opponent, the player may charige the pawn into
a queen by the Q switch at the end of the
command string, for example: E2-E1Q

10-100
140-160
170-179
180-190
190-210
220-230
235

Interpreting of command string
Black or white
Move piece
Change piece?

240 GOTO print section
would cause the black pawn on E2 to move to
El and become a queen.

250
260-270
280

If black then GOTO 280
White king side castle
Black king side castle.
If black, then 330 Unfortunately, the 4K capacity of the BASIC

Challeng~r II is insufficient to handle an
error correction rciutine or a game record,
however, the game record is easily added. A
return without an input will end the game.

300
310-320
330
799-855
900-912
1000-1040
2000

White queen side castle
Black queen side cast1e.
Print updated board
Change pawn to queen
Initialization data

Page 5

1 REM •• DANIEL GLASSER
2 REM •• CHESS BOARD

10 DIM B1(S,S),B2(S.S).P$(16) ,
30 FOR X=1 TO 2: FOR Y=1 TO 8: READ S

End

42 B1(X.Y)=S: B1(X+2.Y)=S: B1(X+4.Y)=S: B1(X+6.Y)=S
50 NEXT Y: NEXT X: FOR X=1 TO 2:FOR Y=1 TO 8: READ S:B2(X.Y)=S
90 NEXT Y: NEXTX: FORX=7T08: FOR Y=1 TO 8: READ S:B2(X.Y)=S:NEXT Y

100 NEXTX:FORX=1T016:READS$:P$(X)=S$:NEXTX:GOT0800
140 IF W=1 THEN 160
141 INPUT"W>",M$:GOTO 170
160 INPUT"B>"JM$,
170 IF M$="END"THEN2000
177 IF M$="KC" THEN 250
178 IF M$a"QC" THEN 300
179 IF M$="BOARD" THEN 799
1S0 A$=LEFT$(M$.1):B$-MID$(M$.2.1):A1$=MID$(M$.4.1):B1$=MID$(M$.5.1)
190 B=VAL(B$):C=VAL(B1$):IFW=1THEN210
200 W=1:GOT0220
210 W=0:W2$(K)=M$
220 P1=ASC(A$)-64:P2=ASC(A1$)-64
230 U=B2(B.P1):B2(B.P1)=0:B2(C.P2)=U
235 IF RIGHT$(M$.1)="Q" THEN 900
240 GOTO 799
250 IF W=1 THEN 280
260 W"1
265 B2(1,1)=0: B2(1. 4)=0:B2(1. 2)=7: B2(1. 3)=4: GOT0799
2S0 W=0: B2(8.1)=0:,B2(S.4)=0:B2(8. 2)=14: B2(8. 3)=11: GOT0799
300 IFW=1THEN330
310 W=1
320 B2(1.8)=0:B2(1.4)=0:B2(1.6)=7:B2(1.5)=4:GOT0799
330 W=0:82(8.8)=0:B2(8.4)=0: 82(8.6)=14: 82(8. 5)=11: GOTO 799
799 FOR M5=1 TO 4: PRINT: NEXT M5
800 PRINT"-A----B----C----D----E----F----G----H--"
801 PRINT
810 FOR X=1 TO 8: FOR Y=1 TO 8
820 S1=B2(X.Y) .
830 IF S1=0 THEN S1=B1(X,Y)
840 S$=P$(S1):PRINTS$," ,";
850 NEXTY:PRINT" ", X: PRINT: PRINT: NEXT X
851 PRINT"-A----B----C----D----E----F----G----H--" ,
855 GOTO 140
900 IF cae THEN B2(C.P2)=8:GOTO 799
910 IF C=1 THEN B2(C.P2)=15
912 GOTO 799

1000 DATA 1.2.1.2.1.2.1.2.2.1.2.1.2.1,2.1
1010 DATA 4.5.6.7.S.9.5.4.3.3.3.3.3.3.3.3
1020 DATA 10.10.10.10.10.10.10.10.11.12.13.14.15.16.12.11
1030 DATA" "." II"." WP"." WR"." WN"." WB"." WK"." WQ"." WB"
1040 DATA" BP"." BR"." BN", " B8"." BK"." BQ", " BB"
2000 ,END

Ohio Scientific's Small Systems Journal Jan./Feb., 197H

"

DOS CNTRL
This subroutine in BASIC may be used to

perform transfers' to or ' from Ohio
Scientific's new hard disk, drive. The',
transfer are set up as 'single sector
transfers which are 35811 bytes, in length. The
parameters that must be specified are minimal
and are listed below

DC
DT
DS
DD

write)

Disk cylinder
Disk track
Disk sector
Disk direction

(,0 through' 338)
(0 through 11)
('0 through' II)
(0 - read / 1, :

All transfers are done into, or from $E010 up
for 35811 bytes. If the drive i~, not powered
up when this sub is executed" the program
~ill terminate. Please no~e that this "kluge"
method is not required under OSI's OS-65U.
This program is merely ari 'example of how to
modify programs prese~tly running under
OS-65D V2.0

The following is a line by line description
of the subroutine.

Line(s) Function

63000 Bypasses Initializatio~ of the control
port after first pass
~3005 Initializes the control po~t'on first

pass only
63020 Time delay to allow the disk to get

ready
63020 If the disk is not ok by this time

then error '
63030 This line waits for the disk ready

signal
630110 Sets DF:l if cylinder >255
63050 Pokes flag bit and' cylinder vaule
6i060 Track is or~d with flag bit and poked
63070 Pokes header for disk
63080 These lines define the absolute disk

add res!,! of
63090 the sector (start and en~).
63100 a requirement ~f the system is such

that, a read"
63110 must bffset the s~art addre~s by three

(3)
631110 'This line pokes,' .thesector start

address

63150 This line pokes the sector end address
63160 This line pokes the direction flag
63170 This line waits for the drive to get

ready
63180 This line is oring the direction flag

with the GO bit
63"90 This line waits for the transfer

complete signal
63200 And of course this line simply returns

from this sub

TELEPHONE DIRECTORY EXAMPLE PROGRAM

This program 1s,a modified version of the
program found on all version, 2.0 diskettes.
The only modifications required were to
create a new subroutine at line 1000, modify
the "end of file" values, and to set the
memory I/O pOinters t6 point at the $Exxx
address of the file. The actual start of file
isat
E010 (57360) and the actual end of file
address is at $EEOF (609113).

The following lines describe the
modifications to the original program

lines 100,110 changed to point at the new
start of file address
lines 165, 167, changed to accommodate the

new end of file address
line 200 changed to set the

direction of transfer (DD)
line 400 changed to set the direction

of transfer
lines 1110, 1120 changed to accommodate the,

new start of file address
lines 460, 1170 changed to accommodate the

new end of file address
lines 620, 630 changed to accommodate the

new start of file address
lines 705, 707 changed to accommodate the

new end of file address
line 1000' now sets value of disk

cylinder, disk track, and disk sector
line 1010 now is a return from

subroutine
lines 1020-1080 deleted from program

113 PRINT"DISK BASED PHONE DIRECTORY
20 PRINT"COMMAND";

Page 6

30 INPUT At
413 IF A$="NEW" THEN GOTO 1013
50 IF A$="ADO"THEN GO TO 400
613 IFA~="FIND"THEN GOTO 6130
65 IF A$="EXIT" THEN COTO 9999
70 GOTO 20

lee POKE 113613,16
1113 POKE 11861,224
1213 PRINT" NAME";
130 INPUT 8$
140 PRINT"NUMBER";
:1:50 INPUT .Ct

'152 POKE 8708,16
154 PRINT 8$
156 PRINT C$
159 POKE 8708,1
,161ll IF B$="END" THEN GOTO 200
165 Z=PEEK(11860)+CPEEK(11861)*256)
167 IF 2)60900 THEN PRINT"OVERFLOW": GOTO 20
171<l'GOTO 120

, 2130 00=1: Goaue ~000
210 GOTO 213
400 DD~0: GOSUB 10013
'410 POKE 11879.16
4Z0 POKE,11S8e, 224

Ohio Scientific's Small Systems Journal

1

,Jan./Feb., 1978

430
440
445
450
4613
4713
480
513'21
51'21
520
5313
54121
6013
610
62'21
6313
6413
6513
6613
6713
6813
6913
712113
705
7137
710

11313121
1010
9999

631210'21
6301215
6301121
63020
63030
631214121
631215121
631216121
63070
631216121
63090
631121121
631113
6312121
6313121

~n~~
6316121
,6317121
631813
631913
63212113

POKE 8707.8:POKE 8708.128
INPUT K$
POKE 87e7.1:POKE 871218.1
IF K$="ENO" THEN GOTO 512113
Q=PEEK(11879)+(PEEK(1188e)~256)
IF Q)6a90e THEN PRINT"EOIT OVERRUN": GOTO 2121
GOTO 43121
R=PEEK(11879):S=PEEK(1186e)
R=R-4
IF RC0 THEN S=S-1:R=R+256
POKE ,118613. R; POKE 11861,S
GOTO 1213
PRINT" NAME" ;
INPUT N$
00=13; GOSUB 1121121121
POKE 11879.16
POKE 1188121.224
POKE 8707,8: POKE S7e8.1~8
INPUT E$
INPUT F$
POKE 8707, 1: POKE 871218;1
IF E$=r~$ THEN PRINT '~THE NUMBER IS "; F$: GOTO 2121
IF E$="ENO" THEN PRINT "WHO?"; GOTO 2121
Y=PEEK(11879)+(PEEK(1198e)~256)
IF Y)6e90e THEN PRINT"FILE OVER RUN ERROR": GOTO 2121
GOT a 65121
OC=300: OT=e: os=e: GOSUB 631210121
RETURN
END .
IF OK=1 THEN GOTD 6312120
POKE 49666.0: POKE 49666.16: POKE 49666.121: OK=1
FOR 02=1 TO sea: NEXT OZ
IF PEEK(49666) (> 217 THEN PRINT "ERROR": END
WAIT 49671.128.128
OF=0: IF OC)255 THEN OC=OC-256: DF=1
POKE 49664.DF*128: POKE 49665,OC
OT=«OT) OR CDF*128»: POKE 49664,DT
FOR OE=e TO 14: POKE 57344+0E.0: NEXT DE: POKE 57359.1211
IF os=a THEN'OU=0e: OV=16: Dx=e?: DY=37: GOTO 6313121
IF OS=1 THEN ou=e7: OV=80: DX=14: DY=1e1: GOTO 6313121
IF 05=2 THEN OU=14: DV=144: OX=21: DY=8S: GOTO 63130
IF 05=3 THEN OU=21: DV=208: DX=28: DY=229: GOTO 6313121
IF OS=4 THEN DU=29: DV=16: DX=36: DY=37
IF Do=e THEN DV=DV+3
POKE 49667.DV: POKE 49668.DU
POKE 49669,OY: POKE 4967e.DX
POKE 49671. DO*64
IF PEEK(49666) (> 217 THEN GOTO 6317121
DD=«00*64) OR 128): POKE 49671,OD
WAIT 49671,129,128
RETURN

Track Zero Writer the track zero writer.

As the tech rep for 051, i hear whatever,the
programmers in the field are screaming for.
Some of the loudest screams have been for a
method to modify track zero. So, with my time
being as limited as it is and my personal
need for a quick way to chang~ track zero, I
set out to find a solution. I was sitting in
front of my Challenger III when the idea hit
~me. The disk copy utility found on every
diskette had to be the solution. So, with all
of that out of the way, here is how to do it.
The changes are very minor and the copy
program can still be used normally. The only
operational difference is that "DONE" is no
'longer pr inted after a track zero restore. In
order to modify track zero, follow this
'procedure. Call the disk copy program in' to
~0200 ~s usual. Then, go at $0200. After, the
message is printed, type an "E". Track zero
will then be loaded into memory off the
diskette. Now, instead of typing a control P,
hit the space bar. The computer is now i~ the
system monitor. Track zero is now in memory
at $3200. That is to say, what normally would
reside at $2200 is now at $3200. After you
have made whatever modifications you deSire,
execute a "GO" at $031B. Track zero (in its
modified form) will now be written t~ the
diskette. Below is a step by step patch for

First, call in extended monitor. Then, call
in the disk copy program. Next, return to the
extended monitor, then change the memory
locations as listed below. Finally, save the
modified program back on to the diskette~ The
track zero re-entry point is at $031B.

A *C.02.0.0=.01 .1 .032.0/.05 .06
A*RE .0321/.00 EA

.0322/.0A EA
: #~679/7E 8.0 .0323/.0A EA
.067A/.06 31 ~324/44 EA

.0325/4F EA
: #.0 316/ D.0 F.0 ~326/4E EA
.0317/ DC .03 .0327/45 EA
~318/ 2.0 6C .0328/2E EA
.0319/49 FC 0329/0.0 EA
.031A/26 FE .032A/4C 4C
.031B/20 2.0 .032B/.00 .0.0
.031 C/15 49 .032C/25 25
.0310/06 26
031 E/2.0 2.0 : 0
031F/8B 15 A*S.01 .1 =.02.0.0/5

-
Page 7 Ohio Scientific's Small Systems Journal Jan./Feb., 1978

•

9 Digit BASIC
There have been enumerable requests for an

end-user 9 Digit BASIC. Therefore, this
article's purpose is to present a concise
method for modifying OSI's 9 Digit BASIC.

Normally, the machine code on Track 5
(address $3405 when Track 5 is in memory)
determines if the system is serial or video
based. The 1/0 distributor is then set up
accordingly. This code on Track 5 then jumps
to cold start BASIC by jumping to $20E1.

The normal sequence of events then looks like
this:

1) Is this a serial or video system?
2) Set up the 1/0 distributor according to

the type of system
that is being used (serial or video).
3) Jump to cold start BASIC (JMP $20E1).

Following the instructions contained within
this article, Track 5 will be modified in the
following manner:

Instead of determining if the system is
serial or video, the 1/0 distributor is set
up to input from memory without echoing
anything to the screen.

Next the memory input pointer will be set up
to point at the indirect command file which
was loaded in as part of Track 4 (more on
Track 4 shortly). The code on Track 5 then
cold starts BASIC.

In summary, the modified code on Track 5
follows this sequence of events below:

1) Sets the 1/0 distributor to input from
memory without echo.

2) Sets up the memory input pointer to point
at the indirect command file (which has been
made part of Track 4).

3) Jumps to cold start BASIC (JMP $20E1).

Now when BASIC has cold started and takes
its first command, that command will come
from the indirect command file. The indirect
command file (INDCMD file) will "type" a
"LOAD". It will then "type" a "L11". This
will load Track 11 into BASIC's workspace.
Track 11 contains the menu program which will
be responsible for loading the user's
selection. After Track 11 is loaded, the
INDCMD file will "type" an "RB" (return to
BASIC) and finally a "GOTO 61000". The menu
program is now running and is in control.

Line 6100 in the menu program switches the
1/0 distributor to input from the keyboard
and to output to the screen. Line 61000 then

1 REM NORMAL VALUES LISTED BELOW

"RUNS" the menu program (that is, it goes to
line number 1). Control C, Control 0, LIST,
NEW, and BASIC's immediate mode are then
disabled by "POKES". The screen is then
cleared and the menu is printed. After the
user enters his selection, the corresponding
track number is read from the DATA statement.

Notice that the DATA statement contains an
"L" before the track number. This is required
because the load command is in the form of
"LTT" where TT is' the track number. Now at
this pOint, TRACK$ equals the approprfate
track number. "RB GOTO 61000" is then "added"
to TRACK$. This is so that when the 1/0
distributor is switched to input from the
appropriate program will be loaded and then
BASIC will "GOTO" line 61000 in the selected
program.

To this pOint, then the user has selected
his choice and TRACK$ equals the appropriate
track number plus "RB GOTO 61000". All that
remains to be done is to "PRINT" TRACK$ into
memory and to switch the 1/0 distributor to
input from memory. This then is the procedure
- first, the memory output pOinters are set
up to point just beyond the first command
file (it loaded the menu program). Then the
1/0 distributor is switched to output to
memory. TRACK$ is then printed to memory.
Now, the memory input pointer is set to point
at what was just printed into memory.
Finally, the 1/0 distributor is switched to
input from memory without echoing to the
screen.

The indirect command file (which was just
printed into memory) "LOADS" the appropriate
program and "GOES TO" line 61000 in it. Line
61000 in the "game" program swiches the 1/0
distributor to input from the keyboard and to
output to the screen. Line 61000 then "RUNS"
the game program (that is to say, it goes to
the start of the program). When the "game"
program is finished and it is time to' reload
the "MENU" program, the following steps must
be taken:

First, the "game" program must set the
memory input pointer to point at the first
indirect command file (remember the file that
originally "LOADED" the menu program). The
1/0 distributor must then be switched to
input from memory without echoing it to the
screen. Once this is done, the "MENU" program
is reloaded and "RUN". At this point, the
user may enter his next selection. One final
note, the command file that "LOADS" the
"MENU" program is brought into memory with
Track 4. The assembly listings below show how
to modify Track 4 and Track 5.

2 REM CNTRL - C =76 / CNTRL -0 =255/ REDO FROM START =55.8
3 REM LIST =761 NEW =78

Page 8

10 POKE 2073,96: POKE 8981,O: REM DISABLE CNTRL C & CNTRL 0
20 POKE 2893.28: POKE 2894.11: REM REDO FROM START
30 REM DIABLE LIST AND NEW
40 POKE 741.10: POKE 750.10
90 B=30
100 FOR SC=l TO B: PRINT: NEXT BC
105 IF B=19 THEN FOR SC=l TO 1000: NEXT se
110 PRINT "OSI 9-DIGIT END USER SYSTEM": PRINT
120 REM LINES 120 - 999 FOR DIRECTORY ENTRIES
130 PRINT "l>DEMO"

Ohio Scientific's Small Systems Journal Jan./Feb., 1978

I
I

I

I
1\

.\ ,

Page 9

18813 INPUT"ENTER THE NUMBER OF TH~ DESIRED GAME";G$
1002 GT=l
113135 IF VALCG$»GT THEN PRINT"INVALID SELECTION":B=19: GOTO 100
11318 G=VALCG$): FOR X=l TO G: READ TRACK$: NEXT X
1015 TRACK$=TRACK$+"RBGOT061eee"
1020 REM LINES 1020 - 1099 FOR DATA STATEMENTS
1838 DATA "L12": REM THIS DATA STATEMENT CONTAINS TRACK NUMBERS
1100 REM 1100 - 1280 PRINT THE INDIRECT COMMAND
11113 POKE 118613.1513: POKE 11861.33: REM SET MEM INP. PNTR L&H
1120 POKE 87138.16: REM SWITCH OUTPUT TO OUTPUT TO MEM
11313 PRINT: PRINT "LOAD": PRINT TRACK$
1140 POKE 8788.128: REM SWITCH OUTPUT TO NON-ECHO
11513 POKE 11879.158: POKE 118813.33: REM SET MEM PNTR AT START OF FILE
11613 POKE 87137.8: REM SWITCH INPUT TO INOPUT FROM MEMORY
59999 END
61131313 POKE 87137.1: POKE 87138,1: RUN
59999 REM THESE LINES MUST BE ADDED TO THE "GAME" PROGRAMS
61381313 POKE 87138.128: POKE 11879.128: POKE 118813.33: POKE 871217.8
61313113 END
6181313 POKE 87137.1: POKE 8788,1: RUN
6113113 END

A*RA

INIZ?N
A

10 0000
28 0088
38 813813
48 130013
513 013013
613 01380
78 00130
80 0000
98 8080

1813 0080
110 00013
120 01300
138 0131313
1413 3405
158 34D5 ;
1613 3405 A98e INSERT
1713 3407 8D672E
1813 34DA 800422
1913 34DO A921
2813 34DF 8[)682E
210 34E2 A908
2213 34E4 8D0322
2313 34E7 4CE1213
2413 34EA EA
2513 34EB EA
2613 34EC EA
2713 34ED EA
280 34EE EA
298 34EF EA
300 34Fe

. EXIT
13:1.T
A*013:1.

A*RA

INIZ?N
A

:1.13 00013
213 013013
30 131300.
413 013013
50 00013
613 41813
713 41'=:13
80 41813 13D
813 4181 4C
80 4182 4F
80 4183 41
813 4184 44
80 4:1.85 0D
90 4186 4C
913 4:187 31
90 4188 31

:1.130 4189 52
:1.1313 4:1.8A 42
:1.10 4:1.88 47
110 418C 4F
1:1.0 4:1.8D 54
lHl 418E 4F
:1.10 418F 20
1113 41913 36
110 4191 31
1113 4192 30
1113 4193 30
110 41901- 30
1113 4195 13D

POWER UP OVERLAY FOR OSI 9-DIGIT BASIC
BEFORE ASSEMBLY CALL TRACK 5 INTO $42121121
ALSO SET THE M COMMAND M1880

EQUATES:

INFLAG=$2203
OTFLAG=$2204
INPNTL=$2E67
INPNTH=$2E68
CSTART=$2eEl

*=$3405

LOA #$80
STA INPNTL
STA OTFLAG
LOA #$21
STA INPNTH
LDA #$08
STA INFLAG
.HlP CSTART
NOP
NOP
NOP
NOP
NOP
NOP

SET MEM. INPUT PNTR. ADL.

SET OUTPUT TO NON-ECHO
SET ~lE~l. INPUT PNTR. ADH.

SET INPUT FLAG TO INPUT FROM MEM. .

GO CLOO START BASIC
FILL UP EXTRA

9-DIGIT INDIRECT FILE OVERLAY
BEFORE ASSEMBLY CALL TRACK 4 INTO $48130
ALSO SET THE M COMMAND M1000

*=$41813

BYTE $0D, 'LOAD',$eD

B't'TE .' Ll1'

B't'TE "RB'

BYTE 'GOTO 61000',$00

80 Ohio Scientific's Small Systems J~urnal Jan./Feb., 1978

•

OS-65U PERFORMS
The New Standard in Micro Computer Operating
Systems
System design goals : C~ctate a simple,

concise crash proof operating system which is
easy for business programmers to utilize and
simple for office workers (and other
non-computerists) to use. The system must
have the highest performance in the
microcomputer industry and must be able to
support present day floppy and hard disks as
well as tomorrow's CCD and bubble memories
without any user program modifications.

This may soutid outlandish but we developed
just such a system and here's how:

Fi,rst, we started with a fresh copy of
Microsoft's super fast 9 1/2 digit BASIC for
the 6502. (This BASIC out benchmarks every
other microcomputer BASIC using the 7
Kilobaud benchmarks except for our own ultra
fast 6 digit BASIC.)

We knew that all operating system commands
and features should be an integral part of
this BASIC language so we put them right in
the BASIC itself. This means that all OS
features can be accessed in the immediate or
command mode and as part of BASIC programs.
All syntax such as file names can be literal
strings or BASIC variables.

We started out with some simple but powerful
extensions to BASIC to make the business
system programmer happy like $L, $R, Input
pound sign (D), and print pound sign (D). $L
and $R are PRINT subcommands which
automatically output numeric data in dollars
and whole cents in neat colums just like
"PRINT USING" only simpler and quicker.

The optional pound sign specifier in LIST,
INPUT and PRINT statements allows the user to
route I/O directly to the console, 16 RS-232
ports, a cassette port, RS-232 and parallel
printer ports and word processing printers
not to mention video displays and parallel
keybords.

We then added a continuous memory file system
(the real achievement of OS-65U). This file
system his no tracks or sectors or records.
The user simply allocates storage copacity to
each file when he creates it. (On a CD-74
Hard Disk this can be over 72,000,000 bytes
or characters.) The user can then directly
address every entry in the file with no
awareness of any block, sector or track
structures. Data files can simultaneously
contain strings and pure numeric data files
can be accessed sequentially and randomly.

Data files are handled with standard syntax
including OPEN "File", CLOSE (File), PRINT ~
(File) and INPUT ~ (File) and the very
special INDEX (File). INDEX is a special
BASIC variable/function which specifies the
file address of the next entry to be input
or output to that file. If you leave it

alone, it operates sequentially, however, you
can change it at any time to force a random
access. This remarkable function can be on
either side of a BASIC equation and can take
on anny value within the storage range of an
opened file. For example, all of the
following are legal in OS-65U:

Index (1) = Index (1) + 10 (Causes 10
characters to be skipped)

B = Index {1) (Sets B=current
index)

Index (3) = Index (8) /2 (Equates two file
positions, useful in sorts and merges.)

Index (5) = A*50 (Sets up· a random access
on an array with 50 character elements)

Where (N) is a channel number or
shorthand notation for an open file, and is
assigned by the OPEN command.

This may seem exotic but it is really super
simple and incredibly powerful. Besides your
files always automatically revert to simple
equential operation if you chose to ignore
indexes.

And, finally, for those of you who would
really hate to give up plain old sequential
files, we added a FIND command. FIND
searches for up to a 32 character string with
optional "don't care" characters and will
automtically scan any file from the
beginning or other specified index. The FIND
command is implemented in straight line page I

zero 6502 code (the fastest programming
technique on the fastest micro) and searches
files at over 250,000 bits per second.

Only three stat~ments are needed to support a
-sequential fil_ in a BASIC program; only
four to suppor~ a random file. A mere seven,
statements are required to use an indexed
sequential file system as part or a programl

A Benchmark: A Challenger III equipped with
a CD-74 running OS-65U can access any account
entry in a 500 account one million byte
randomly ordered ledger file by an alphabetic"
~ey string up to 32 chracters long in less
than 40 milliseconds (typically) using a
simple two level ISAM file structure
supported by a total program only 10
statements only. That's performancel

OS-65U also hosts multilevel passwords,
elaborate error checking, programmable error
recovery and end user miceties like warnings
and automatic recovery when an "off" or
non-existent peripherial is accessed,
Programs and files in OS-65U can be fully
secured such that they cannot be listed,
copied or even accessed if desired.

0$-65U is available now for use on any Ohio
Scientific floppy or hard disk based computer
with 32K of RAM or more. At $199, it's quite
possibly the best computer investment you'll
-ev-er make.

Page 10 Ohio Scientific's Small Systems Journal Jan./Feb., 1978

t •.

500/510 Breakpoint Utilities
How many times have you been debugging a Don't forget when using the trace function

program and wished you knew where it was when to clear the int~rrupt disable flag bi
it "went away". Well, your troubles are over. executing a CLI instruction. The following is
The 500/510 breakpoint utilities allow you to a description of the various modules of the
halt the program wherever you desire. Upon 500/510 utilities source. Lines 310 through
halting, the program counter plus two is 420 set up the interrupt request and
printed out, along with the flags and the non-maskable interrupt request vectors at
contents of the accumulator, X-register, $OlCO and $0130 respectively. Lines 460
Y-register and the stack pointerl There are through 590 are responsible for character
actually two modes of operation. The first input and output of a standard serial system.
uses the 6502 BRK instruction. Whenever the Lines 610 through 750 are responsible for
6502 executes a BREAK instruction, several inputting a character and either converting
things happen. The 6502 fetches the new value it to hex, or jumping to back to input
of the program counter from $FFFE low and another character if other than a legal hex
$FFFF high. character is entered.

$FFFE and $FFFF are set in prom to point to
$01CO. The breakpoint utilities set up a jump
to the interrupt request entry point (IRQENT
line number 1830). The program then decides
if a IRQ or BREAK occured and either sets or
clears the carry flag, respectively. All
registers are saved on the stack and are
available for modification using the
following commands:

A - print the contents of A and opens A for
modification

X - same as for A except deals with the
-X-register

Y - same as above but affects the Y·register
C - print the proccessor status word (PSW)

and open it
(commercial at) - opens the program counter

for modification
R - return to the command mode
G - go from the address set up using the

commercial at command

In actual use one would load the breakpoint
utilities and go at $3EOO using the 65A PROM
monitor. The next step would be to place a
BREAK command over top one of the
instructions in the program being debugged.
One would then "go" to the program under test
and when the 6502 executes the BREAK
instruction, the utilities program will be
entered. The second mode of operation
involves a slight hardware modification. On
510 boards, all the parts are already there
and they can probably be found on a 500 CPU
board.

The 6502 microprocessor chip has a very
special pin called the SYNC pin. This pin
goes high whenever the 6502 is fetching an
instruction. Using the SYNC pin in
conjunction with the interrupt request pin
(IRQ), the utilities program allows one to
trace program flow. Before each instruction
is executed, the program counter, the flags,
the registers (A,X,Y) and the stack pointer
are printed on the screen. Typing any key

.halts the trace and a go resumes the trace.
The modifications required are extremely
straight forward. All that need be done is to
take the SYNC pin's output, invert it (a
spare NAND gate on the 510 CPU) and feed the
inverter's output to the 6502's interrupt

Lines 770 through 910 determine which
command has been-entered as well as
initializing the ACIA. Lines 930 through 980
are the go command section. This section
r.estores the registers and then returns
interrupt. 1010 through 1040 simply output a
carriage returnlline feed. 1060 through 1170
perform the "L" or LOAD command as per the
65A monitor. Lines 1180 through 1330 are
responsible for the"P" or PRINT command. 1350
through 1460 input one hex byte and store it
at the address pointed to by PNL, PNH, +X.
1480 through 1530 simply build an address at
PNL, PNH +X. Halfby '(1550 through 1610)
converts the LSD in A to ASCII and outputs
it to the screen.

1630 through 1720 PRTBYT prints a hex byte
pointed to by PNL,PNH+Y. 1770 through 1940,
these lines·contain the NMI, IRQ and break
entry points. Take special note of lines 1910
- 1940. It is here that the "+" or "I"
prompter is determined via the carry flag.
The "+" indicates the trace function and "I"
indicates the break command. 1960 2410
output the prompter, the program counter, the
flags, the registers and the stack pOinter.
Lines 2430 - 2500 determine if this is a
break or a trace. A break returns to the
control loop, while a trace cnecks for a key
depression and enters the control loop if a
key is down. If no key is down, the trace
then executes the next instruction. Lines
2550 - 2650 output a byte pointed to by
$100+X - OUTSP simply outputs a space.

Lines 2700 - 2770 are used to index to the
proper register and to output the registers.
XCMD2 - EXITOl make the registers available
for modification and do so if the user
desires.

A couple of final notes, first this program
is aimed at the small system owner and,
therefore, resides in the top two pages of a
16K system. Secondly, this program is
definitely not minimumized and we at OSI will
be glad to see your suggestions and ideas. request pin (IRQ).

Page 11 Ohio Scientific's Small Systems Journal Jan./Feb., 1978

2." ",,!!n,
288880
388000
48 3E80
58 3E00
68 3E00
70 3E00
88.3E00
" 3E00 1.00 3E00

1.1.0 3E00
1.20 3E00
1.30 3E00
1.40 3E00
1.50 3E00
1.60 3E00
178 3E00
1.80·3E00
1.90 3E00
208 3E00
21.0 3E00
220 3E00
230 3E00
240 3E00
250 3E00
2603E00
270 3E00
2803E00
290 3E00
380 3E80"
31.0 3E00 A907
31.1. 3E02
320 3E82 8DC1.01.
338 3E05 A93F
340 3E07 8DC201.
350 3E0A A901.
351. 3E0C
368 3E0C 8D31.01.
370 3E0F A93F
380 3E1.1. 8D3201.
390 3E1.4 A94C
391. 3E1.6
400 3E1.6 8DC001.
41.1i!1 3E1. 9 8D3001.
420 3E1.C 4C543E
430 3E1.F
440 3E1.F
450 3E1.F
460 3E1.F AD00FC
461. 3E22
470 3E22 4A
4803E23·90FA
490 3E25 AD01.FC
S00 3E28 297F
S1.Ii!I3E2A
S20 3E2A 48
S21. 3E2B
S30 3E2B
S40 3E2E
SS0 3E2F

.560 3E30
570 3E32
S80 3E33
S90 3E36

AD00FC
4A
4A
90F9
68
8D01.FC
60

;~""I'~2." eRIC f."NT
s
I

"'=$3E00
s
Z=IRQENT~236"'236
IRQADL=IRQENT-Z
IRQADH·IRQENT~236
;
I
ZZ=NMIENT~236"'236
NMIADL=NMIENT-ZZ
NMIADH=NMIENT~256
;
s
IRQVCL..=$01.C1.
IRQVCH"$01.C2
NMIVCL=$01.31.
NMIVCH"$01.32
s
STKBAS=$01.00
JUMP=$4C
I
;
ACIA='Fc.a0
PNL=$FC
PNH"$FD
s
s
s
BEGIN LDA IIRQADL
ISET UP THE IRQ VCT

STA IRQVCL
LDA URQADH
STA IRQVCH
LDA INMIADL

sSET UP THE NMI VCT
STA NMIVCL
LDA INMIADH
STA NMIVCH
LDA IJUMP

I SET UP THE JMP INSTR.

I
I
I
INCH
I INPUT

I

STA IRQVCL-1.
STA NMIVCL-1
JMP CONTRO

LOA ACIA
CHARACTER
LSR A
BCC INCH
LDA ACIA+1
AND 1$7F

OUTCH PHA
sOUTPUT CHARACTER

LOA ACIA
LSR A
LSR A
BCC OUTCH+1
PLA
STA ACIA+1.
RTS .

6eeJEJ7 J
62.0 3E37 201.F3E INHEX JSR INCH

HEX DIGIT
CMP I'R
BEQ INHEXX
CMP 1'0
BMI INHEX
CMP I':

61.1. 3E3A ; INPUT
620 3E3A C952
630 3E3C F01.S
648 3E3E C930
6583E48 30F5
668 3E42 C93A
678 3E44 300B

t~I-~~:~ . il~~
788 3E4A C947

·71.1i!1 3E4C 1.0E9
720 3E4E E906
738 3E58 1.8
748 3E51. 290F
750 3E53 60
768 3E54
778 3E54 A903
771. 3ES6
788 3E56 8D00FC
798 3E59 A9B1.

·800 3E5B 8D00FC
81.1i!13E5E D8
820 3E5F 78
830 3E60 D8

.840 3E61. 207C3E
.850 3E64 201.F3E

IN1.
INHEXX
s

BMI IN1.
iMP r A
MINHEX

CMP I'G
BPL INHEX
SBC 16
CLC
AND I$F
RTS

CONTRO LDA 1$03
s INIT THE ACIA

STA ACIA
LDA I$B1.
STA ACIA
CLD

CONTR1. SEI
CLD
JSR CRLF
JSR INCH

8703E69·F01.B
880 3E6B C930
890, 3E60 F02E
900 3E6F C947
91.0 3E71. D006
920 3E73
930 3E73 68
931. 3E74
940 3E74 A8
930 3E75. 68
960 3E76 AA
961. 3E77
970 3E77 68
971. 3E78
980 3E78 40
981. 3E79

. 990 3E79 4C8D3F
1000 3E7C
101.0 3E7C
,1020 3E7E
1030 3E81.
1040 3E83

A90D
202A3E
A90A
4C2A3E

I

BEQ
CMP
BEQ
CMP
BNE

GO PLA
; RESTORE Y

I X

; A

TAY
PLA
TAX

PLA

RTI
; CC, PC
XCMDJ JMP

LOAD
I'P
PRINT
I'G
XCMDJ

XCMD
I
CRLF LOA I$D

JSR OUTCH
LDA I$A
JMP OUTCH

~030 3E86 I
1.060 3E86 20D43E LOAD
1.061. 3E89 J "L"
1.070 3E89
:1080 3E8B
1.090 3E8D
1.1.00 3E8F
-1.1.10 3E92
1.120 3E94

B0D4
A203
A000
20BF3E
B0CB
91FC
C8
D0F6
E6FD
90F2

L01

s

JSR BUILD
COMMAND

BCS CONTR1.
LOX 13
LOY 10
JSR HEXBYT
BCS CONTR1
STA (PNL),Y
INY
BNE L01.
INC PNH
BCC L01

1.1.30 3E96
'1.140 3E97
'U30 3E99
1.1.60 3E9B
-1.1.70 3E9D
'1.1.80 3E9D
1.1.81. 3EA0
1.1.90 3EA0
1.200 3EA2
:121.0 3EA4
1.220 3EA6
1.230 3EA9
:1.240 3EAA
1.230 3EAe
1.260 3EAF

20D43E

B0BD
A000
A209
207C3E
CA
F00B
20EE3E
C8
D0F7
E6FD
4CA93E
AD00FC
4A
B0A2
90E3

PRINT JSR BUILD
s "PH COMMAND

t~~~· ~~~~
1.290 3EB4
1.300 3EB7
1.31.0 3EBA
:1.320 3EBB
1.330 3EBD

PR0

PR1

PR2

1.340 3EBF ;
1.330 3EBF 20373E HEXBYT
1.331. 3EC2 IGET 1.
1.360 3EC2
1.370 3EC4
1.380 3EC3
1.390 ,3EC6
1.400 3EC7
1.410 3EC8
1.420 3EcFi
1.430 3ECD
1.440 3ECF
1.430 3ED1
1460 3ED3
·1.470 3ED4

B00F
0A
0A
0A
0A
93FC
20373E
8004
15FC
93FC
60*

1480 3ED4 A201

20BF3E
B004
CA
20BF3E
60

,1481 3ED6
1.490 3ED6
1.300 3ED9
1.310 3EDB
1520 3EDC
1.530 3EOF
1.540 3EE0
1.550 3EE0 1.8
1.551. 3EE1
1.360 3EE1.
.1.570 3EE3
1580 3EE5
1.590 3EE7
1600 3EE9
1610 3EEB
1.620 3EEE

290F
0930
C93A
9002
6906
4C2A3E

1.630 '3EEE B1FC
1631. 3EF0'
1.640 3EF0 4A
1.630 3EF1. 4A
1.660 3EF2 4A
1.670 3EF3 4A
1680 3EF4 20E03E
1.690 3EF7 B1.FC
1.700 3EF9 20E03E
1.71.0 3EFC A920

HEXX
s
BUILD
I BUILD

BUILDX
;
HALFBY
sPRINT

HA0
I
PRTBYT
; PRINT

. BCS CONTR1
LDY 10
LOX 19
JSR CRLF
DEX
BEQ PR2
JSR PRTBVT
INY
BNE
INC
JMP
LOA
LSR
BCS
Bce

JSR
HEX
BCS
ASL
ASL
ASL
ASL
STA
JSR
BCS
ORA
STA
RTS

PR1.
PNH
PR1
ACIA
A.
CONTR1
PR0

INHEX
BYTE
HEXX
A
A
A
A
PNL,X
INHEX
HEXX
PNL,X
PNL, X

LOX 11
2·BYTE ADDRESS
JSR HEXBYT
Bes BUILDX
DEX
JSR HEXBYT·
RTS

CLe
HEX
AND
ORA
CMP
Bec
ADC
JMP

DIGIT
ISF
1'0
I' :
HA0
16
OUTCH

LOA (PNL), Y
AOOR (2 BYTES)
LSR A
LSR A
LSR A
LSR A

:i~~~t~ .C94C
s CMD. LOOP

CMP I'L ~720 3EFE 4C.A3E

JSR HALF BY
LDA (PNL),Y
JSR HALFBY
LDA IS20
JMP DUTCH

,Page· '12 Ohio Soientifio's Small Systems Journal Jan./Feb., 1978

17313 3Fe1
17413 3Fe1
1750 3F01
17613 3F01
17713 3Fe1 48
,1771 3Fe2
1780 3Fe2 8A
1781 3Fe3
1790 3Fe3 48
18013 3Fe4 38
1801 3F05
1810 3F05 Be1e
18213 3F07
18313 3Fe7 48
1831 3F08
184121 3Fe8 8A
1841 3Fe9
185121 3Fe9 48
18613 3FeA BA
1870 3FeB E8
1871 3F0C
1880 3Fec E8
18913 3FeD E8
191313 3FeE 18
19131 3FeF
19113 3FeF BDee01
19213 3F12 29113
1921 3F14
19313 3F14 D001
1931 3F16
1940 3F16 38
1941 3F17
19513 3F17
196121 3F17 D8
19713 3F18 98
1971 3F19
19813 3F19 48
19913 3F1A 1218
1991 3F1B
213013 3F1B 2e7C3E
2010 3F1E 68
21329 3F1F 48
21321 3F2e
2939 3F29 2901
213413 3F22 092A
21341 3F24
213513 3F24 2e2A3E
2060 3F27 BA
21379 3F28' 8A
2989 3F29 6996
2981 3F2B
29913 3F2B AA
21391 3F2C
211313 3F2C
21113 3F2C 20783F
2111 3F2F
21213 3F2F 20783F
2121 3F32
21313 3F32
21413 3F32 20883F
2141 3F35
2150 3F35 A0e7
2151 3F37
21613 3F37 BD0ee1
2161 3F3A
C!!17e 3F3A 48
C!!171 3F3B
C!!18e 3F3B 68
C!!1ge 3F3C 0A
C!!191 3F3D
C!!2ge 3F3D 48
C!!21e 3F3E B96D3F
2211 3F41
2220 3F41 8902
2221 3F43
2239 3F43 A930
2231 3F45
22413 3F45 2e2A3E
22513 3F48 88
C!!C!!6e 3F49 1eF0
2C!!7e 3F4B 68
C!!271 3F4C
C!!28e 3F4C CA
C!!281 3F4D
2290 3F4D
231313 3F4D 20753F
2301 3F5e
23113 3F5e C8
23213 3F51 CaG2
C!!330 3F53 D0F8
C!!340 3F55
23513 3F55 20883F
2360 3F58 8A
C!!361 3F59
C!!37e 3F59 69135
2371 3F5B
23813 3F5B 2e7B3F
C!!381'3F5E
23913 3F5E

Page,13

;
NMIENT PHA '
;TRACE ENTRV

TXA
) SAVE A, X

PHA
SEC

; SET TRACE FLAG
BCS BREAK

;
IRQENT PHA
; BREAK, IRQ ENTRV

TXA
; SAVE A, X

PHA
TSX
IN~<

; POINT TO CC
INX
INX
CLC

; SET BREAK FLAG
LDA STKBAS,X
AND 1$10

;ISOLATE.B BIT
BNE BREAK

;IT WAS A BREAKPOINT
SEC

JSET C AS THE IRQ FLG
;
BREAK CLD

TVA
; SAVE V

PHA
PHP

; SAVE ENT FLG IN C
JSR CRLF
PLA
PHA

;GET ENT FLG (C)
AND 11
ORA #'*

;* = BREAK, + = TRAtE
JSR OUTCH
,TSX
TXA
ADC 16

;6 + C(FROM OUTCH) = 7
TAX

; NOW X POINTS TO PCH
;

JSR OTKDX
; OUT PCH & DEX

JSR OTKDX
, PCL
; OUTPUT COND, CODES (CC)

JSR OUTSP
; SPACE

LDY 17
; 8 CC BITS

LDA STKBAS,X
; GET CC FROM STACK

PHA
; SAVE ON TOP OF STK
BREAK1 PLA

ASL A
; SHIFT CC BIT TO C

PHA
LDA CCTBL,V

;GET CORREXP, LETTER
BCS BREAK::!

; CC BIT WAS SET
LDA #'121

; CC .. RESET
BREAK2 JSR OUTCH

DE.,.
BPL BREAK1
PLA

;CLR CC FROM STK
DEX

;PNT TO A IN STK
; OUTPUT A, X, V
BREAK3 JSR OSTKDX
J OUT , REG, DEX

IN.,.
CP'" 12
BNE BREAK3

; OUTPUT STK PTR
JSR OUTSP
TXA

; ADJUST BACK
ADC 15

; (5+C=6) FOR STK CUNT
JSR OADX

; OUTPUT STK PNTR
; BACK TO US OR BACK PROG,

Ohio Scientific's Small

2400
241211
24113
2411
2420
2421
24313
24413
2441
24513
24613
2461
24713
C!!48e
24913
24913
24913
24913
24913
2490
C!!4ge
24913
251313
25113
25213
C!!5C!!1
25313
25413
25513
25613
2570
258121
2590
261313
26113
26213
26313
26413
26513
26613
26713
2671
26813
26913
2691
271313
27131
27113
'2711
27213
C!!73e
27413
2741
27513
27613
2761
27713
2771
27913
2781
27913
2791
281313
28131
28113
2811
28213
2821
28313
2831
C!!84e
2841
28513
C!!851
28613
2861
28713
2871
28813
2881
28913
291313
29131
29113
2911
29213
29313
29413
2941
29513
2951
29613
C!!961
29713
29813
29913
2991
301313
313131

B0e3

PLP
; GET ENT FLG OFF STK

BCS GOTEST
J TRACE

4C5F3E CONTRJ JMP CONTR.1
; BREAK

3F3E' 28
3F5F
3F5F
3F61
3F61
3F64
3F64
3F64
3F67
3F67
3F68
3F6A
3F6A
3F6D
3F6D
3F6E
3F6F
3F7e
3F71
3F7C!!
3F73
3F74
3F75
3F75
3F75
3F78
3F78
3F7B
3F7C
3F7D
3F7E
3F1F
3F8,e
3F83
3F84
3F85
3F88
3F88
3F8A
3F8D
3F8D
3F8F
3F8F BA
3Fge E8
3F91
3F91
3F94
3F94
3F96
3F96
3F97
3F99
3F9C
3F9C
3F9C
3F9F
3F9F
3FAe
3FAe
3FA2
3FA2
3FA3
3FA3
3FA6
3FA6
3FA9
3FA9
3FAA
3FAA
3FAD
3FAD
3FBe
3FBe
3FB2
3FB2 48
3FB3
3FB3 98
3FB4
3FB4
3FB6
3FB6
3FB7
3FB9
3FB9
3FBA
3FBA
3FBB
3FBD
3FC0
3FC0
3FC2
3FC2 E8
3FC3
3FC3
3FC6
3FC7
3FC9
3FC9
3FCB

J
ADeeFC GOTEST LDA ACIA

4A
BeF7

4C733E

43
5A
49
44
42
313
56
4E

2e883F

BDee01
48
4A
4A
4A
4A
2eEe3E
68
CA
4CEe3E

A920
4CC!!A3E

A0e4

D9D43F

F006

88
1eF7
4C5F3E

I STOP?

J VES -

I
CCTBL

LSR A
BCS CONTRJ

JMP GO

. B'T'TE ' CZIDB0VN'

;" ", BYTE
;

" STKBAS,X

OUTSP

STKBAS,X

OSTKDX JSR
I SPACE
OTKDX LDA

PHA
LSR
LSR
LSR
LSR
JSR
PLA
DEX
J~P

OADX

I

A
A
A
A
HALF BY

HAL,FBY

OUTSP LDA I'
JMP OUTCH

I REG. DISP./CHG. LOGIC
XCMD LDY 14
; NO. OF REGS - 1

TSX
,XCMD1 INX
; FIND REG NAME IN

CMP REGTBL.Y
I TABLE & ADJUST X

BEQXCMD2
; ALONG THE WAY

DEY
BPL XCMD1 '
JMP CONTR1

;INVALID COMMAND
;

20883F XCMD2
J SPACE

98

JSR oursp
TYA

De04

E8

2e783F

20783F

E8

2e883F

2e373E

Be1F

697F

68
Aee4

eA

88
1eFC
3Eeee1

713135

3Eeee1
CA
C0FC

DeEE

; (II ?
BNE XCMD3

J NO -
INX

I YES -
JSR OTKDX

; OUTPUT PCH
XCMD3 JSR OTKDX
lOUT SELECTED REG, DEX

INX
I POINT BACK TO THAT REG

JSR OUTSP
I SPACE
XCMD4 JSR INHEX
I ANY INPUT?

BCS EXIT01
IBACK TO CONTR1 VIA JMP

PHA
IYES - SAVE NEW DIGIT

TYA
I TEST Y ZERO OR NOT

ADC 1127
JAND SAVE RESULT IN V BIT

PLA
LD'T' 14

JSHIFT NEW DIG INTO REG
XCMD5 ASL A
; 1ST LJ IT IN A

DEY
BPL XCMD5
ROL STKBAS.X

; SHIFT INTO REG IN STK
BVS XCMD6

I NO -

; YES -

XCMD6
; DONE

; NO -

INX
SHIFT INTO PCH
ROL STKBAS,X
DEX
CPY I$FC

?
BNE XCMD5

Systems Journal Jan./Feb., 1978

510 Tracer
The 5~0 tracer contains all the features of

the 500/510 breakpoint utilities plus a few
extras. Tracer also prints a disassemble of
the next instruction to be executed. In
addition, this program "swaps" out the zero
page locations it requires and restores them
upon ret~rning to the main .program. Two
important points - first,. this program uses
the software processor select switch found
only on Challenger Ill's and it resides at
$5COO. This program can be used to trace
another program by iunning the sync line on
the 6502 through an inverter and then to the

"6502'sinterrupt request line (IRQ LINE).

i:l:"RE
:U5Cee,5FF0

0 1 2 3 4 5
5C00 A9 1C 80 FE F2 A9
5C1e 50 80 FB F2 A9 04
5C20 80 131 F7 A9 FF BO
5C30 FA AD 01 FC 29 7F
5C40 01 FC 60 213 2B 5C
5C50 30 0B C9 41 313 ED
5C60 A9 133 80 1313 FC A9
5C7e 213 2B 5C C9 4C F0
5CBe FC BO 1B 50 95 00
5C90 50 A9 00 213 36 5C
5CA0 AE 03 Ae 1313 20 04
5CBe 913 F2 213 E9 5C Be
5CC0 0B 20 03 50 CB 00
5C00 B0 99 90 E5 20 43
5CE0 43 5C B0 04 15 FC
5CF0 CA 20 04 5C 60 18
5000 4C 36 5C B1 FC 4A
5010 5C A9 20 4C 36 5C
5020 48 A2 FC B5 00 90
50313 BA EB EB EB 1B BO
5040 08 20 91 5C 68 4B
5050 136 AA 20 9E 50 213
50613 4B6B 0A 4B B9 93
5070 F0 6B CA 20 9B 50
50B0 05 20 Ai 5D .2B B0
5090 4C 7F 5C 43 5A 49
50A0 01 4B 4A 4A 4A 4A
50B0 4C 36 5C A0 04 BA
50C0,...-6B 5C 20 AE 50 9B
50013 20. AE 50 20 43 5C
50Ee BB 113 FC 3E 00 01
50F0 EE AB 50 OF CB 00
5E00 91 5C BA ·08 18 8A
5E10 130 01 85 FF 4C iF
5E20 EA 5E Ai FE A8 4A '. 5E30 07 09 B0 4A AA BO
5E40 00 04 A0 B0 A9 00
5E50 1C 5E 9B 29 8F AA
5E60 4A 4A 139 20 8B 00
5E7e 5F A2 01 20 F6 5E
5E80 90 F1 6B AB 89 79
5E90 A9 00 A0 05 0E 1E
5ER0 213 36 5C CA De EA
5EBe 1C 5E F0 0F AD 1B
5EC0 8B 00 F1 0E 18 5E
5E00 5F F0 03 20 36 5C
5EE0 01 C8 9B 20 (!IF 5F
5EF0 FE 213 E3 5E A2 02
5F0e 1C 5E 38 A4 FF AA
5F10 4A4A 4A 4A 20 F5
5F20 08 40 09 30 22 45
5F30 0B 40 09 40 02 45
5F40 BC 44·: 00 11 22 44
5F50 12'8 40 139 113 22 44
5F6e 21 01 02 00 e0 59
5F70 A3 AB C1 '09 00 DB
5F80 Ai 90 BA 10 23 90
5F90 23 24 53 1B 23 24
5FAe 24 AE AE A8 AD 29
5F8e 53.84 13 34 11 AS
5FC0 88 54 44 C8 54 6B
SF00 6E 74 F4 CC 4A 72
5FE0 72 44 68 B2 32 B2
5FFS" C8 C4 CA 26 4B 44

6 7 8 9
50 80 FF F2
80 01 F7 A9
00 F7 4C 60
4B AD 00 FC
C9 52 F0 is
C9 47 10 E9
B1 BO 130 FC
24 C9 513 Fe
De F9 6B AB
A9 0A 4C 36
5C B0 (:2 91
B4 A0 00 A2
F7 E6 FO 4C
5C B0 0F 0A
95 FC 60 A2
29 0F 09 30
4A 4A 4A 20
48 8A 48 38
1B 50 EB 00
00 01 29 10
29 01 139 2A
9E 50 20 AE
50 B0 02 A9
CB C0 02 00
03 4C 6B 5C
44 42 5B 56
20 F5 5C 68
E8 09 FA 50
00 04 EB 20
B0 iF 4B 9B
70 135 EB 3E
DC 4C 6B 5C
69 07 AA BD
5E 00 00 00
90 0B 4A Be
1B 5F Be 134
AA BO 5F 5F
98 Ae 133 E0
FA C8 88 00
CC 1C 5E CB
5F :~~ 10 5E
5E 10 5E
213 F4 5E A2
5E C9 E8 81
913 eE 80 6C
CA 00 02 60
8A 4C 0F 5F
A9 213 20 36
10 01 88 65
5C 6B 4C F5
33 D0 08 40
B3 00 08 412'
33 00 8C ,14
33 De 138 413
4D 11 12 136
00 00 00 1C
BB 10 Ai 012'
53 19 A1 013
130 7C 1313 15
69 23 Ae DB
44 EB 94 00
F2 A4 SA 12'13
130 22 00 1A
44 A2 C8 24

,I .,\.,;.'

31310
31311
.313213
31321
313313
31331
313413
313513
31351
313613

'313713
313713

. 313713
313713
313713

. S13

A B
A9 16
EF 80
5C AD
4A 4A
C9 30
E9 06
D8 7B
37 C9
68 AA
5C 213
FC CB
09 20
BE 5C
0A 0A
01 20
C9 3A
F5 5C
B0 21
F8 20
00 01
213 36
50 Ae
30 20
F8 20
AD 00
4E 213
CA 4C
F0 06
9E 50
69 7F
130 01
40 43
1313 01
00 013
17 C9
4A 4A
BD 1B
8A F0
F2 48
.90 F0
89 89
2A 88
06 Ee
FE Be
SF 20
20 03
20 91
5C CA
FE 90
5C 40
09 40
09 00
9A 10
139 62
4A 135
8A 1C
29 19
1A 5B
9C 60
62 SA
B4 08
AA A2
1A 26
24 24

P(:e 14
'-~-':'.~" -'

Ohio Soientific's Small Systems Journal

50DF

TAV
; Y=0

BVC XCM04
;V=0 & Y MATCHES

INY
; Y=1

00DC BNE XCM04

3FCB A8
3FCC
3FCC
3FCE
3FCE C8
3FCF
3FCF
3F01
3F04
3F04
3F04 413
3F05 43
3F06 41
3F07 58
3F08 59

C
80
00
130
90
30
18
DB
47
6B
E9
De
91
AD
0A
04
90
B1
4B
FF
38
5C
07
36
AE
FC
AE
F5
B8
20
68
CA
41
85
00
22
4A
5E
08
B1
A2
5F
00
133
10
36
5F
5C
00
01
02
02
22
22
13
10
23
AE
5B
9C
48
84
A2
26
24

4C5F3E EXIT01 JMP CONTR1
) BACK TO CONTRL
;
REGTBL BYTE '@CAXY'

0 E F
FA F2 A9
F7 A9 00
FC 4A 90
F9 68 BO
F5 C9 3A
29 0F 60
20 91 5C
De eF A2
413 4C B3
5(: Be CB
F6 E6 FO
5C CA Fe
00 FC 4A
95 FC 20
5C Be 04
02 69 06
FC 20 F5
BA 4B 9B
50 6B AB
DB 98 48
BA BA 69
BO 00 131
5C 88 10
50 8A 69
4A B0 F7
50 BO 00
5(: A9 20
113 F7 4C
9E 50 EB
Ae'e4 eA
ce FC De
58 59 20
FE E8 BO
013 00 213
F0 13 29
4A 29 0F
29 03 BD
4A 90 08
FE 20 0F'
03 C0 04
BO 1E 5E
F6 69 BF
De 14 AC
20 0F 5F
5C BD '72
AA E8 De
A5 FF A6
F8 60 AD
C8 60 48
45 12'3 00
45 33 00
44 33 00
44 33 00
78 A9 1313
AC A9 AC
50 88 18
69 AB 19
AS 69 24
A5 69 29
26 62 94
74 B4 28
74 74 74
72 72 88
24 24 24

Jan./Feb., 1978

Do you ItAVE TItESE iMPORTANT publicATiONS
FROM OSI?

Page 15

Full Line Catalog* /
This is the "complete" catalog - every OSI product is described
in full. We even include articles, such as "An Introduction to
Small Computers" in our Fall 77 issue. Our no nonsense approach
allows you to get the facts. WE WANT YOU TO GET THE FACTS because
we want you to know what YQu're buying. Who knows, when you're
done reading our catalog you might have learned something.

Comprehensive Information Package
Designed for reference and service it contains all the technical
information you need. 64 PAGES including

PARTS LI ST
BOARD DESCRIPTIONS
EXTENSIVE SCHEMATICS

You can work your way up from the bare board to the system you
want to configure.· PLUS you get the Full Line Catalog with its
complete product descriptions.

1977 Small Systems Journal Back Issues
DID YOU MISS THE JOURNAL IN 19771 Now you can catch up on all that
good reading you missed. For only $6.00 you can find out about
"The Auto-Load Cassette System", "Understanding and Using the 6502
Assembler", "Getting the Most Out of BASIC", "Constructing a
Fool-Proof End User System" plus much more. Start your collection
from the beginning.

1978 Small Systems Journal
In its first six issues the Journal established itself as a publication
dedicated to the serious exploration of microcomputer technology. If
you want to continue the exploration send in now for your 1978 bi-monthly
subscription. If you are not a subscriber now is the time for you to pick
up on what the Small Systems Journal has to offer. Enjoyable reading
that keeps you informed about what's going on in the small computer
world. If you've missed the first six, don't miss number seven.
SUBSCRIBE NOW!

~--------.., IShipTo

I NAME I
ADDRESS PHONE __________ __

I CITY STATE ZIP I

I CATALOG $1. 0 77 JOURNAL $6.0 I
INFO PACKAGE $5.0 78 JOURNAL $6.0

I MASTERCHARGE 0 No Exp. I
BANKAMERICARD 0 No. Exp. ______ _

• OHIO SCIENTIFIC 1333 S. CHILLICOTHE AURORA OH. 442021 - -----
~SPRING EDITION AVAILABLE APRiL 15)

Ohio Scientific's Small Systems Journal Jan./Feb., 1918

- _azz= -& - -- q

o l.i-

I, ,

-- -- -..-- ---- ------ - - - - ~- -- --- - - -

HIRAM, OHIO 44234

:

l ------- -- ~--- ---- -- ----~-- --~ ----""/'

SMALL SYSTEMS JOURNA,I ______ *

Ohio Scientific 1333 S.Chillicothe Aurora, -OH 44202

