
EE $1.75
SEPTEmER 1984
Va...5, NO. 9

• The Unofficial OSI Users Journal

P.O. Box 347

•

•

Owings Mills, Md. 21117
(301) 363~3268

Column One
The word is, the nine OSI
sales contest winners who went
to Sweden had a good time.
Good for them and for us.

Speaking of sales contest win
ners, ISOTRON now has some 120
dealers, with ten more soon to
be approved and more in the
pipeline. There is life in
the old company yet.

One of the signs of life is
the appearance of MD Partner,
DDS Partner vertical market
software packages. There will
be more in the future, but for
now ISOTRON wants to see how
these first packages do in the
market place.

When more new vertical market
packages do come out, they
will probably be in the main
stream of business - don't ex
pect to see a widget distribu
tor package anytime soon.

Other signs of life:

KeyBase T - a new DBMS for the
300 series machines - no de
tails released as yet, but we
are told it should be out by
the time you read this;

a new DBMS for the 200 series
machine to follow shortly;

OS-65U is being overhauled to
allow for new "hardware chan
ges". Nobody will say what
changes they have in mind •••

a national ad campaign to
start with the October issues
of various magazines. We are
really anxious to see the new
ads;

another new machine - the 235
it fits in a 200 box but

hidden in there is a new 515
"

·INSIDE
6592 ASSEmL Y LANG. PROO. QASS 23
OS I R()1 ROOT I NES
BEG I NNER 'S COONER 6

9 DISK BASIC GARBAGE!!
KEYBOARD K1S I C 10
femE, BIGGER DRIVES 12
0S65U INPUT TIPS FOR V1.2 DIE-HARDS 12
CCM31 NED D I R. UT I L. FOR OS-65O 175
TIME & DATE FOR OSI 1
sa.. V I NG THE OS I IRQ PROOLEM 17

board, plus a single-board
hard disk controller. The~ma
chine is either a 2- or 4-
user device and comes with 4
serial I/O ports, one parallel
port, and one network port. A
2-board, 4-user computer with
an 8" floppy disk and a mini
winnie. The system will sell
for about the same price as a
230, which amounts to about a
$600 price reduction as we
calculate it.

Last month we reviewed The
Data System. We failed to
mention in the review that The
Data System supports OS-OMS
files (type 10), except for
some of the automatic features
of progams like automatic file
calculation, automatic keyfile
update when a record is added.
This will be a great advantage
for people who have systems
with existing OS-OMS files
they want to preserve, and of
course, the files can still be
converted to the new type 30.

While on the subject of soft
ware, it looks as though the
free listings of software will
probably spillover into the
October issue, as it did last
year. What this means to you
is that you have a few more
days to get the form in the
July issue filled in and on
its way to us. Once again,
don't miss this unique PEEK
opportunity that is, frankly,
fr~e advertising.

A question for business user s:
What does it take to entice
you to utilize your magazine
in the same fashion that hack
ers do? Long ago, they learn
ed that there is much to be
gained in the sh~ring of in-

formation. Write us and tell
the community what you have,
what you are doing with it,
what you want to do with it
and your problems.

This month's issue is in my
lap - in its usual prepublica
tion form, with great holes
where full page ads will ap
pear (not to mention the great
hole on the front cover where
Column One will appear if I
ever finish writing itl).
Looking over this issue, I am
struck once more by the amount
of detailed technical informa
tion it contains. What other
computer magazine is 25% list
ings? Where else can you
learn how to solve the IRQ
problem (the State Department
would like to see that one, I
betcha)? From Mar~land to
Tasmani-a, OSI users stick to
getheF-and help each other I

Which brings me to a painful
subject. During my vacation,
I have been thinking very hard
about PEEK and have come,to
the conclusion that, due to'my
many other commitments, I "4
cannot continue to edit PEEK. 'l :':.'
The owner s of PEEK: .h;ave assur-
ed me that, other than the
style of this column, P~E~(65)
will continue as usual.' ··Eddie
Gieske, who has filled in for
me during my vacation, will be
taking over my post here. It
has been a labor of love and I
have had a ball, and I thank
all of you for your help and
support.

~ .' ."

6582 ASSEMBLY LANGUAGE
PROGRAMMING CLASS

Part III

By: Richard L. Trethewey
Systems Operator for the
OSI SIG on CompuServe

Let's take another look at the
last program I presented in
lesson 2.

19
29,
30
49

-·usee
LOY uee
LDA • $28
STA 50699. Y
INY

J CLEAR Y
1 LOAD ACC. WITH A <SP>

59 PI
69

1 SAVE Ace: AT $06"" + Y
1 INCREMENT INDEX

19
B9
99

CPY lSee
SNE p}
RTS

1 IS Y A ZERO YET?
J IF NOT, GO BACK TO pl
1 YET IT IS, QUIT

If we were to add enough STA
$Dx0~,Y instructions, we would
have a program that would
clear the entire screen. But
the resulting program would be
larger than it had to be. The
need to keep code compact will
become clearer later.

All right, so we have the es
sential structure of the pro
gram we want to write, but how
do we change it? Well, first
of all, we need to change the
memory address in line 5~ so
that it starts at the top of
the screen instead of near the
bottom. So we'll change line
5~ to read:

59 Pl STA SDIHHJ,y I SAVE ACC. AT $oaae + Y

Okay, so far so good, but now
we need to make the changes
that will allow the program to
clear the rest of the screen
since what we have now will
only clear the top 8th of it.
Here again it's divide and
conquer as we attack the prob
lem.

We know that the area of
memory we want to clear is one
contiguous block (1. e. there
are no gaps in the range of
memory addresses involved).
Therefore, our task will in
volve repeating the same
process for each page (block
of 256 bytes) of memory in the
screen memory. Aha I Sounds

2

Copyright t 198~by PEEK (65) Inc. All Rights Reserved.

publi~hed monthly

Editor - Al Peabody
Technical Editor - Brian Hartson
Circulation & Advertising Mgr. - Karin Q. Gieske
Production Dept. - A. fusselbaugh. Ginny Mays

Subscription Rates
US (surface)
Canada & Mexico (1st class)
So. & Cen. America (Air)
Europe (Air)
Other Foreign (Air)

515
523
S35
535
$40

All subscriptions arc for I year and are payable in advance
in US Dollars.

For back issues, subscriptions, change of address or other
information. write to:

PEEK (65)
P.O. Box 341
Owings Mills, MD 21117

Mention of products by trade name in editorial material or
advertisements contained herein in no way constitutes
endorsements of the product or products by this magal.ine
or the publisher.

like a job for a loopl Again,
since we'll be dealing with
successively higher addresses
in memory, for . each pass
through the loop we'll be
clearing the next consecutive
ly higher page of memory. The
6502 provides an instruction
that will help us here, which
is the "INC" instruction.
"INC" increments the contents
of a memory location. By add
ing an INC command to bump the
Most Significant Byte (MSB) of
the memory address in line 50,
we can have same code executed
for each page of memory in the
screen.

Of course, as with any loop,
we also have to include a test
to see if the loop needs to be
executed again. We'll be us
ing the "CMP" instruction for
this. "CMP" stands for "Com
pare the Accumulator", and
we'll be testing the MSB in
line 50 that we've been
INCrementing to see if we've
cleared all 8 pages of the
screen. The resulting program
is as follows:

19 *-$48BB
2B,
3e LOY '$ee I CLEAR Y
U LOA 1$29 I LOAD Ace. WITH A <SP)
se PI STA $DUe, Y , SAVE ACC. AT $0888 + Y
68 INY I INCREMENT INDEX
79 CPY I$ee , IS Y AT ZERO YET?
8B BNE PI J IF NOT, GO BACK TO Pl
9B INC Pl+2 , YES I INCREMENT ADDRESS MBB
lee LOA Pl+2 , LOAD ACC. WITH N~ PI MBB
lIe CMP 1$08 , IS IT PAST SCREEN END?
12e BFQ p2 , IF YBS, GO TO P2 (QUIT)
139 LOA 1$2e J IP NOT, LOAD A <SP) AGAIN
14B JMP PI , AND RE- ENTER 'DI E LOOP
Ise,
168 P2 RTS J EXIT POINT

This program has several
inefficiencies. I left them
in so we could examine them.
The first is that line 70 is
unnecessary and could be elim
inated entirely. Why? Because
the previous instruction in
line 6~, "INY", conditions the
Z flag that is tested by the
"BNE" instruction in line 80,
automatically when it is ex
ecuted.

Next, when we loaded the
accumulator with the contents
of "Pl+2" in line 100, we lost
the <SP> character that we had
been saving to the screen.
So, each time the loop was
executed, we had to restore
the <SP> in line 130. But
even that was inefficient If
we had labeled line 40 as
"P0", we could have eliminated
lines 130 and 140 by changing
line 120 to read "BNE P0".
This change would have the
effect of altering the point
at which we re-enter the loop
when a page of screen memory
is completely cleared. Of
course, we also get the added
bonus of more compact code
again. So our program could
be improved to look like:

19
2e,
39
49 pe
58 PI
68
7e
Be
ge
ue
lIe
128

*-'4"8"
LOY ueo
LOA 1$2e
STA $088", Y
INY
8NE PI
INC PI+2
LOA Pl+2
CMP HD8
8NE P8
RTS

, CLEAR Y
I LOAD Ace. WI'l'll A (SP)
, SAVE ACC. AT $0818 + Y
I BUMP INDEX

IF Y <> 8, 'DIEN GO TO PI
INCRE/IENT MS8 OF PI ADDR
FETCH N~ PI ADDRESS MB8
PAST END OF SCREEN ?
IF NOT, pe RESTORE <SP>I
IF SO, WE'RE DONE (QUIT)

This program still has one
fatal flaw. Did you spot it?
The flaw is that· since the
program alters the contents of
memory when it is executed, it
can only be run once. If you
tried to run it a second time,
the address at PI would start
out at $D800 and the program
would try to set all memory
locations from $D800 on up,
flopping over after $FF00 to
begin again at $0000 and ulti
mately crashing when it gets
up to $4000 again.

The solution to this problem
is to reset the address at PI
to $D000 when the program is
done clearing the screen. The
following code would accomp
lish this:

III LOA. $De ,LOAD ACC. WITH SCREEN TOP MBB
112 STA Pl+2 ,RESTORE ORIGINAL ADDRESS AT PI

The technique presented here
of altering code within a
program as that program is
executed is often called
"sel f-modify ing code". I'm
using the term a bit loosely
here since we're altering an
address instead of an actual
instruction code, but the
object here is to demonstrate
the effect of the technique.

In BASIC, if you refer to a
variable in an equation with
out previously setting the
value of the variable, BASIC
assumes the value to be used
is zero. We enjoy no such
luxury in Assembly language
programming. Each and every
pointer must be initialized
before they can be used.
Sooner or later, you will
violate this principle and
your program will fail. It
happens to everyone. When
your programs lock-up, look at
your pointers first. 'Nuff
saidl

As you can see, the "INC"
instruction is very handy for
dealing with consecutive mem
ory addresses. The 6502 also
has a complimentary instruc
tion called "DEC" which rever
ses the process by decrement
ing the contents of memory
locations.

You may have thought that the
references in the programs
presented here to "Pl+2" was a
bit strange. Ordinarily, we
would think that to find the
most significant byte (MSB) of
the address we would look at

•

•

•

•

•

•

the left-most location. The
reason we had to use "Pl+2" is
that the 6502 uses this
reversed order of the MSB and
LSB for instructions in pro
grams. Thus, when we refer to
specific memory locations in
terms of labels within our
programs, we must take this
situation into account. Don't
forget that labels represent
specific memory addresses for
the assembler, even though
they are looked at as refer
ence points in text for us.

BRANCHING

In several of the previously
presented programs, I have
used the instructions "BEQ"
and "BNE". The 6502 has sev
eral such instructions called
"branching instructions".
Their purpose is much like the
"IF" statement in BASIC. They
test to see if a particular
condition exists and if so,
program control is sent to a
specified destination. If
you'll recall our previous
discussion of the internal
registers in the 6502, one of
the registers is called the
status register or status
byte. The value of each bit
in the status register tells
us something about what has
occurred in a program and it
is the status register that is
tested with the branching in
structions •

Note that only 7 bits in the
status register are actually
significant. One bit was not
defined in the original 6502s.

Again, each significant bit in
the status register tells a
story, and each story is dif
ferent. These bits are also
referred to as "flags" and are
further referred to by a
particular name. The status
flags are:

N or Negative flag
If set (i.e. value 1), it
means that the result of the
last operation that affected
this flag set bit 7 of the
byte manipulated (whether the
accumulator, X or Y register,
or a memory location makes no
difference) indicating a nega
tive resul t.

V or Overflo~
If set, it means that the last
math operation that affected
this flag caused an overflow.

JLQJ; Break flag
If set, indicates that a BRK
instruction was executed.

D or Decimal flag
If set, the accumulator will
perform math operations in
Binary Coded Decimal. If

clear, normal math is per
formed.

I or Interrupt flag
If set, the 6502 will process
software interrupts.

Z or Zero flag
If set, it means that the
result of the last operation
that affected this flag was
not zero. If clear, result
was zero.

C or Carry flag
The value of this flag is used
as a kind of "9th bit" in math
operations so that multiple
precision math can be per
formed.

The eight branching instruc
tions test the condition of
only four of these flags. The
two-to-one ratio of instruc
tions to flags provides the
ability for a branch to be
taken (i.e. the tested for
condition will exist) for all
possible states of the four
flags. The branching instruc
tions are:

BCC or Branch on Carry Clear
If the carry flag is zero, the
branch is taken.

~ Branch on Carry Set
Branch is taken if Carry = 1.

BEQ or Branch on Equgl
Branch is taken if Zero flag
0.

BNE or Branch on Not Egual
Branch is taken of Zero flag
1.

aMI or 6r:sD!;;D QD MIDUIii
Branch is taken if N flag

6EL Qr: 6r:sD!;;D QD ELulii
Branch is taken if N flag =

1.

0.

6Y:C QI: Bl:sD!;;D QD Qy:~r;flQ!tl

~
Branch is taken if V flag = 0.

6Y:S QI: 61:sD!;;D QD QY:~I:UQ!tl S~t
Branch is taken if V flag = 1.

The branching instructions
have a limitation that must be
remembered when they are used
in programs. They can only
branch to a point 127 bytes
ahead of, or 128 bytes behind
the address of the next memory
address after the branch in
struction itself. This is one
reason why I stressed the need
for keeping your code as com
pact as possible.

The status flag is affected by
most of the instructions in
the 6502 instruction set. The
exceptions are the instruc
tions STA, STX, STY, JSR, JMP,
RTS, NOP, PHA, PHP, and TXS.
Then we have the instructions

which are used to directly
control the individual flags
within status register; CLC,
CLD, CLI, CLV, SEC, SED, and
SEI.

There are two other instruc
tions available in the 6502
which transfer program con
trol, which are "JMP" and
"JSR". "JMP" stands for "JuMP"
and causes an unconditional
transfer to the specified add
ress, just like "GOTO" in
BASIC. "JSR" stands for "Jump
SubRoutine" and executes the
code beginning at the speci
fied address until an "RTS" or
"ReTurn from Subroutine" in
struction is encountered, just
like "GOSUB" and "RETURN" in
BASIC.

*
OSI ROM ROUTINES

(Part 4)

By: Leroy Erickson
Courtesy of OSMOSUS NEWS
3128 Silver Lake Road
Minneapolis, MD 55418

The ROM routine for this month
is SYNMON page 4, the ROM
BASIC Support routines for 540
video and the polled keyboard.
This routine occupies $FF00 to
$FFFF in any C4P, C2-4P or C8P
cassette based sy stem. Since
it covers locations $FFFA thru
$FFFF, it contains the NMI,
RESET and IRQ vectors. Look
at those locations in Listing
1 and you'll see that they are
set to $0130, $FF00 and $0lC0,
respectively. Thus, on re
ceiving a RESET (BREAK) in a
BAS IC-IN-ROM system, control
is passed to $FF00 the
beginning of this page. Now
look at the code at that
location. The following set
of operations is executed:

1. Clear decimal mode (just in
case) •

2. Set the stack pointer to
$0128.

3. Initialize the serial port,
using a routine assumed to
exist in the BASIC ROM(s) •.

4. Initialize several flags
that BASIC will need.

5. Initialize the video cursor
posi tion.

6. Clear the screen.

7. Display the boot message
'C/W/M?' on the video screen,
using another routine which is
assumed to exist in the BASIC
ROM(s) •

3

S. Get an input character,
using the routine in the key
board driver ROM.

9. Test that character and do
the following:- if 'M', go to
the ROM Monitor at $FE~~.

- if 'W', go to the warm start
jump assumed to exist at
$~~"~.

- if 'C', go to the cold start
routine in BASIC-IN-RO~l;

- if none of
back to $FF~~
over.

the
and

above, go
start all

The code to handle the above
tasks occupies about half of
the page. The rest of the
page contains the following
routines:

1. $FF67 is a character dis
play routine which first
displays to the screen, then
tests the 'SAVE' flag. If
set, the character is also
sent to the serial port.
Also, if in 'SAVE' mode and a
carriage return is being dis
played, l~ nulls (ASCII '~9')
are written to the serial port
as a delay.

2. At $FFS9 is the code to
handle the 'LOAD' command.
When a 'LOAD' command is giv
en, its flag is set (changed
from $"~ to $FF) and the
'SAVE' flag is cleared (set to
0). The 'LOAD' flag is clear
ed later when a 'space' is
typed on the keyboard.

3. At $FF94 is the code to
handle the 'SAVE' command.
All that happens is that the
'SAVE' flag is set to 1.

4. At $FF99 is the code to
test for CTRL/C input from the
keyboard. If not true, con
trol is returned to the
calling routine. If true,
control is passed to $A636 1n
the BASIC ROM(s). The routine
here will do the correct stop
sequence for an. executing
BASIC program.

5. At $FFBS is the character
input routine. If the 'LOAD'
flag is clear, control is
passed to the ROM keyboard
routine. If set, the routine
continuously tests the key
board for a space (ASCII '2~')
input or the serial port for
any input. If the serial port
wins, that character is re
turned, otherwise the 'LOAD'
flag is cleared and control is
passed to the ROM keyboard
handler.

6. At $FFEB is a set of 5
jumps to the 5 routines listed
above. Presumably, BASIC-IN-

4

1
2
3
4
5
6
7
8
9

10
11
12
13 0000=
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0200=
0203=

0205=

0206=
0212=

A636=
BDll=
BFl5=
BF22=
BF2D=

32 DOOO=
33 DFOO=
34 FCOO=
35 FEOO=
36 FEED=
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
93
93
93
93
93
93
93
94
95

FFOO

FFOO
FFOI
FF03
FF04
FF07
FF09
FFOC
FFOF
FFl2
FF15
FFl8

D8
A228
9A
2022BF
MOO
8C1202
8C0302
8C0502
8C0602
ADEOFF
8D0002

FFIB A920
FFID 9900D7
FF20 9900D6
FF23 9900D5
FF26 9900D4
FF29 9900D3
FF2C 9900D2
FF2F 9900Dl
FF32 9900DO
FF35 C8
FF36 DOE5

FF38 B9SFFF
FF3B F006
FF3D 202DBF
FF40 C8
FF41 DOFS

FF43 20B8FF
FF46 C94D
FF48 D003
FF4A 4COOFE

FF4D C957
FF4F D003
FFSI 4COOOO

FF54 C943
FF56 DOA8
FF58 MOO
FF5A AA
FFSB A8
FF5C 4CllBD

FF5F 43
FF60 2F
FF61 57
FF62 2F
FF63 4D
FF64 20
FF6S 3F
FF66 00

•• *** ••• *.*.* ••• ********* •• ********** ••
*** ***

C4P BOOT ROM PAGE 4 ROM BASIC Support for 540 Video
and Polled Keyboard ••• Comments by Leroy Erickson

May 1982
••• ...

••• •••
.******* •• *******.***************

HOOOO =$0000

CRSPOS=$0200
LOADFG=$0203

SAVEFG=$0205

TDELAY=$0206
CTLCFG=$0212

HA636
HBDll
HBFlS
HBF22
HBF2D

=$A636
=$BDll
=$BF15
=$BF22
=$BF2D

SCREEN=$DOOO
KEYBRD=$DFOO
SERPRT=$FCOO
HFEOO =$FEOO
HFEED =$FEED

BASIC Warm Start Location

Video Cursor
LOAD Flag

; Non-zero ==>
SAVE Flag
Non-zero ==>
Time Delay
CTRL/C Flag
Non-zero ==)

Position

Serial Input

seri al Output

Disabled

• BASIC-IN-ROM Routines •

CTRL/C Handler
Cold start entry
Serial output
Init serial port
Video Driver

Address of video memory
Address of keyboard port
Address of serial port
ROM Monitor start address
Address of Jump to

Keyboard Input Routine

• = $FFOO
;
HFFOO

HFFlD

HFF38

HFF43

HFF4D

HFFS4

CLD
LDX
TXS
JSR
LDY
STY
STY
STY
STY
LDA
STA

LDA
STA
STA
STA
STA
STA
STA
STA
STA
INY
BNE

LDA
BEO
JSR
INY
BNE

JSR
CMP
BNE
JMP

CMP
BNE
JMP

CMP
BNE
LDA
TAX
TAY
JMP

'$28

HBF22
'$00
CTLCFG
LOADFG
SAVEFG
TDELAY
HFFEO
CRSPOS

I Clear decimal mode
Set stack pOinter

Init Serial Port
Initialize Flags
- CTRL/C Flag
- LOAD Flag
- SAVE Flag
- Time Delay
Initialize Cursor
Position

* Clear the Screen *

'$20 ; Get a blank
SCREEN+$700,Y I Clear last 8th
SCREEN+$600,Y Clear next 8th
SCREEN+$500,Y ditto
SCREEN+$400,Y ditto
SCREEN+$300,Y ditto
SCREEN+$200,Y ditto
SCREEN+$lOO,Y I ditto
SCREEN,Y I Clear top 8th

HFFID

BOOTMS,Y
HFF43

. HBF2D

HFF38

HFFB8

"M HFF40
HFEOO

"W HFF54
HOOOO

"C HFFOO
'$00

HBOll

I Increment index
Loop for a whole page

• Display Boot Msg *
Get a char
Exit if 0
Else, display it
Increment index
Loop until all done

Get & Test Response

Get an input char
M 1

I No, skip
I Yes, go to ROM Monitor

W ?
No, skip
Yes, go to Warm Start

C 1
No, start over

J Yes, clear A,X & Y
I
I
I Go to BASIC Cold start
I

BOOTMS .BYTE 'C/W/M 1',0 I * Boot Message *

96
97
98
99

FF67 202DBF HPF67
FF6A 48

JSR
PHA
LOA

HBF2D

I • Display a char *
Display to the screen
Save the char

FF6B AD0502 SAVEFG Test SAVE Flag

Continued on page 6.

•

•

•

•

•

•

3702 N. Wells St.
D&N MICRO PRODUCTS INC FortWayne,lnd.46808

, • (219) 484·6414
TERMS $300 shipPing, Foreign orders add 15% Indiana reSloents aea 5"/0 sales tax

COMPUTER
MICRO·80 COMPUTER
Z·80A CPU with 4Mhz clock and
CP/M 2.2 operating system. 64K
low power static memory. Cen·
tronics parallel printer port. 3 serial
ports. 4" cooling fan. Tw08" single
or double sided floppy disk drives.
IBM single density 3740 format for
243K or storage, double density
format for 604K of storage. Double
sided drives allow 1.2 meg on
each drive. Satin finish extruded
aluminum with vinyl woodgrain
decorative finish. 8 slot backplane,
48 pin buss compatible with OSI
boards.
MODEL80·1200 $2995

28" Single sided drives
MODEL 80·2400 $3495

2 8" Double sided drives

MICRO·65 COMPUTER
6502 CPU with 2Mhz clock and
DOS-65 operating system. 48K of
low power static memory. 2 serial
ports and 1 Centronics parallel
port. 2 8" single or double sided
drives. Satin finish extruded
aluminum with vinyl woodgrain
finish. 8 slot backplane, 48 pin buss
compatible with OSI. Will run OSI
65D and 65U software.
MODEL65·1 $2995

28" Single sided drives
MODEL 65·2 $3495

2 8" Double sided drives

Bp·580 8 Slot Backplane $ 47
OSI48 pin Buss compatible

MEM·CM9 MEMORY/
FLOPPY CONTROLLER

24K memory/floppy controller card
uses 2114 memory chips, 1 8K and
1 16K partition. Supports OSI type
disk interface
24MEM·CM9 $325
16MEM·CM9 $260
8MEM·CM9 $180

BAREMEM·CM9 $ 50
Controller on assembled unit
add $ 90

B10·1600 Bare 10 card $ 50
Supports 8K of memory, 2 16 bit
parallel ports, 5 serial ports,
with manual and Molex
connectors.

PRINTERS
Okldata

ML82A, 120cps, 10" .$409
ML83A, 120cps, 15" .$895
ML84Parallel,200caps, 15" .$1150

C.loth
8510AP Prowriter, parallel ... $419

120 cps, correspondence quality
8510APD Prowriter, serial $585
F10·40PU Starwriter, parallel $1319

Letter quality daisy wheel
F10·40RU Starwriter, serial .. $1319
F10·55PU Printmaster $1610

parallel, Letter quality daisy
wheel

F10·55RU Printmaster, serial $1610
DISK DRIVES AND CABLES

8" Shugart SA801 $385 -
single sided

8" ShugartSA851 $585
double sided

FLC·66 ft cable from D&N $69
or OSI disk controller to '8" drive

5 V4" MPI B51 disk drive with .. $450
cable, power supply and
cabinet. Specify computer type .

FLC·51f4 cable for connection . $75
to 5% drive and D&N or OSI
controller, with data separator
and disk switch. Specify
computer type

HARDWARE
OSI COMPATIBLE

10·CA 10X Serial Printer Port .. $125
Specify Device #3 or #8
10·CA9 Parallel Printer Port .. $150

CMOS·MEM
64K CMOS static memory board,
uses 6116 chips, 3 16K, 1 8K and 2
4K blocks, Partitionable for multi
user, OSI type disk controller, 2 10
mapped serial ports for use with
D&N-80 CPU. Ideal way to upgrade
from cassette to disk.

64KCMOS·MEM $490
48KCMOS·MEM $390
24KCMOS·MEM $250
16KCMOS·MEM $200
Controller add. $ 90
210 mapped serial ports add. $125

on assembled memory board
Z80·10210 mapped serial $160

ports for use with D&N-80 CPU
card

FL470 Disk Controller $155
Specify 5 V4 or 8" drive

STANDARD
CP/M FOR OSI

D&N·80 CPU CARD
The D&N-80 CPU allows the owner
of an OSI static memory computer
to convert to Industrial Standard
IBM 3740 single density disk for
mat and CP/M operating system.
Double density disk operation is
also supported for 608K of storage
on an 8" diskette. When used with
a 5%" disk system 200K of storage
is provided. Includes parallel
printer and real time clock. Also
available for polled keyboard and
video systems. Compatible with
C2, C3, C4 and 200 series OSI com
puters. , /

D&N·80· P , $349

CP / M 2.2 $150 .'

64KCMOS·MEM with D&N-80
CPU card $450
~ ,
HARD DISK DRIVER $140
Allows D&N·80 CPU board to con·
trol OSI40 or80 meg hard disk unit.
Will not destroy OSI files. Will also
allow for a true 56K CP/M system.
Specify 40 or 80 meg drive.
BUSS TRANSFER $135
Allows for D&N·80 and OSI CPU to
be in the. computer at the same
time. Toggle switch provides for
alternate CPU operation.
DISK TRANSFER $100
Utility program to transfer OSI
CP/M format disk to IBM 3740
single density format. Will also
transfer IBM to OSI format.

SYSTEM HARDWARE
REQUIREMENTS

D&N-80 CPU, D&N FL470 or OSI
470 controller, 48K memory at
OOOO-BFFF, 4K memory at DOOO-
DFFF, two disk drive cables.
FORMAT TRANSFER $15
You supply software on 8" diskette
D&N will transfer OSI CP/M format
to IBM 3740 CP/M format. Can also
transfer IBM 3740 CP/M format to
OSI CP/M format. Original diskette
returned.

5

ROM calls these 5 addresses so
that the above code is not
location dependent.

I'll finish off with 3 obser
vations.

1. Nothing in this ROM page
uses any location Ion page
zerol This allows a 'RESET'
and warm start to successfully
work.

2. There are 7 unused bytes at
$FFD9 to $FFDF and 10 unknown
bytes (BASIC data?) at $FFEI
to $FFEA.

3. If the programmer at OSI
had only taken the code at
$FFIB to $FF36, moved it be
hind location $FFDB and tagged
an 'RTS' onto it, then placed
a 'JSR' to this routine at
$FFIB instead and packed ev
erything back together again,
the following would be true:

1. The code would work just
the same way as it does now.

2. There would only be 3 un
used bytes~ (7 minus 3 for the
'JSR' and 1 for the 'RTS').

3. There would be a machine
language 'screen clear' rou
tine in ROM which could be
directly called by a 'USR(X)'
function from BASIC, thus
nullifying several dozen maga
zine articles and/or letters
in the last few years.

But OSI did'nt do things that
way because nobody ever would
want or need to use a routine
like that, would they?

Next month, we'll cover SYNMON
page 6, the Serial System ROM
Monitor. See you then.

*
DECIDER'S CORNER

By: L. Z. Jankowski
Otaio Rd 1, Timaru
New Zealand

GOT ITI

One of the problems with OSI
BASIC has been the lack of an
adequate 'GET-KEY' command,
e.g., GET or INKEY as in other
BASICs. Never mind, a halting
'GET-key' routine is easy to
implement. For 65D 3.3, see
line 310 in Listing 1. (List
ing 1 is the third part of the
'Otaio Mailing List' see
June 'B4 issue). For DOS 3.2
change line 310 to:

310 DISKI"GO 252B":Y$=CHR$
(PEEK(9B15)) :Y=VAL(Y$)
:A=PEEK(9B15)OR32.

6

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

FF6E F022
FF70 68
FF71 2015BF
FF74 C900
FF76 001B
FF78 48
FF79 8A
FF7A 48
FF7B A20A
FF70 MOO
FF7F 2015BF
FF82 CA
FF83 OOFA
FF8S 68
FF86 M
FF87 68
FF88 60

FF89 48
FF8A CE0302
FF80 A900
FF8F 800502
FF92 68
FF93 60

129 FF94 48
130 FF95 MOl
131 FF97 00F6
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

FF99 A01202
FF9C 0019
FF9E MOl
FFAO 80000F
FFA3 2COOOF
FFA6 SOOF
FFA8 M04
FFM 80000F
FFAO 2COOOF
FFBO 5005
FFB2 M03
FFB4 4C36A6

149 FFB7 60
150
151
152
153
154
155
156
157
158
159
160
161
162
163

FFB8 2C0302
FFBB 1019
FFBD A902
FFBP 8DOODF
PFC2 A910
FFC4 2COODP
PPC7 DOOA
FFC9 ADOOPC
FFCC 4A
PFCD 90EE

164 FFCF A001FC
165 FF02 60
166

HFF7F

BEQ
PLA
JSR
CMP
BNE
PHA
TXA
PHA
LDX
LDA
JSR
DEX
BNE
PLA
TAX
PLA
RTS

LoAlicM PHA

HPF8F
HPF92
HFF93

DEC
LDA
STA
PLA
RTS

SAVECM PHA
LDA
BNE

CTCTST LDA
BNE
LDA
STA
BIT
BVC
LDA
STA
BIT
BVC
LDA
JMP

HFFB7

HFFB8

HPFBD

RTS

BIT
BPL
LDA
STA
LOA
BIT
BNE
LDA
LSR
BCC

LDA
RTS

HFF92

HBF15
'$OD
HFF93

'$OA
1$00
HBF15

HFP7F

LOADPG
'$00
SAVEPG

'$01
HFF8F

CTLCFG
HFFB7
'$01
KEYBRD
KEYBRD
HFPB7
'$04
KEYBRD
KEYBRD
HFFB7
1$03
HA636

LOADFG
HFPD6
1$02
KEYBRD
1$10
KEYBRD
HFFDl
SERPRT
A
HFFBD

SERPRT+l

167 FF03 EE0302 HFF03 INC
168 FF06 4CEOFE HFF06 JMP
169

LOADPG
HFEED

170 FF09 00
170 FFOA 00
170 FFOB 00
170 FFOC 00
171 FFOO 00
171 FFOE 00
171 FFOF 00
172
173 FFEO 40 HFFEO

.BYTE 0,0,0,0

.BYTE 0,0,0

.BYTE $40
I

Skip is clear
Else regain output char
Write to Serial Port
Is it Carriage Return 7
No, Go Home
Yes, save it

and X

Get a 10
and a Null

Write it to serial port
Do that for 10 Nulls

Then regain X , A

And Go Home

* Handle LOAD Command *
Save A
Set LOAD Flag
Clear SAVE P1ag

Regain A
And Go Home

* Handle SAVE Command *

Save A
Get a 1 for SAVE Flag
Go share code

* CTRL/C Test *
CTRL/C Enabled
No, Go Home
Else, test Row 0

for CTRL key

Not down, Go Home
Else, test Row 2

for C Key

Not down, Go Home
Else, get ASCII Value
Go to BASIC ROM CTRL/C

Handler

Go Home

* Get Char Routine *
Test LOAD Flag
Skip if clear
Else, test Row 1

Column 4 of the
Keyboard - a Space

It's there, Skip ahead
Else test serial status

Loop·until 1 or the
other happens

If set get input char
And Go Home

If ' , clear LOAD Flag
Go to ROM Keyboard Code

* JUNK FILLER *

I Initial video cursor pos
174
175
175
175
175
176
176
176
176
177
177
178
179

. I
FFE1 3F
FPE2 01
FFE3 00
FFE4 03
FFES FF
FFE6 3F
FFE7 00
FFE8 03
FFE9 FF
FFEA 3F

180 FFEB
181 FFEE
182 FFFI
183 FFF4
184 FFF7
185

4CB8FF
4C67FF
4C99FF
4C89FP
4C94FP

186
187
188
189
190

FFFA 3001
FFFC OOFF
FFFE COOl

*

.BYTE $3F,$01,$00,$03 I * JUNK (7) *

.BYTE SFF,S~F,$00,S03

HFFEB
HFFEE
HFFFI
HFFF4
HFFF7

.BYTE $FF,S3F

JMP
JMP
JMP
JMP
JMP

HFFB8
HFF67
CTCTST
LOADCM
SAVECM

NMIVCT .WORD S0130
RESVCT .WORD SFFOO
IRQVCT .WORD $OlCO

.END

Character In Routine
Character Out Routine
CTRL/C Test Routine
LOAD Command Handler
SAVE Command Handler

NMI VECTOR
RESET VECTOR
IRQ , BRK VECTOR

*

•

•

•

•

•

•

Congratulations Europe - You Now
Have a OBI Distributor

OBI Welcomes P.M.C. ApS

P.M.C. ApS offers complete Dealer Support:

- Hardware Support m.s.1. products in stock)
- Software Support (Specialized programs)
- Technical Support (Repair/Installation)

For Replacement and Upgrading O.S.I.' (65U') 200 Series Computers with D.S.I. products.

P.M.C. ApS Professionals are: P.M.C. ApS
Taarnfalkenvej Joergen Clausen

Niels Koldborg
Carsten Sillemann

OK - 2650 Hvidovre
Copenhagen, Denmark

'O.S.I. and 65U are Trademarks of ISOTRON Inc.

Wir gratulieren - nun hat auch Europa
eine Vertretung fuer OBI

OBI heisst P.M.C. ApS willkommen

P.M.C. ApS liefert vollstaendige Verkaufsunterstuetzung:

- Geraete Service m.s.1. Componenten an Lager)
- Software (Spezielle Kundenprogramme)
- Technische Unterstuetzung (Reparaturen-Installationen)

Telefon: 45-1-49 30 66
Telex: 42563 Fulvic OK

Wir ersetzen und ergaenzen O.S.I.' (65U ') 200 Serien Computer mit D.S.I. Componenten .

Das zustaendige Personal der P.M.C. ApS sind:
Joergen Clausen

Niels Koldborg
Carsten Sillemann

P.M.C. ApS
Taarnfalkenvej
OK - 2650 Hvidovre
Copenhagen, Denmark

'O.S.I. and 65U sind registrierte Markenzeichen von ISOTRON INC.

Felicitations Europe - VOUS avez,
maintenant, un distributeur OBI.

OBI souhaite la bienvenue a P.M.C. ApS

P.M.C.· ApS offre un soutien concessionnaire total, que ce soit en:

.- machines (materiel D.S.I. en stock)
- ou en software (programmes specialises)
- avecappui technique (reparationslinstallations)

Telefon: 45-1-493066
Telex: 42563 Fulvic OK

pour Ie remplacement et I'amelioration des ordinateurs O.S.I.' (65U') se'rie 200 avec produits D.S.I.

Les agents profession nels P.M.C. ApS sont: P.M.C. ApS
Joergen Clausen Taarnfalkenvej
Niels Koldborg OK - 2650 Hvidovre

Carsten Sillemann Copenhagen, Denmark

'O.S.I. et 65U sont des marques de'pose'es de ISOTRON Inc.

~• p.o. box 7276
1 denver, co 80207
I ,Inc. (303) 428·0222

Telefon: 45-1-493066 -
Telex: 42563 Fulvic OK

7

For ROM BASIC use:

310 POKE 11,0: POKE 12,253:
X=USR(X)

312 Y$=CHR$(PEEK(531»:
Y=VAL(Y$): A=PEEK(531)OR32

'Io see why Y$, Y and A are
used, run line 310 with line
320:

320 PRIN'I' Y$, Y, A: GOTO 310

Notice that the number in
variable 'A' has the same
value, irrespective of whether
lower or upper case is used.

The 'GET-key' routine above is
a halting one; it waits until
a key is pressed. A non-
halting 'GET-key' command
would be extremely useful in
program loops that must keep
on doing something until a key
is pressed. CTRL-C does the
job but with an undesirable
side effect it stops the
program alsol various attempts
have been made to circumvent
this limitation of OSI BASIC.
The best solution would be to
add the new command 'GET' to
the BASIC Interpreter.

Creating records is done in
the APPEND block, lines 1700-
1800. Looking at line 1710,
if Z Records have been created
then the next Record R must be
number Z+l. Records can con
tinue being created until
there are 'N' of them, the
maximum allowed, as set in
line 130. Notice how the user
is prompted and helped to make
the correct response.

Line 1770 demonstrates how ar
rays can be much more useful
than simple variables. The
field names could have been
stored in 5 variables, Nl$,
N2$, N3$, N4$ and N5$. An
INPUT into each of them would
require up toS lines of code.
Using array N$(C) and a
FOR ••• NEXT loop reduces this
requirement to one line only.
As a result the program is
shorter, faster and more ele
gant.

If 'STOP' is typed in response
to INPUT in line 1770 then an
exit is made from the block
via line 1790. At this point
'Q' is one more than is re
quired for 'Z', therefore 'Z'
is set to 'Q-l'. It would be
silly to have a final invis
ible Record with 'STOP' in it
so the next FOR ••• NEXT loop,
in line 1790, erases that
Record. Finally, 'Q' is set
to 'N' and 'c' is set to 'P'.
Doing this forces the proper
termination of these loops.
If this is not done unwanted
addresses are left on the

8

290 REM LISTING 1.
300 f-:E11 Get a Key'

LISTING 1

31':' DISK! "GO 2336": V$=CHR$ (PEEK (9059)) : Y=VAL (YS): A=PEEK
(9059)OR32

315 RETURN
1690 r(EM
1700 REM APPEND RECORDS
1710 R=Z+1:IFR>NTHENPRINT", No more space left ,":GOT0200
1720 REM
1730 FORQ=RTUN
1740 PRINT! (2S):PRINT", To return to main menu type:- STOP

,":PRINT
1750 PRINT:PHINT"Record "Q"of"N:PRINT:PRINT
1760 HEM
1770 FORC-1TOP:PRINT:PRINT", "NS(C)" " ;:INPUTDS(Q,C)
1780 IFD$(Q,C)=H$THENPRINT:PRINT:PRINT:GOT01750
1790 IFD$(Q,C)-sSTHENZ-Q-l:FORY-ITOP:DS(Q,Y)="":NEXTY:Q=N:

1800 NEXTC,Q:GUT0190

LISTING 2

5 REM LISTING 2
10 PRINT! (28); : POKE 56900,1: SUM=53514+4096
20 WIDTH=64:SCREEN=SUM-WIDTH: CHOICES=6: L=CHOICES-l
30 FOR COUNT=l TO CHOICES

C=P

40 : NUMBER=COUNT: PRINT TAB (10) "> CHOICE" STRS (NUMBER)
50 NEXT COUNT: POKE 56900,5
60 :

KEY-I TO CHOICES 70 FOR
80 :
90 :

GOSUB 130: DISK! "GO 2336": LOOK = PEEK(9059)
IF LOOK=13 THEN NUMBER=KEY: KEY=CHOICES

100 NEXT
110 GOTO

KEY: IF LOOK-13 THEN 200 •••• IF CR, show choice.
70 •••• go do it again.

120 :
130 FOR COUNT=O TO 9: NUMBER-COUNT: POKE SCREEN+NUMBER,O
140 NEXT COUNT
150 SCREEN = SCREEN + WIDTH
IbO IF SCREEN > (SUM + L.WIDTIi) THEN SCREEN-SUM
170 FOfl COUNT=O TO 9: NUMBER-COUNT: POKE SCREEN+NUMI:IER,l
180 NEXT COUNT: RETURN
190
200 PRINT: PRINT "CHOICE " STRS (NUMBER) " MADE"
210 PRINT:INPUT", READY ";QS: RUN

LISTING 3

10 REM LISTING 3.
20 PRINT! (28): X=4: DIM AS(X)
30 AS(1)="PRIN":A$(Z)="PACK":AS(3)="SORT":AS(4)="FIND"
40 INPUT ". COMMAND ";B$
50 FOR Y-1 TO LEN(B$)-3: CS=MIDS(B$,Y,4)
60 FOR Z=1 TO X: IF C$=A$(Z) THEN GOSUB 200: Z=X
70 NEXT Z
80 NEXT Y
90 END
200 ON Z GOSUB 1000,2000,3000,4000,5000: RETURN
SOO NEXTY
1000 PRINT"PRINTING":RETURN
2000 PRINT"PACKING":RETURN
3000 PRINT"SORTING":RETURN
4000 PRINT"FINDING":RETURN

•

•

•

•

•

'.

Stack. This could be fatal to
a program where FOR ••• NEXT
loops are mixed with GOSUB
calls. Experiment with the
following program to gain a
deeper understanding of how a
FOR ••• NEXT loop works. Try
different values for A and B,
including negative numbers and
zero. Try A)B as well as A<B.
Note each time the final value
of COUNT.

10 REM LOOP

20 A= ••• : B= •••

30 FOR COUNT=A TO B

40 PRINT nHAI n, ,

50 PRINT nCOUNT= n COUNT

60 NEXT COUNT

70 PRINT,nFINAL COUNT=
nCOUNT""nDONE n

The commas merely space
output across the screen.

the
It

loop
or

is possible to produce a
which will run forever
until some condition is met
this is where a non-halting
GET command would be useful.
Add these lines and RUN:

20 A=l: B=l

55 COUNT=0.

Now add this line to halt
LOOP:
51 X=INT(RND(l}*10 }: IF X=l

THEN 60

Jumping Jodhpursl It works
just like 'LOOP' in MODULA 21

POINTS ARISING

OSI BASIC Boolean operators
(AND, OR, NOT) closely follow
the rules of Boolean Algebra.
The inventor of Boolean
Algebra was George Boole
(18l5-l864). He was a primary
school teacher and soon found
that he had to learn more
mathematics. He did some
reading and eventually wrote
'The Mathematical Analysis of
Logic'. Two years later he
was appointed Professor of
Mathematics at Queens College,
Cork, Ireland. Boole showed
that an algebraic structure
could be abstract. As a
result of his work we know
that propositional logic (AND,
OR, NOT) will always work,
including in computer prog
ramsl So what does the 'OR
32' in line 310 do?

Every character has its asso
ciated ASCII code number. The
ASCII number for 'A' is 65
this is 01000001 in binary (a
'sixty-four' and a 'one'). If
this binary number is now

'ORed' with 32 we have:

01111111011101 is 'A'

111011111111111110 is just 32

11111001111111 97 in base 1111.

What happens
number for 'a'
with 32?

0110111001 is 'a'

if the
(97) is

111010000111 is just 32

0111110001 97 I

ASCII
'ORed'

The result is precisely the
same. The statement 'X=PEEK
(9059) OR 32', will put the
same value into variable X
irrespective of whether the
key pressed was for upper or
for lower case.

WAZZATI

Making programs easier to use
makes them much longer.
Listing 2 is a case in point.
It shows an al ternative way of
presenting a Menu and a
suitable version of it could
be substituted for line 280 in
the OML. ClP users make these
changes:

10 SUM= 53514

25 WIDTH= 32

80 GOSUB 130: POKE 11,0: POKE
12,253: X=USR(X}: LOOK=PEEK
(53l)

130 POKE SCREEN+ 11 ,32

140 REM

17111 POKE SCREEN+11,23

18111 RETURN

The listing also illustrates
how readable a BASIC program
can be. Notice that there is
no need for REM in lines 1111111
and 11111. Works for GOSUB tool

One needn't stop there. It is
possible to write a Menu
program (see Listing 3) that
will do the following: accept
ANY English sentence, extract
key words representing com
mands; execute those commands.
In effect a Command file has
been set-up for execution.
Gadzooks, just like CP/M? I

*

GARBAGE! I

By: Earl Morris
3200 Washington
Midland, MI 48640

I seem to be attracted by
garbage. Not the kind you put
in barrels out at the curb,
but the kind made by using
strings in BASIC. The March
and June 1981 issues of PEEK
explained a bug in the ROM
BASIC garbage collector. This
bug does not exist in DISK
BASIC. However, when the disk
garbage collector runs, it can
introduce long delays in your
program. The delay is propor
tional to the square of the
number of strings to be
collected. Jim Butterfield is
the guru of PET BASIC and many
of his ideas can be adapted to
OSI BASIC with only a change
of address. In the June and
July (84) issues of COMPUTE,
Jim explains the reason for
long delays in collecting
garbage strings. A number of
ideas are given on how to
avoid creating string garbage
in the first place. Building
up a string character by char
acter such as:

FOR X=l TO 64 : A$=A$ + n*"
NEXT X

is one of the worst offenders,
creating over 2K of garbage.
Such constructions are often
found in word processors writ
ten in BASIC.

Butterfield suggests avoiding
making garbage if possible.
Or, if you must make garbage,
do a local clean-up immediate
ly after. The idea is to
force a collection only on the
string you have just created
and not all the strings in
memory. Just before creating
garbage, move the top of BASIC
pointer down to the current
string pointer. All existing
strings are now outside of the
BASIC workspace and are ignor
ed by the garbage collector.
Then make the necessary gar
bage in building up the de
sired string and get rid of
this garbage by forcing a col
lection with FRE. The collec
tion will run very quickly
since there is now only one
valid string in string space.
Finally, restore the top of
BASIC pointers to continue
normally.

This technique becomes useful
when you have over 100 strings
in memory. with fewer strings
the collection delay is too
short to be a concern. Fol
lowing is an example program
using the local garbage col
lection modified for OSI
BASIC. Normally, this code
would be part of a larger

9

program. The address pointer
for ROM and DISK BASIC are
oifferent, so use line l~ or
2~ as appropriate.

5 REM USE LINE l~ or LINE 2~
but not both

10 BL=84 : BH=85 : SL=8~ : SH
= 81 :REM FOR DISK BASIC

2~ BL=85 : BH=86 : SL=81 : SH
= 82 :REM FOR ROM BASIC

3~
40 REM MAKE A LOT OF STRINGS

HERE
5~
l~~ AL=PEEK(BL) :AH=PEEK(BH)

REM SAVE TOP OF BASIC
ll~ ZL=PEEK(SL) :ZH=PEEK(SH)

REM SAVE STRING POINTER
12~ POKE BL,ZL:POKE BH,ZH

REM LCMER TOP OF BASIC
13~ FOR X=l TO 64
14~ A$=A$+"*n

REM MAKE GARBAGE
15~ NEXT
16~ Z=FRE(~)

REM FORCE LOCAL GARBAGE
COLLECTION

2~~ POKE BL,AL:POKE BH,AH
REM RESTORE TOP OF BASIC

* KEYBOARD MUSIC

By: Gerald M. Van Horn
64~ S. W.· Addison Ave.
Junction City, OR 97448

Some comments on the enclosed
program. Right now it is run
ning on DISK V 3.2, but it was
revised from ROM BASIC system
and, therefore, easily revis
ed. Just change POKE 2~73,96
in 69~ to POKE 53~,1 and POKE
2073,173 in lines 35~ and 1220
to 53~,~. It's not fancy, but
the kids should get a kick out
of it for awhile. You play
the upper two rows of the
keyboard as a piano keyboard.
The computer stores the notes
as H(S) and they can be played
back by pressing the space
bar. The computer also has
its own tunes randomly select
ed by the slant bar. _More or
other tunes can be added. By
storing the complicated num
bers required to calculate the
tones, I have numbered them
from 1 to 57. This makes it
easy to develop a tune.

This was developed on an 8K
machine and should run with 8K
if the songs are not too long.

1070 X=57IRETURN
1078 REM SAVE HOME MADE MUSIC
1000 IFH(S) ()XGOTOIl00
1090 RETURN
1100 P(S)=P
1110 6=5+1
1120 H(S)=X
1130 P=I
114~ RETURN
1150 REM PLAY BACK HOME MADE MUSIC
116121 FORA=ITOS
1170 N=F (H (A»
1180 I=INT(49152/N)
1190 POKE T,I
1200 FORL=IT035*P(A).NEXT

\~~% ~~~~~;1g~~~~~~;T7~:~~~1

10

KEYBOARD MUSIC
10 PRINT TAB (15); "PLAY MUSIC. G. VAN HORN"
20 GOSUll920
30 PRINT"JU5T PL.AY THE D ROW FOR MAIN NOTES AND THE NUMBER ROW
40 PRINT"FOR 5HARPS AND FL.ATS. TO REPEAT YOUR TUNE, HIT SPACE llAR
50 PRINT"4P PL.AYS A TUNE IF YOU HIT SLANT BAR (I>"
60 POKE 56832,3.T=57089
70 DIM F(57),P(255),H(255)
80 OIMG(255),L.(255)
90 REM LOAD TONES AS F(L)
100 FORL.=IT057.READF(L.).NEXT
110 X=0
118 REM PLAY THE NOTES
120 G05UB690
130 IFX=0GOTOI20
14" N=F(X)
150 I=INT(49152/N)
160' POKE T, I
170 GOSUll1080
18i1! GOTOl20
190 REM FILE OF THE TONES AVAILABLE TO COMPUTER
200 DATA 196.0,207.7,220.0,233.1,248.9
210 DATA 261.6,277.2,293.7,311.1,329.6,349.2,370.0,392.0
220 DATA 415.3,448.0,466.2,493.9,523.2,554.4,587.3,622.3
230 DATA 659.2,698.4,740.0,783.0,830.6,884.0,932.3,987.8
240 DATA 1046.5,1108.7,1174.7, 1244.5,1318.5, 1395.9,1480.0
.?50 DATA 1568.0,1661.2,1760.0,1864.6, 1975.6,Z093.0,2217.5
260 DATA 2244.3,2489.0,2637.0,2793.8,2959.9,3135.9,3322.4
270 DATA 3520.0,3729.3,3951. 1,4186.0,4434.9,4698.6,49152
280 REM SELECT COMPUTERS TUNE
.',90 E=INT (3*RND (I) +1) .ONEGOT0310, 490, 600
300 REM AND PLAY IT
31~ READA,FORY=ITOA,READX,P,N=F(X)
320 I=INT(49152/N),POKET, I
33~ FORL=3T075*P:NEXT
340 FORD=ITOI0,POKET,I.NEXT
350 NOTY.POKE2073, 173.STOP
360 END
370 REM YANKEE DOODLE

. 380 DATA 64
3'30 DATAll,2, 11,2, 13,2, 15,2, 11,2, 15,2, 13,2
400 DATA6, 2,11,2, 11,2,13,2,' 15, 2,11,4,10,4
410 DATAI!,a, 11,2, 13,2, 15,2, 16,2, 15,2, 13,2
420 DATAI1,2, 10,2,6,2,8,2, 10,2, 11,4, 11,4
430 DATA8.3, 10, 1,8,2,6,2,8,2, 10,2, 11,4
440 DATA6,3,8, 1,6,2,4,2,3,4,6,4
450 DATA8,3, 10, 1,8,2,6,2,8,2, 10,2, 11,2
460 DATA8,2,6,2, 11,2, 10,2,13,2, 11,4, 11,4
470 DATA57,4, 11,2,6,1,6, 1,8,2,6,2,57,2, 10,2, 11,5
480 REM YEL.LOW ROSE OF TEXAS
490 READB.FORY=ITOB.READG,L.NEXT.GOT0310
500 DATA 58
510 DATA13, 1, 11, 1, 10,2, 13,2,13,2, 13,2,15,2, 13,4
520 DATAll, 2,10,2,13,2,18,3,20; 1, 22, 6
530 DATA13,2, 13,2,22,2,22,2,22,2,22,2,20,4
540 DATA18,2, 17,2,18,2,20,2,22,2,20,6
550 DATA13, 1, 11, 1, 1121,2, 13,2, 13,2, 13,2,15,2, 13,2,13,3
560 DATAll, 1, 1121,2, 13,2, 18,3,20, 1,22,6
570 DATA13, 1, 13, 1, 13,2,23,2,23,2,23,2,23,2,22,2
580 DATA2121,3, 18, 1, 18,2, 13,2,22,2,20,2, 18,4,30,4
590 REM FOR THE SAKE OF AULD LANG SYNE
600 REAOC.FORY=ITOC.READM,O.NEXT.GOT0490.
510 DATA31
62121 DATA6, 1, 11,3,11,1,11,1,15,2
E30 DATA13, 3, II, 1, 13,3,15,1,13,1
640 DATAl1, 2,11,2,15,2,18,2,2121,3
650 DATA57, 1,20,2, lB, 3,15,1,15,2
6600AHH1,2,13,3,11,I,13,2,15,1
G"'/0 DATA13, 1, 11,3,8, 1,8,2,6,2, 11,4
680 REM LOOK-UP KEY DEPRESSED
L90 K=57088. POKE2073, 96, P=P+I. POKCI<, 2
700 IFPEEK(K)=128THENX=I,RETURN
710 IFPEEK(K)=2THENX=17.RETURN
720 POKEK,32.IFPEEK(K)=32THENX=15.RETURN
730 POKEK,16.IFPEEK(K)cI28THENX=3.RETURN
740 IFPEEK(K)=64THENX=5.RETURN
750 IFPEEK(K)=32THENX=6.RETURN
760 IFPEEK(K)=16THENX=8.RETURN
770 IFPEEK(K)=8THENX=10.RETURN
780 IFPEEK(K)=4THENX=12.RETURN
79~ IFPEEK(K)=2THENX=13.RETURN
800 POKEK,64.IFPEEK(K)=64THENX=14.RETURN
BI0 IFPEEK(K)=32THENX=16.RETURN
820 POKEK,128.IFPEEK(K)=64THENX=2.RETURN
030 IFPEEK(K)=32THENX=4.RETURN
840 IFPEEK(K)=8THENX=7,RETURN
A5~ IFPEEK(K)=4THENX=3IRETURN
860 IFPEEK(K)=2THENX=II.RETURN
B7~ POKEK,2.IFPEEK(K)=16GOTOI160
880 IFPEEK(K)=8GOT0290
890 IFX=0THENRETURN
89B REM 57 IS A REST IN YOUR TUNE
900 X=57.RETURN
910 REM PRINT OUT KEYBOARD
92" FORI=IT032,PRINT.NEXT
930 M=54538.N=161.0=32,R=161
~40 FORI=IT04.FORJ=0T029STEP3
950 POKEM+J,N.POKEM+J+I,O.POKEM+2+J,R.NEXTJ
960 IFI=2THENN=136IR=32
970 IFI=3THENN=209.0=128.R=128
980 M=M+64,NEXTI
990 M=M-64*4-I.GOSUIl1020.M=M+9,GOSUIl1020
1000 M=M+12.GOSUBI020.M=M+9.GOSUBI020
1010 M=M+65.POKEM+64,136.POKEM+64*2,136.RETURN
.1020 POKEM,32.POKEM+I, 136.POKEM+64,32.POKEM+65, 136,RETURN
1040 POKEK.2
1050 IFPEEK(K)=16GOTOI160
1060 IFPEEK(K)=8GOT0290

•

•

* •

•

•

•

TRY US!
WE MEAN BUSINESS

SC5/80·1 Computer System
With 1 Denver Board Multi Processor
Wired for 6 Users
Expandable to 14 Users $699000

For Each Add'i Multi
Processor User Add
$1,00000

• Includes Super
Utility Package

Plus our incredible new super system data base
manager. With brand new Disk Tech One, 2 year war
ranty on internal hard disk components. Beautiful
hand finished oak cabinet over steel frame. Instant
access to all components. Available with casters or
plastic feet

BEAUTIFUL AS WELL AS FUNCTIONAL

NEW CONTROLLERIINTERFACE!

The new 9590 Controller replac
es the OSI 590/525 set with 1 sin
gle board. Unlike others you've

$59900 seen, it works perfectly with OSI
or Denver boards, and all ver-

Quantity 1 sions of 65U
It is compatible with old Style 592 Interface

with 3 cable adapter, or attaches with single ribbon
cable to our new 9592 H.D. Interface Board. Unlike
others, our interfa(:e completely supports the readyl
fault indicator on the 80 meg. hard disk.

9592
Quantity 1 $26900

12 SLOT BUS

Fits standard OSI mount holes
can be connected in "Tn or daisy
chained by cable for expansion.

$7900

CLOSE OUT!
C3·0EM
2 MHzl56K*
With 6502 and zao
Processors
With Centronics
Pri nter Interface

While they Last!

$149900
'Includes 8K Exec Memory for CP/M
or Multl·User

• Buy for a Spare
• Add to a Spare H.D.
• Develop Programs

Spare 510CPU Board with Z80+6502 $16900

MULTI PROCESSOR!

COMPLETE 10

Boot
From Hard
or Floppy!

• 8" Hard Disk
• 8" Floppy Disk

$399900

Single user with Centronics par
allel printer interface expand
able to eight users.

Enclosed in table top cabinet as shown or mounted
in deluxe floor cabinet, as above left. Add $40000

10 meg. Subsystem WOW!

$199900
Add to any existing OSI
floppy based computer.

Just plug in one board and set this little
gem on top or next to your computer and
voila! Welcome to speed and convenience_
Completely self contained with power sup
ply. 9598 Hard Disk Controller also avail
able separately at $69900

DEALERS! If you're still alive, call us and ask about our aggressive new price
structure_ We'll send you an unbelievable spares price list.

SPACE-COM International
22991 La Cadena Drive, Laguna Hills, CA 92653 (714) 951-4648

11

MORE AND BIGGER DRIVES
FOR OSI

or
DON'T BU'l'CBER DRIVE -B-

By: Ron Rose
.Courtesy of OSMOSUS NEWS
Box 18801
Minneapolis, MN 55418

This simple modification to
the 47~ board and the Al2
(paddle board) will allow the
use of four single sided or 2
double sided drives. Also, it
is not necessary to modify the
drives in any way.

This scheme provides four dis
crete select lines, two of
which can be used as side
select for double sided
drives. The four lines are
provided by decoding the two
outputs (pins 8 & 15) of the
PIA (6821). The drive select
codes are as follows:

PIN 8

HI
LO
HI
LO

PIN 15

HI
HI
LO
LO

SELECT

A
B
C
o

I selected a 7442 as the de
coder (1 of l~) and mounted it
in the proto area at U6A,
connected +5V and ground, con
nected pins 12 and 13 to
ground, then made the follow
ing trace cuts:

Component side -

CUT 1- at w2 from pin 8 of PIA
(near pin 2~ of PIA)

CUT 2- AT W3 (.8" LEFT OF PIA
PIN 17)

CUT 3- AT W5 from pin 15 of
PIA (3rd trace above pin
11 of U4C)

On solder side -

CUT 4- at W4 between-pin 8 of
U4C and plated thru hole

CUT 5- at pin 11 of PIA

CUT 6- at pin 14 of PIA

If done properly, you will
have plated thru holes in
which to mount wire wrap pins.

Next make the following con-
nections:

Pin 8 of PIA to pin 15 of 7442

Pin 15 of PIA to pin 14 of
7442

Pins 3 and 11 of UIA to pin 1
of 7442 (DS4)

Pins 3 and 11 of U2A to pin 2
of 7442 (DS3)

12

Pins 1 and 13 of U4A to pin 3 drive A thru D. If you are
of 7442 (DS2) using the new OSI CP/M V2.25,

the drives must be configured
Pins 9 and 5 of U2A to pin 4 as suggested or you will not

of 7442 (DSl) be able to use a double sided
drive as 1 logical drive

The next step is to change the (57~K) •
Al2 board to conform to the
following list (only a few
wires need be changed, but it * is best to check all):

MOLEX CONNECTOR J2 5~ PIN DRIVE CONNECTOR

1 Head load ---------->
2 Low current ---------->
3 DSI ---------->
4 DS4 (new) ---------->
5 Step ---------->
6 Step in ---------->
7 DS3 (new) ---------->
8 Write enable ---------->
9 Write data ---------->

Ie Sep clk ---------->
11 Sep data ---------->
12 Ground ---------->
13 Ground ---------->
14 N/C
15 -9V
16 N/C
17 Index ----------->
18 DS2 ----------->
19 Write Protect ----------->
2~ Ready drive. 2 ----------->
21 Sector ----------->
22 N/C
23 Track ~ ----------->
24 Ready drive 1 ----------->
Note: Both pins 2~ and 24
J2 connect to pin 22 of
drive connector. If you
discrete ready lines, use
"radial ready" scheme in
drive manual. The sector
is necessary only if you
"hard sectored" drives.

of
the

wish
the

your
line
have

All of the "strapping" on the
single sided drives should be
the same as on your original
drive A with the exception of
the drive select jumpers, DSI
thru DS4. DSI is drive A etc.

Shugart 85~'s are jumpered as
shipped except as follows:

HL
BLL -
FS
Z
X
y

open
open
jumper
open
open
jumper

Move S2 jumper to S3 (allows
use of drive sel as side sell

Recommended:
Drive A should be jumpered DSI

and 4B

Dr ive B should be j umpered DS2
and 3B

The above jumpering sets C as
the other side of A and 0 as
the other side of B. Differ
ent combinations of DSn and nB
will allow you to configure
any surface as any logical

18 Head load
2 Write current
26 DSI
32 DS4
36 Step
34 Dir select
3~ DS3
4~ Write gate
38 Write data
5~ Sep clk
48 Sep data
all odd number pins
all odd number pins

(connect only if necessary)

2~
28
44
22
24

42
22

Index
DS2
Write protect
Ready (optional)
sector (optional)

track ~
Ready

OS65U INPUT TIPS FOR
VERSION 1.2 DIE-BARDS

By: Julia A. Goodman
412 2nd Street
Radford, VA 24141

Anyone who has attempted to
write a text input program in
OS65U BASIC (v.l.2) knows that
under normal conditions the
statement "INPUT A$" or "INPUT
%l,A$" fails to assign the ex
act input value to A$ in the
following cases: (Assuming
the input value is not begun
with the double-quote as a de
limiter.)

1. String contains comma or
colon.

2. String contains a leading
double-quote (as a character-
not as a delimiter.)

3. String is null, and user
wants to simply press RETURN
or ENTER.

4. String contains an under
line symbol.

5. String contains an "at
sign" (@).

6. String has leading spaces.

7. String
characters
III) •

has more than 71
(7~ under LEVEL

•

•

•

•

•

•

A solution to each of
above problems is given
with usage warnings and
siderations.

the
below

con-

It is assumed that the EDITOR
is enabled when the INPUT
statement is executed. Pre
vious PEEK(65) articles have
led this author to suspect
that not all Version 1.2 sys
tems have the EDITOR routine
located at the same address.
The solutions below have been
developed on OS65U (v.l.2)
with the EDITOR routine at
15155 (decimal). Your version
1.2 system is probably the
same if the following PEEK's
hold true:

PEEK (19243)
PEEK (19244)
PEEK (19268)
PEEK (19269)

is 51
is 59
is 51
is 59

(Note: 51 + 256*59

SOLUTIONS

15155)

1.TO ACCEPT COMMAS AND COLONS:

For INPUT AS and INPUT~
Use POKE 2976,13 for comma,
and POKE 2972,13 for colon.

Restore with POKE 2976,44 and
POKE 2972,58.

Caution: Restore before using
statements such as:

READ A$,B$
DATA JUDY,MARY

or A$
value
ERROR n

will be assigned the
nJUDY,MARY", and "?OD
will probably occur.

2. TO ACCEPT THE DOUBLE-QUOTE
AS A LEADING CHARACTER:

For INPUT AS and INPUT~
Use POKE 2979,9. Restore with
POKE 2979,7.

Note: This POKE does not af
fect the use of quot~s around
string constants ~n other
parts of the program--except
in DATA statements, where it
will cause the double-quote to
be treated as part of the data
value--not as a delimiter.

3. TO ACCEPT NULL STRING--BY
PRESSING "ENTERn OR "RETURN"
FROM KEYBOARD--OR FROM A NULL
STRING STORED IN A DATA FILE
(STORED SIMPLY AS A CARRIAGE
RETURN, ASCII 13):

FOR INPUT AS or INPU~
Use POKE 2888,9. Restore with
POKE 2888,27.

Caution: Assigns 9 to A when
INPUT A is executed.

Also prevents exit from prog
ram by null input regardless
of FLAG 21/ FLAG 22 setting.

Figure 1: Loader of Alternate Input Machine Language

10 REM FILENAME: LDINP 4/7/84
99 :
100 REM This program loads a machine language routlne at 2470()-24746
110 REM to be called instead of the OS65U routine at 1368 (decimal)
120 REM for execution of INPUT str-lngvar. or INPUT,. channel, stringvar-
199 1

200 FOR 1=247(10 TO 24746= READ X: POKE I,X; NEXT I
250 END
499
500 DATA 169,44,141,0,96,162,0,32,245,39,201,13,240,21,21)1,32.144,245
510 DATA 201,128,176,241,224,121,176,237,157,1,96,232,32,238,10,208
520 DATA 228,169,0,157,1,96,162,0,160,96,76,210,63

Figure 2: Hex and Assembly Code for Alternate Input Routine
I ML6 (47 BVTES)

LOAD AT 24700=124+256'96=$607C
Replacement input rtn. for 1368

BUFF=$6001
A9 2C · LOA #S2C STORE COMMA AT BUFFER-l
8D 00 60. STA BUFF-l
A2 00 · LDX #00 I BUFFER PTR.
20 F5 27: JSR $27F5 (NEXT) GET INPUT CHAR (IF CRT, GET ALL)
C9 OD CMP #$OD IF IT'S CR THEN END OF INPUT
FO 15 BEQ CR
C9 20 · CMP $#20 IF IT IS LESS THAN A SPACE DR
90 F5 · BCC NEXT GREATER THAN 127 THEN IGNORE
C9 80 · CMP #$80
BO Fl BCS NEXT
EO 79 CPX #$79 IF X)= 121 THEN FULL; IGNORE
BO ED BCS NEXT
9D 01 6(1: STA $6001,X STORE CHAR IN BUFFER
E8 • INX INCREMENT BUFFER PTR.
20 EE OA: JSR $OAEE SEND CHAR TO CRT
DO E4 BNE NEXT ALWAVS TRUE
A9 00 LDA #$00 (CR) STORE 0 AT END OF INPUT STRING
9D 01 60: STA $6001, X
A2 (10 LOX *.1)0 RETURN X.V = BUFF-l
AO 60 LDV #$60
4C D2 3F: JMP $3FD2 OS65U EXIT

Figure 3 : Skeleton Program for Extended

10 REM FILENAME: INP
20 •
30 REM Run under OS6SU v.l.2 with EDITOR enabled.
99 :

Input

417184

Applications

100 REM Skeleton program for input of any characters into string
110 REM variables from console or data file. Strings up to 120 chars.
liS REM The prompting question mark and space for console input is
116 REM suppressed.
119 I

120 REM Alternate input buffer at 24576.
130 REM Alternate input routine at 24700.
140 REM BASIC program begins at 24832 = 24576 + 256.
141
150 REM Use GOSUe 20000 just before input of strings; and GOSUB 21000
152 REM just after string input (or input loop).
153
1SS REM Between those two GOSUB·s, remember to use POKE 204,0 and
156 REM POKE 204,243: if leading spaces are eMpected in the input
157 REM values. No spaces in program between the two POKES on 204.
199
200 GDSUB 30000 .REM INITIALIZATIONS
399 I

400 REM ••••• 110 APPLICATION ••••••••••••••••••••••••••••••••••••••
401
849
895 REM ••••• END APPLICATION ••••••••••••••••••••••••••••••••••••••
e99 :
950 GOSUB 31000 :REM RESTORES
995 END
999
20000 REM --------- SUBRTN. TO CHANGE OS65U CALL TO INPUT LOOP----
20001 •
20100 POKE 9328,124: POKE 9329,96: POKE 8362,122. REM CALL OUR RTN.
20110 POKE 4926,0: REM GET VAR.LDCATOR TO RECOGNIZE DIFFERENT BUFFER
20120 POKE 15156,1. PDKE 15160,96: REM CHANGE BUFF. ADDR. IN EDITOR
20130 POKE 15322,120: POKE 15334,120. POKE 15365,120. POKE 15441,120
20140 POKE 15344,118. REM STRING MAX LEN L BELL RING POS. IN EDITOR
20195 RETURN
20999
21000 REM --------- SUBRTN. TO RESTORE OS65U INPUT LOOP --------------
21001 •
21100 POKE 9328,88: POKE 9329,5: POKE 8362,98
21110 POKE 4926,11
21120 POKE 15156,27. POKE 15160,0
21130 POKE 15322,70: POKE 15334,70: POKE 15365,70. PDKE 15441,70
21140 POKE 15344,68. REM STRING MAX LEN L BELL RING POS. IN EDITOR
21195 RETURN
21999
30000 REM --------SUB FOR INIT·S -------------------------------------
30001
30100 POKE 2976,13: POKE 2972,13: POKE 2970,0; REM FIX (, : ")
30110 POKE 15300,0: POKE 15308,0: REM FIX UNDERLINE L AT-SIGN,
3019(1 REM NEXT TWO LINES FOR NO PROMPT ON INPUT (NO "7 ")
30200 POKE 2898,234: POKE 2899,234: POKE 2900,234
30210 POKE 18166,234. POKE 18167,234. POKE 18168,234
30995 RETURN
30999 • Continued on next page

13

Note: Not needed when #7 below
is used for long strings.

4. ACCEPT UNDERLINE SYMBOL:

For INPUT A~
Use POKE 15300,0.
with POKE 15300,119.

For INPUT%l.AS:

Restore

No problem--underline is nor
mally accepted.

5. ACCEPT THE AT-SIGN:

For INPUT A~
Use POKE 15308,0. Restore with
POKE 15308,189.

For INPUTlL..A.ll
Use POKE 1392,0. Restore with
POKE 1392,225. Not needed for
data file input when #7 below
is used for long strings.

6. ACCEPT LEADING SPACES:

For INPUT AS and INPUTlL..A.ll
Use POKE 204,0 just before the
INPUT statement or short loop
containing the INPUT state
ment. Restore immediately af
ter INPUT statement, or short
loop, with POKE 204,243.

CAUTIONI CAUTION I CAUTIONl In
your program, there must be nQ
spaces between "POKE 204,0"
AND "POKE204,243" OR YOU WILL
GET A "?SN ERROR". Valid ex
amples of this "POKE":

100 POKE 204,0:INPUTA$,B$,T$
(I):POKE204,243: PRINT B$

500 POKE204,0:FORI=lTON:INPUT%
1,T$(I) :NEXTI:POKE204,243

501 PRINT T$(2): REM NOW IT'S
OK TO HAVE SPACES

7. ACCEPT STRINGS UP TO 120
CHARACTERS LONG: (Can be ad
apted for lengths up to 255.)

This one requires work--like
machine language I

The idea is to set up a dif
ferent buffer for the input
string since the buffer used
by 65U (at address 27,decimal)
cannot be extended without
clobbering part of the operat
ing system code. All referen
ces to that buffer address
during execution of a string
INPUT statement must be alter
ed to access our new buffer.

The procedure is given below.

7a. CREATE a BASIC file called
INP with size of about 5000
bytes. Also CREATE a BASIC
file called LDINP (load INP)
with the same size. LDINP
will be run to set up initial
contents of INP. The file INP
may be used as a starter file
for any program which needs to
input long strings which con
tain any printable ASCII char
acters.

14

31000 REM -------SUB FOR RESTORES OF INIT'S --------------------------
31001 •
31100 POKE 2976,44. POKE 2972,58, POKE 2970,7. REM RESTORE (,.")
31110 POKE 15300,119. POKE 15308,189. REM RESTORE UNDERLINE ~ AT-SIGN
31200 POKE 2898,32, POKE 2899,233. POKE 2900,10. REM RESTORE ?-SPACE
31210 POKE 18166,32, POKE 18167,236. POKE 18168.10
31995 RETURN
31999 •

Figure 4: Sample Application to Insert in INP

410 DIM T$(200), OPEN"FILEI",I
420 PRINT"ENTER TEXT LINES (ENTER •• TO EXIT INPUT I1ODE).
429 •
430 BOSUB 20000. REM ALTERNATE INPUT
440 FOR 1=1 TO 200
450 POKE 204,0.INPUTT$(I).POKE204,243. REM WATCH! NO SPACES
460 IF T$ (1) =" •• " THEN 500
470 NEXT I
471 •
500 BOSUB 21000. REM RESTORE NORMAL INPUT
SOl :
510 NL = I - I. REM NL=NUMBER LINES OF TEXT ENTERED
520 PRINT:PRINT:PRINT"TEXT ENTERED WAS,
530 FOR 1=1 TO NL, PRINT TS(I), NEXT I
531 :
540 PRINT,PRINT"NOW STORE TEXT IN DATA FILE 'FILEI'
550 PRINT7.I, NL
560 FOR 1=1 TO NL, PRINT7.I,TS(I). NEXT I. CLOSE
561 :
570 PRINT.PRINT"NOW READING AND PRINTING CONTENTS OF 'FILEI' •
5800PEN"FILEI",la INPUT7.I,NL
590 BOSUB 20000. REM ALTERNATE INPUT
600 POKE204,OIFORI=lTONL;INPUTX1,A.IPRINTA.INEXTI.PO~E204,243
610 CLOSE
620 BOSUB 21000. REM RESTORE NORMAL INPUT

7b. Reserve the beginning of
the BASIC workspace for our
longer input buffer and an al
ternate input loop by enter
ing:

NEW 256

Then enter the BASIC pro~ram
shown in Figure 1. The NEW
256" causes the BASIC program
to be stored at 24832 (24576+
256) instead of at the usual
24576. We will use 24576-
24699 as our input buffer;
24700-24746 to store an al ter
nate input loop in machine
language; and leave 24747-
24831 as free space for future
use (should you need it).
Enter: SAVE"LDINP

7c. Now, RUN the program you
have just entered from Figure
1. The program will read the
machine language routine from
the DATA statements at the end
of the program and store the
codes at 24700-24746. (The
Assembly listing of the alter
nate input ·routine is shown in
Figure 2.)

7d. If the RUN is successful,
SAVE your program into the INP
file. The 256 bytes reserved
in front of your program are
stored along with the program,
thus saving the machine lang
uage routine.

(In case the INP file gets
messed up, you still have
LDIND which can always be run
again to alter itself in the
first 256 bytes for storage as
a refreshed INP file.)

7e. Now that the necessary

machine language is hidden
away at the beginning of our
INP file, let's get rid of the
BASIC loader program, and
enter the rest of the necess
ary alterations as the BASIC
portion of the INP file as
follows:

LOAD"INP
NEW 256 <------ (Clears out
the BASIC part, but leaves
first .256 bytes intact I)

(Now, enter the BASIC program
shown in Figure 3.)

SAVE"INP

INP now
starter

contains
for any

Intl"OIhleinlr

a skeleton
program in

SCRIBE
WORD PROCESSOR

OS-66U 1.42< Floppy /HaJd Disk
Level 1 or Level 3

and DENVER BOARDS
*INTERFACED TO ~DMB FILES
*AUTOMATIC WRAP AROUND
*COMPLETE EDITING CAPABILITIES

FULL CURSOR CONTROL
INSERT" DELETE TEXT
SEARCH/SEARCH" REPLACE

*USER FRIENDLY MANUAL
*AND MUCH MOllE

ms OOMPUTER SERVICES
ROQtB 1 Hem 2D1B PartRepablic, VA 24471

(703) 249-4833

$195.00

•

••

•

•

•

•

which you want to INPUT all
kinds of character strings--no
delimiter quotes required.

Notice the extra POKES in
Subroutine 39999 to remove the
question mark and space that
are usually displayed for an
INPUT. Now the operator can
enter character il in position
il on the CRT.

SAMPLE APPLICATION OF
SKELETON PROGRAM

CREATE a BASIC file called 10
and a DATA file called FILE1.
LOAD"INP, change the filename
in Line 19 to "10", insert the
lines shown in Figure 4, SAVE"
10", RUN, and test by entering
lines such as:

ABC,DEF,GHI, ___ @@@
"LEADING QUOTE
OTHER QUOTES "AROUND THINGS"

OR 8" DISK LEADING SPACES
NEXT LINE IS NULL

LONG LINE ••••••••••••••••••••
••••••••••••••••••••••• • END
LAST LINE
Ii

The lines you enter, should be
printed back to you after you
enter ii to exit. Then they
are stored in the data file
FILE1, read back in and print
ed again. All lines should be
preserved exactly as you en
tered them!

CAUTIONS

Call Subroutine 21999 as soon
as possible after an input op
eration. If your program
bombs before 21999 restores
input to the normal buffer,
immediate commands go off into
the wild blue yonder because
the operating sytem doesn't
find them in the right buffer
-IF THAT HAPPENS, REBOOT AT
ONCE--YOU HAVE NO CONTROL OVER
THE MACHINE UNTIL YOU DO.

It is important to make your
program as foolproof as pos
sible when using the alternate
input routine to prevent ab
normal exits. Lock out CTRL/
C, for example. Check lengths
of filenames which are enter
ed. Limit length of numeric
values which are entered to
prevent OV errors. There are
ways to do those things, too.
Watch for those methods as
well as how to use INPUTi4 and
PRINTi4 and make the TAB key
work--in later articles.

* * * * * *
From the author
After countless hours of plow
ing through a disassembly of
OS65U, PEEKing, and POKEing,
reading PEEK(65), developing

the solutions listed above and
others, and applying them in
writing a word processor which
works under OS65U v.l.2 BASIC,
and finally, writing this art
icle--I looked up, as an after
thought, the word ~~
(see title) in the The Merriam
Webster Dictionary, 1974, and
found:

die hard \'di,hard\ n: one who
resists against hopeless odds.

Tell me about it!

*
COMBINED DIRECTORY UTILITIES

FOR OS-65D

By: Bruce Spainhower
4915 S.W. Canyon Rd.
Portland, Oregon 97221

I have used OS-65D ever since
expanding my C4P to a disk
system in 1989. I feel the
operating system has a number
of advantages, the main one
being the degree of control
the programmer has over disk
and memory access. One of the
other nice things about 650 is
that it begs to be improved.
It is ideal for the programmer
who enjoys the challenge of
improving software efficiency
like that of a good game of
chess. I have made several
improvements to the operating
system, mostly at the assembly
language level. But to start
with, I attacked the utilities
package that comes with 65D.
The result is the BASIC
program "DIRUTL" which com
bines the functions of DIR,
CREATE, DELETE, RENAME, &
ZERO. At the same time, I
have added a number of fea
tures which clean up the
operation of the program and
speed execution.

First, the directory is print
ed in true four column format,
i.e. entries are read top
down, not left right. The
full directory is displayed on
one screen and is never
scrolled off. After the di
rectory is printed, the user
is prompted for any changes.
All interchange between user
and program occurs on a single
line, so that the directory is
always visible. Also, a
single keystroke selects any
menu option. The directory
data is kept on the disk sort
ed by track· number. The
CREATE function actually does
an insert in the directory
while moving remaining entries
up. A DELETE repacks the
data. The corrected directory
is then re-displayed. Tracks
are initialized and zeroed at
the user's request. I used

the string concatenation trick
(lines 749,759) published in
PEEK some years ago to provide
the 3K of nulls in memory for
this function. The original
use for this is to build a
series of strings containing
blanks (ASCII 32) in the video
memory area as a screen clear.

The time required for any of
these functions is a fraction
(literally) of what the ori
ginal 650 v3.3 programs take,
even including the insert and
packing features. It func
tions equally well (excepting
the CLS) under 65D versions
3.2 and 3.3, both serial and
video. And, if typed in with
out spaces or REM lines, the
entire program fits on one
track of an eight-inch disk
(two on a 5-1/4 inch). So
what's the catch? Well, there
is one: the program requires
the directory to be sorted and
packed to begin with (you've
been meaning to do that any
way, right?). For that pur
pose, I have included the
short program "DIRFIX". Sim
ply run DIRFIX on each of your
existing 65D disks and you'll
never need to worry about it
again. I have been using
DIRUTL for nearly two years
now, and it has methodically
kept my disk directorie·s in
order.

Now for some details: In line
69, ES$ is defined. It is the
650 v3.3 video screen clear.
By defining the CLS as a
string, you avoid the problem
of losing the print extensions
in favor of the arctangent
function in BASIC. The screen
handling is always on line.
It is only the "!(xx)" con
struct that is disabled. So
use CHR$(27)CHR$(xx) instead

DISK DRIVE
RECONDITIONING
WINCHESTER DRIVES

FLAT RATE CLEAN ROOM SERVICE.
(parts & labor included)
Shugart SA4008 23meg $550.00
Shugart SA 1004 10meg 5450.00

Seagate ST412 10meg 5350.00

FLOPPY DRIVE FLAT RATES
8" Single Sided Shugart SI90.00
8" Double Sided Shugart $250.00
8" Single Sided Siemens D&E Series 5150.00
8" Double Sided Siemens P Series 5170.00

Write or call lor detailed brochure
90 Day warranty on Floppy & Large Winch.
1 Yr. Warranty on 5" & 8" Winchesters.

Phone: (4171485·2501

rfJ FESSENDEN COMPUTERS
116 N. 3RD STREET

s OZARK. 1'\0 65721

15

for reliability. ES$ is rede
fined in line 70 for a DEC VT-
52 terminal (the one I have at
work). Change this line to
conform to the serial terminal
you may be using.

In line 80, EL$ (erase line)
is defined. It consists of a
line of blanks preceded and
followed by carriage returns.
The purpose of this is to
allow a line erase without
scrolling. Line 370 inputs a
single character from the
console and returns its ASCII
value in the variable K.
Lines 380-450 input a string
without scrolling the screen.
Line 1613 is a compact way of
adding a printer to the out
put. And the POKES in the
disk I/O section keep the head
loaded during the entire time
of access to reduce disk drive
clatter. Line 2113 adds a
blank entry onto the end of
the directory data in memory
for the DELETE function.

Don't forget to change the
track numbers in the disk I/O
section if you are using a
5-1/4 inch system. You'll
also need to change the 76
(tracks) in line 650 to 39,
and the ",1=5400/C" statement
in line 770 to ",1=5400/8~.

Lines 220-290 print the four
column directory, dropping a
column each time a blank entry
is found. This speeds up the
display of the directory which
is severely limited by BASIC.
The "check for valid entry"
section scans the directory
data in memory and returns
with F% set to zero if the
requested entry is not found,
otherwise F%=l and D points to
the found entry.

While the CREATE section may
be a bi t hard to follow, its
basic function is to find the
first available space on the
disk large enough to hold the
requested file. Then lines
6813 to 700 perform the direc
tory insert and adj ust. Line
560 simply tests to see if the
directory is full and disal
lows a CREATE. The DELETE
section is essentially the
inverse of the CREATE, except
that no calculation is needed.
RENAME simply checks for valid
entry names, and performs an
overlay.

Each of the directory modifi
cation sections vectors back
through the print directory
section to update the data on
the screen. You also get a
second chance for another
directory on the way out in
case you are scanning several
disks.

16

1 REM
2 REM
3 REM
4 REM
5 REM
6 REM

OS-65D

7 REM - Setup
S REM

DIRECTORY UTILITIES PROGRAM vl.7
by Bruce Spainhower
4015 S.W. Canyon Rd.
Portland, Oregon 97221
(503) 222-2S2S x51

10 DEFFNA(X)=10*INT(X/16)+X-16*INT(X/16)
20 DEFFNB(X)-16*INT(X/I0)+X-I0*INT(X/I0)
30 B=204S0:L=35:U=100Sl
40 Q$=CHR$(34) :CR$aCHR$(13):H$="File Tracks
50 C$(1)="Create":C$(2)="Delete":C$(3)a"Rename
60 ES$=CHR$ (27) +CHR$ (2S) :DV\=PEEK(10950) :PRINT
70 IFDV\=lTHENES$aCHR$(27)+CHR$(72)+CHR$(27)+CHR$(74)
SO FORX=OT061:EL$-EL$+" ":NEXT:EL$-CR$+EL$+CR$
S4 REM
85 REM - Initial messages & prompts
S6 REM
90 PRINTESCRTAB(17) "OS-65D Directory Utilities":PRINT
100 PRINTTAB(21) "Which drive? ("CHR$(PEEK(9S20)+64)") ";
110 GOSUB370:IFK<650RK>6STHEN130
120 DISKI"SE "+CHR$(K)
130 PRINTEL$TAB(17) "Printer output also? (No) ";:GOSUB370
140 IFK<>S9THEN190
150 PRINTEL$TAB(20) "Device Number? ",:GOSUB370
160 PRINTCHR$(K),:POKES994,DV\OR(2-(K-49)):GOT0190
164 REM
165 REM - Disk 1/0
166 REM
170 POKEU,96:DISKI"SA OS,l-5000/1
ISO POKEU,169:DISKI"SA OS,2-5100/1":GOT0220
190 POKEU,96:DISKI"CA 5000=OS,l
200 POKEU,169:DISKI"CA 5100=OS,2
210 FORP=B+512TOB+517:POKEP,L:NEXT:POKEB+51S,O:POKEB+519,O
214 REM
215 REM - Print Directory
216 REM
220 PRINTESCRTAB(20) "OS-65D Disk Directory":PRINT
230 PRINTH$,:FORX alT03:PRINT" "H$,:NEXT:PRINT
240 FORX=OT061:PRINT"-",:NEXT:PRINT:Ca4S
250 FORY=OT015:FORX=OTOCSTEP16:PRINTTAB(X),
260IFPEEK((X+Y)*S+B)aLTHENC=C-16:GOT0290
270 FORE=(X+Y)*S+BTO(X+Y)*S+B+5:PRINTCHR$(PEEK(E));:NEXT
2S0 PRINTTAB(6)FNA(PEEK(E))"-"FNA(PEEK(E+l)),
290 NEXT:PRINT:NEXT:PRINT:POKES994,DV\:GOT0310
294 REM
295 REM - Prompt for changes & select
296 REM
300 FORT=OT02500:NEXT
310 PRINTEL$TAB(14) "Create, Delete, or Rename a file? ",
320 GOSUB370:C\aK-66:IFK.S2THENC\=3
330 ONABS(C\)GOT0560,7S0,S30
340 PRINTEL$TAB(20) "Another Directory? ",:GOSUB370
350 IFK=S9THENPRINTEL$;:GOTOI00
360 PRINTEL$;:END
364 REM
365 REM - Single key input
366 REM
370 DISKI"GO 2339":KaPEEK(9059) : RETURN
374 REM
375 REM - String input (enter at line 410)
376 REM
3S0 IFLEN(I$)THENPRINTCHR$(S)CHR$(32)CHR$(S);
390 IFLEN(I$)<2THENI$."":RETURN
400 I$=LEFT$(I$,LEN(I$)-l) : RETURN
410 1$="°
420 GOSUB370:IFKa13THENPRINTEL$;:RETURN
430 IFK<32THEN420
440 IFK=950RK=127THENGOSUB3S0:GOT0420
450 I$=I$+CHR$(K) :PRINTCHR$(K);:GOT0420
454 REM
455 REM - Check for valid entry in directory
456 REM
460 PRINTEL$TAB(20) "File name to "C$(C\)"? ";
470 GOSUB410:P$=I$
4S0 F$=I$:IFI$a"OTHEN3l0
490 IFASC(F$)<650RASC(F$»90THEN460
500 IFLEN(F$)<6THENF$=F$+" ":GOT0500
510 FORD=BTOB+504STEPS
520 FORE=OT05:IFPEEK(E+D)<>ASC(MID$(F$,E+l))THEN540
530 NEXT:F\=l:PRINTEL$;:RETURN
540 IFPEEK(D)<>LTHENNEXTD
550 F\=O:PRINTEL$,:RETURN
554 REM
555 REM - Create
556 REM
560 IFPEEK(209S4)<>LTHEN320
570 GOSUB460:1FF\.OTHEN590
5S0 PRINTTAB(14)QPQ$" is already in the directory",:GOT0300
590 PRINTTAB(16) "Number of tracks for "QPQ$" ";:GOSUB4l0
600 N\=VAL(I$) :IFN\(lTHENPRINTEL$;:GOT0590
610 FORD=BTOB+504STEPS
620 TE=FNA(PEEK(D+7)) :TB-FNA(PEEK(D+14))
630 IFTB-TE>N\THEN660
640 IFTBTHENNEXT
650 IF76-TE(N\THENPRINTTAB(21) "No room for °QPQ$;:GOT0300
660 PRINTTAB(5) "Space available beginning on track"TE+l;
670 FORH=B+504TODSTEP-S:IFPEEK(H)=LTHENNEXT
6S0 FORM=H+7TODSTEP-l:N=PEEK(M) :POKEM+S,N:NEXT
690 FORI=lT06:POKED+7+I,ASC(MID$(F$,I)) :NEXT
700 POKED+14,FNB(TE+l) :POKED+15,FNB(TE+N\)
704 REM
705 REM - Initialize
706 REM
710 PRINT"- INITIALIZE? ,
720 GOSUB370:IFK<>S9THEN170 Continued

•

•

•

•

•

•

730 PRINTEL$TAB(23)"lnitializing";
740 SL·PEEK(128):SH.PEEK(129) :POKE128,O:POKE129,96:S$=CHR$(0)
750 FORC=OT075:SS.SS.CHRS(0) :NEXT:POKE128,SL:POKE129,SH
760 FORI=TE.ITOTE.N\:TS·RIGHTS(STR$(I.I00) ,2)
770 DISKl"IN ".T$:DISKI"SA ".T$.",l.5400/C":NEXT:GOT0170
774 REM .
775 REM - Delete
776 REM
780 GOSUB460:IFF\THEN800
790 PRINTTAB(16)OSPSOS" isn't in the directory";:GOT0300
800 PRINTTAB(22)"Deleting "OSPSOS;
810 FORW=DTOB.511:V.PEEK(W.8) :IFPEEK(W).LTHENIFW/8=INT(W/8)THEN170
820 POKEW,V:NEXT:GOT0170
824 REM
825 REM - Rename
826 REM
830 GOSUB460:J=D-l:IFF'=OTHEN790
840 PRINTTAB(20) "New name for "OPOS"7 ";:GOSUB410
850 GOSUB480:IFF\THENPS=IS:GOT0580
860 FORW=lT06:POKEW.J,ASC(MIDS(FS,W)) :NEXT
870 PRINTTAB(18)OSPSOS" is changed to "OSISOS;:GOT0170

10 REM "DIRFIX" by Bruce Spainhower 7/8/84
20 REM
30 PRINT"DIRECTORY SORTER , PACKER FOR OS-65D
40 REM
50 PRINT:INPUT"Which drive ";DS:DISKl"SE ".DS:PRINT
60 REM
70 PRINT"Loading •••
80 REM
90 DIME$(63),T\(63) :DEFFNA(X).10*INT(X/16).X-16*INT(X/16)
100 B.20480:UL.I0081:B$.· •••••• ·.CHR$(0)+CHRS(0)
110 POKEUL,96:DISKI"CA 5000.08,1
120 POKEUL,169:DISKI"CA 5100.08,2
130 FORX.BTOB+504STEP8:IFPEEK(X).35THEN160
140 FORY=OT07:E$(C)·E$(C).CHRS(PEEK(X.Y)) :NEXT
150 T'(C)=FNA(PEEK(X.6)):C-C.1
160 NEXT:C-C-l:C'-C
170 REM
180 PRINT"Sorting •••
190 REM
200 C'.C'/2:IFC'-OTHEN320
210 A.O:B.C-C'
220 D-A
230 E-D.C\
240 IFT\(D)<T\(E)THEN290
250 T$-ES(D):ES(D)-E$(E) :ES(E)=TS
260 T'·T'(D) :T'(D)-T'(E) :T'(E)-T'
270 D-D-C'
280 IFD>-lTHEN230
290 A-A.l:IFA>BTHEN200
300 GOT0220
310 REM
320 PRINT"Saving •••
330 REM
340 DISKl"ME 5000,5000
350 FORX-OTOC:PRINT,5,ES(X);:PRINT.9:NEXT
360 FORX=CT063:PRINT.5,B$;:PRINT.9:NEXT
370 POKEUL,96:DISKI"SA 08,1-5000/1
380 POKEUL,169:DISKI"SA 08,2-5100/1
390 PRINT:INPUT"Another run ";YNS
400 IFASC(YNS)-89THENRUN50

OIRUTL has made life with 650
much more pleasant for me. I
hope that you will also find
it usef ul. You may al so find
some of the routines and
"tricks· useful in other prog
rams. Next time, I'll send
along a machine code directory
program which, while not as
sophisticated as OIRUTL, does

* TIME , DATE FOR OSI

and

SOLVING 'mE OSI IRQ PROOLEM

By: L. Z. Jankowski
Otario Rd 1, Timaru
New Zealand

The OKI MSM5832RS clock chip
has been available for about 3
years. It provides a 12/24
hour clock, date with leap
year corrections, and a soph-

fit within OS-650. It gives
you a disk OIR command in
place of the original 650
sector DIRectory command in a
direct byte-for-byte code
replacement. It is compatible
with v3.2, v3.3, and all of
the enhanced versions of 650
which don't already use the
sector directory code space.

* isticated Interrupt-provision
capability. Added attraction
are the CMOS low-power package
and low-cost implementation.
A clock card suitable for OSI
computers could be put to
gether for about $38. An
example of one design is the
Tasker Bus clock-card, the
clock chip receives its data
via a 6821 PIA and the OSI 16
line I/O bus. The diagram
shows how one side of the 6821
PIA is interfaced to the MSM
5832 clock chip.

It's a good idea to take PIA
pin 34 to the RESET line.
This guarantees that the clock
will keep running when the
<BREAK> key is hit. Other
wise, hitting <BREAK> may
coincide with HOLD being high,
and the clock will stop. If
the clock stops for more than
one second, it loses time.
With RESET, zeros are written
to the PIA registers starting
the clock again.

The software presented in this
article consists of two parts:
a BASIC program to set the
time and date and to test that
the hardware is functioning
correctlY1 an Interrupt-driven
machine-code program that puts
the time and date on the
screen. Both programs assume
that the hardware is arranged
as shown in the diagram. The
BASIC program is not affected
by the exact nature of the
Interrupt configuration.

The 5832 chip puts out 4
reference signals on 08-03
when CS, READ and A8-A3 are
all high and HOLD is low. For
08, the 1824Hz signal is not
dependent on HOLD input level.
Anyone of these four signals
can be sent to the PIA so that
the PIA, in turn, can issue an
Interrupt signal to the cpu.
The obvious choice is the ref
erence signal from 01, a pulse
every second. This signal is
routed to one of the PIA con
trol line.s.

Deciding which control line to
use will depend on the type of
PIA Output required, if any.
The source code listing as
sumes control line CB2 will be
used. If CBl is required,
then make the following change
in the source code:

line 458 - change 'LOA #$8C'
to 'LOA #$85'.

If CAlor CA2 are to enable
Interrupt output, then change
line 388 to 'LOA #$85' or to
'LOA #$8C', respectively, Line
458 woUld now have to be
changed to 'LOA #$84' and line
548 would become 'LOA PIA'

The machine-code program can
be entered either at TOGGLE
(toggles clock on/off) or at
INIT. If you are running
HOOKS, consider adding the
command 'K·' which takes a
jump to TOGGLE. Having such a
command at hand is extremely
useful saves typing
'OISKI"GO F55A"' or some-such
likel Do not be tempted to
remove line 548; reading the
PIA at this point is essential
to its correct functioning
the read clears the PIA
Interrupt flag. Also, the

17

jump in line 1040 is essential
if the 5832 is to be read cor
rectly. The 5832 is a rather
slow CMOS device. CPU speed
does not affect the accuracy
of the clock or the associated
software.

It is advisable to turn the
clock off when accessing disk
- reading is OK, but writing
to disk will freeze about 1
time in 10.

For DOS 3.2, change line 600
in the BASIC listing to:

600 DISKI"GO 252B" :
Y$=CHR$(PEEK(9815))
Y=VAL(Y$) :RETURN

SOLVING THE OSI IRQ PROBLEM

OSI put the IRQ vector in the
stack, at $01C0. To be at all.
useful it needs to be moved.
I put mine at $F7FD. To do
this, it is necessary to make
a new Monitor using an EPROM
programmer. In the Monitor,
change two bytes at $FFFE and
$FFFF - from $C0 and $01, to
$FD and $F7, or whatever.

But what about all that soft
ware that uses $01C0? No
problem. From BEXEC* (BASIC),
poke up the values for $4C C0
01 to $F7FD, F7FE and F7FF, or
to whatever the new IRQ
address is. For example:

5 REM New IRQ at $F7FD=63485

10 X=63485 : POKE X,76: POKE
X+l,192: POKE X+2,1

Any software that
use $01C0 will be
so - via the new
address which now
JMP to $01C01

now wants to
able to do

IRQ vector
contains the

A more elegant method of writ
ing the three bytes is to do
so from the Monitor.

In my Monitor, at $FF40, there
is a JSR to $FFBA, i.e. 20 BA
FF. This is the code which is
waiting for a 'D/E/W/M'. So,
at $FF40 substitute the add
ress of the following patch.
(In my case the patch is at
$FB23, so I write at $FF40
20 23 FB). Add to the patch
the JSR to $FFBA and finish
off with an RTS.

PATCH

$FB23 LDA #$4C
STA IRQ
LDA #$C0
STA IRQ+l
LDA #$01
STA IRQ+2
JSR $FFBA
RTS

Continued on next page

18

LISTING 1
10 PRINT! (28) ,REM CLS OSb5D3.3
20 PRINT ,PRINT TAB lib) "===- 12/24 HOUR CUICK --" .PRINT • PRINT
30 ,
40 PIA = 5043b , REM .C304
50 ;
60 DIM CR(12), T(b), 0$(6) ,FOR C~O TO b cREAD DS(C) ,NEXT
70 DATA Sunday,11onday, Tuesday,Wednesday, Thursday,Fridav,Saturday
80 ,
90 PRINT"O" yllu wlsh to READ the ti&e ? ""OOSU8600 IIF V" ... MY .. THEN 410
100 :
110 REM Get time & dAte
120 GOGUB 630 ~PRINT! (28):.PRINT"Close slI'IIitch on Clock chip Write line.
130 PRINT :!NPUT "Year (eg. 84) ";T(b)
140 INPUT "Month "; T(5) : INFUT "Dav "; T(4)
150 INPUT "Hour ";T(2) :.INPUT "Minute "';T(1) :T(3)=0
IbO PRINT ,PRIIH"24 Hour Clock? "; :OOSUIlbOO ,PRINTY. ,PRINT
170 IF V$="Y" THEN T(3) =8 ,GOTO 190
180 PRINT"PM. ? ";=GOSUllbOO ,IF V.="'{" THEN T(3)=4 ,PRINTV.
190 PRINT :F'RINT"Day of ... eek (Sunday=O) ? ";:GOSU8600 ;CR(6)=Y ;PRINTY
200 PRINT :PRINT"'Leap Year IY/N) ? u;:GOSUilbOO ,PRINT V$.LV.=V.
210 ,
220 REI1 F,dl array with time/data data
230 CRIO)=O :CR(I)=O ,T=I
240 FOR R=2 TO 12 STEP 2 ,IF R=b THEN R=7
;!50: CRIR)=T!Tl-IOUNT<T<Tl/IO) .CRIR+l)=INT<T(T)/IO)
260: T?T*t :IF T=3 THEN T=4
270 NEXT :Cf< (5) ==CFH5i+TCS) :IF L.Y.gUY" THEN CR(S)=CR(S)"'4
290 :
300 REM WRITE the tiRis &: date.
310 POKE PIA,I5 ,POKE PIA+I,4 ,POKE P1A+2,95 .POKE PIA+3,4
320 POKE PIA+;!,lb , REM Pull HOLD high
33v FOR R=O TO 12
340: POKE PIA,R :POKE PIA+2,CR(R)+60 IREM Pull HOLD • WRITE high
3~O: PO~E PIA+2,CR(R)+16 :REM Wrlte 'data ~ pull WRITE low (&trabe)
360 NEXT :PRINT ;PRINT aPhU"r"Re .. dy tar GO! ? '"IIGOSUBbOO
380 POKE PIA,O :POKE PIA+2,O
390 :
400 REM READ the time It: date.
410 PRINT! (28) :PRINTTA8(IB) "",,-=== Ft:ead the Clock ==z,u,,":PRINT:PRINT
420 RH=48 :z=o :1=12 :F=15 :GOSU8 630
4~0 POKE PI,Z:i:;; :POKE Pl1-I,4 :POKE Pl":.!,240 :POKE PI+3,4
440 P$="am. U ,PO"EPl+2,RH ,REM Pull READ .. HOLD high
450 FOR X=l TO I :POKE PI,X ,CRIX)=PEEKIPI+2) AND F ,NEXT
4bO POKE PI';!,O :POKE PI,O
470 H=10*(CH(~) AND 3).CR(4) :M=lO*CR(3)+CR(2> ;S=10*CR(1)+CRCO)
480 MO=IO*CRII0)+CR(9) .DM=IO$ICRIB) AND 3) +CR(7) ,V-IO*CR(12)+CRIII)
490 IF CR (5) AND B THEN P.="··
500 IF eR(3) AND 4 THEN P.="pID.··
510 ,
520 REM Write t~me & d.te to &cre.n.
530 PRINT :PRINT :PRINT " HR a HI ; 55'" TAB(21) "110 I OM I VR U

540 PRltIT ,PRINT H ",.' M ", •• 5; P. TAB(20) NO "I'· DI1 "I" V ,PRINT
330 DV,.=D.ICf«b» ,PRINT ,PRINT"Todav i" uDV. ,PRINT
5bO PRINT,PRINT"'Again? ··"OOSUBbOO ,IFV.-'·V" THEN PRINT!12B) ,GOTO 440
570 PRiNT ,END
:;00 :
590 ~EM Get a ~ey
bOO DISK! ··GO 233b" ,V.-CHR.IPEEKI9039ll ,V-\lAL.IV.) .RETURN
blO ,.
6~O REM keset PIA
b30 POKE PIA+I,O :POKEPIA,O ,POKEPIA+3,O ,POKEPIA+2,O ,RETURN

6821 PIA to "'51'\ 5832..
+5v

(t~/OK.a. ~ Ii
:~

!!..1.1l.
lO-
II
12,-

:Z3 -
Llfo
].6

11>

2-
3
110

5

PS-~
~

2-
.:3
If
5
4-

PA-~
J.
2.
.3

C62 lq --
3'1-- R£S£'f

37-'-- :t R~8

EIR

~~ ~

It
5"1'

~

,...----- !..l1f. 0; ,
C J. --- 10
02. 11
D3 --12-
J.lOLD--ll
REAf)-3
IJR IT£ - 2..

Ar; -- If
R:1--5
R2---6
R3 7

C5 ,

Li1

Listing 2
on next
page

•
/

•

•

•
(7

" 0 /7
u

0

'"

•

•

10
20
30
40
:;0

bO
70 F55A
80 C504=
90 DOF71;1

100 F7FD=
110 0041 a

120
130 F55A 48
140 F55B ADbEF5
150 F55E FOIO
IbO

;

ItSI1 5832 24 HOUR CLOCK • DATE PROGRAII
by LZ JANKOWSKI.
Time Ir data displayed on screen.
This program assumes pulse
to CB2 (PIA) - but &R8 line 450.

• = SF55A
PIA - SC504

SCREEN ... SOOF7
IRQ a SF7FD

Scraan L~ Bvte.

TOGGLE PHA

;

LOA SWITCH
BEQ KIlN

·LISTING 2
620 F585 AOOB
b30 F5B7 A200
640 F589 20FAF5
b50 F5BC 99F7DQ
bbO F5BF BB
670 F5CO A93A
bel) F5C2 COOl.
690 F5C4 FOFb
700 F5Cb C003
710 F5ca FOF2
720 F5CA EB
730 F5CB EOOb
740 F5CD DOEA
750

LDY 8a Read TiDe loop.
LOX .0

READ JSR LOOPI
5TORE STA SCREEN,Y

DEY
LDA ."3A
CPY .0
BEQ 5TOf<E
CPY 13
BEQ STORE
INX

CPX Ib
&HE READ

LDY .SLOB Read Date loop.
LDX .10

170 F5bO 78 KOFF GEl Di &Abl .. IRQ.

7ao F5CF 0041
770 FSOl A20A
780 F5D3 C041/
71/0 F5DS FOIA
BOO FSD7 20FAFS
810 FSDA I/I/F7DO
820 FSDD C8

READ2 CPY .SLOB.a
180 F5b1 AI/OO
11/0 F5b3 8D07CS
200 F5bb 8DObCS
210 FSb9 8D6EFS
220 F5bC DB
230 F5bD bO
240
2SO F5bE 00
250 FSbF 00
2DO
270 FS70 EEbEFS
280 F573 A94C
290 F57S 8DFDF7
300 FS78 ADI8Fb
310 FS7B 8DFEF7
320 FS7E ADICFb
330 FS81 8DFFF7
340 FSB4 A900
3S0 FS8b 8DOSC5
3bO F509 A9FF
370 FSBB BD04C5
380 FSBE A904
390 F590 aOO5C5
400 FS93 A900
410 FS95 BD07C5
420 FS9B A9FO
430 F51/A 8DOae5
440
450 F51/D A90C
4bO

;

LDA tIO
STA PIA+3
STA PIA+2
STA SWITCH
PLA
RTS

SWITCH .BYTE SO,SO

I
KDN INC SWITCH
INIT LOA .S4C Load IRQ vector.

STA IRQ
LIlA LOtH
STA IRQ+I
LDA LOHI+I
STA IRQ+2
LOA.oo ConfiQura PIA port A.
·STA PIA.I
LDA .SFF
STA PIA
LOA .S04
STA PIA+l
LOA .00 ConfiQure PIA port B.
STA PIA+3
LOA .SFO
STA PIA+2

830 F5DE A92F
840 F5EO C043
850 F5E2 FOFb
8bO FSE4 C04b
870 F5Eb FOF2
8110 F5I:8 CA
81/0 F5E9 EOOb
900 F5EB D002
910 F5ED A20C
920 FSEF DOE2
930
940 FSl"='l 2VIOF6
950 F5F4 60S
9bO F5F5 AB
970 F'5Fb 611
I/BO FSF7 AA
990 FSFB b8

1000 FSF9 40
1010
1020

IJEQ OUT
J5R LOOPI

PUl STA SCREEN,Y
INY
LDA .S2F
cpy ttSLOS+2
BEQ PUT
CPY .5LOB+5
BEQ PUT
DEl
CPX eb
&HE GO
LDX 112

lID lJNE READ2
;
OUT JSR RUPT

F·LA
TAY
PLA
TAX
PLA
RTl

tD ~B32 - read data. ; wri te address
LOOP 1 STX PIA

JSRRETURN
LOA PIA+2
AND .S3F
CPX .5
BEQ DAN
CPX .a
&HE BACK

Wri te address.
Waste ti_.
Load data.
HOLD/READ/15 only.
24/p .. I

Leap yaM". 470 F51/F BD07C5
480 F5A2 20lOFb
41/0 F5AS b8

STA PIA+J
JSR RUPT
PLA

1030 F5FA 8E04C5
1040 FSFD 20A7F5
1050 FbOD ADObCS
lObO Fo03 293F
1070 Fb05 EOOS
1080 Fb07 F004
101/0 FoOl/ EOOD
1100 FbOB D002
1110 FbOD 21/33
1120 FoOF DO
1130

DAN AND .S33 HOLD/READ/3 only.
500 F5Ab 58 CLl EnAble IRII. BACK RTS
510 F5A7 DO
520

RETURN RTS
I

I
1140 , Ene1e pulse frDCD D4t on ~32.

530 F5AB 4B CLOCK PHA 1150 FblO AI/OF
llbO Fbl2 8D04C5
1170 FblS A920
1180 Fbl7 8Doae5
11 I/O ·FoIA 00
1200 FolB ASF5

RUPT LDA 115 Pull addre55 lin8& high.
540 F5A9 ADObCS
550 F5AC SA
5ao F5AD 4B
570 F5AE 1/8

LIlA PIA+2 Clear PIA Interrupt fIAQ.
TXA
PHA
TYA

STA PIA
LDA .32 Pull READ high.
STA PIA+2
RTS

580 F5AF 4B PHA LOH I • WORD CLOCK
51/0 FSBO AI/30
bOO P.iB2 BDOae5
blO

LIlA "30 Pull HOLD • READ high.
STA PIA+2

References:

OKI MSM5832RS data sheet, 6592 Assembly Language Programming by L. Leventhal, pages 11-15 etc.

ED:

* LETTERS

I have been asked by Ian
Mutch, Brisbane, Australia, to
attempt to document for PEEK
readers the modifications and
details of changes to D & N
Micro Products to allow them
to Run at -

2 Mhz operation with option
for WAIT line.

Multi-user High order address
line operation.

2716 EPROM in lieu of 2798
(old 3 supply type).

and generally tidy up a few
items that are potential trou
ble spots.

*
Let me start by saying that
the D & N 1695 CPU and Floppy

. controll er wor ks as specif ied
without change and so does the
1699 (OSI 555 Jungle Board =).
However, while the 1699 board
will extend an OSI system that
has a 519 or similar CPU
board, D & N does not have. any
combination of boards to allow
you to build up a Multi-user
system or to upgrade a non 519
style system. But as sup
plied, the 1699 board is an
excellent board for the addi
tion of printers and bit of
RAM. So, too, is the 1695
board ideal as an upgrade to a
floppy system. However, a lot
of problems cropped up in
putting together a working
system, Let's tackle the 1695
CPU/Floppy Board.

The 1695 board as supplied has

*
provision for a 6592 CPU at 1
Mhz. A Serial Port at $FC99
as #1 (RS232 levels). An OSI
Floppy Disk controller, A 3
supply 2798 EPROM, and a Moto
rola Baud rate generator I.C.
for the Baud rates (switch
selectable) for #1.

The 2798 EPROM just had to go.
Difficult to buy, difficult to
program, and not compatible
with other OSI style monitors
that are available. The cir
cuit details are shown in Fig.
1. D & N emulated OSI in de
coding the top three (as
required) pages of memory OR
ing them to provide the EPROM
CS (Chip Select). This pre
sented a bit of a timing prob
lem and in any case because
the #1 port is at $FC99, you
would only ever want the top
three pages, i.e.,$FD,$FE, $FF.

19

A 2716 device is 2K of ~!emory.
So, consider that address line
AlB normally on pin 21 con
trols whether we address the
upper or lower lK out of the
device, i. e., if AlB is a
Logic B, then we will address
data in the lowest part of the
2716. If AlB is a Logic one,
then we address the upper lK.

Logically then (no pun) if we
jumper connect pin 19 to eit
her B (ground) or 1 (+5) then
we can select one of two dif
ferent programs within the
2716. By ensuring that the
correct pages in the EPROM are
programmed, I was able to have
a video based monitor in the
lower part of the EPROM, and a
flick of a switch to change
pin 19 to Logic 1 allowed me
to have a serial based monitor
in the upper part. A table
appears as Table 1 to show how
the pages of the EPROM are or
ganized.

The Motorola Baud rate genera-
,tor 1. C. (1411) and 1.832 Mhz
crystal pair cost, back in
late 1982, about $25 if you
could find a supply. As we
were using the 555 board on
some systems and the D & N
l6BB board, I simply used line
13 on the backplane to extend
a selected baud rate onto the
bus from the l6BB board. Fig
2 shows how. Cut a trace to
disable the generator line on
the l6B5 board and connect the
#1 Tx and Rx clock to line 13.
This freed up about 4 square
inches of board space where
the BIR gen' was located. In
Australia that's 5Bx5Bmm., not
very big as Australia goes,
but enough room to install a
small piggyback printed cir
cuit board that has a WAIT
state controller on it. The
circuit for this is Fig 3.
Simply a WAIT circuit as used

Continued

FO

~ Fe

I FF

FE

FI

$ Ft

J>I\~~

7

•
5

t
:.

I 2

I

~

TABLE 1

<O~

Rf5fT i/Ecrot$

'" '"
(IIIMD 1)1$/1{
, ~oT

FUJP,'f ~a;~Tf}4P

NoT u!o6.o

FU.l.wln 1Mn 'FF"

-'lE)'ET" vft'1O/ll\
mo ,

(SutEiu])11V/A,/

F~""" tJoorlrlMP

ijcrr OSlO
F,u W.TWllImI"FF··

1

...

,~

________ ~ 2 b~b of O~'I. "".\to., ,~~.J,'"
~\oe ".'" lRQ uu.J.,.. ui Deoo

--"'~

"PIN 2,1 ~ '(J"

(~.,)

/IIOio Sy,rr,.."

FIG.l

~. FfFE .~;
FFF(*J>8

TABLE 2

DELETE
R25 - R33
R35 - R34
Rl5,l6,17
R22,23,24
Rl8 - 21
ALL 47B ohms

Vlt ·urz.

ON ':l'l":j\e",~ "'lIT" 540 VI\)'i:O (lpA\'l..O'S

E'~;" ';u'r L..1"6. -\1 0'" ~""&. 5"\-0 ~At.O ot U')IQ."

DIJ:F~i\~...".. ~"'[V.QI.,.n.",c;, \.3") p,)..I NlJ"""~e

Rt\J\~f.O LtP.c.un' FO!\.. 21'"

,
;.- P'"",v 'BAl.':! ~OAlI..r. MOI)"",,;O 11-.'

I "PL.I\<.'; OF un d VI CII:Vi~l.

r';)/roo.(.\l.f~
.(0.- EIl~ ~CVV'(e.:l

CHPlI-lbE.S 11:) (.. IV£: 2~\lL Or~G..Al1Ol.\ \,1),,1-\ 1",,'111. lj~ITl""I"'t.. \ '\

t W'IT ''''1\ \

FIG.3 FIG.2

20

•

•

•

•

•

•

on this and many other non-OS1
system detects a Logic con
dition (Logic B) on a Bus line
that is generated by some
device while it is being se
lected. OS1 allocate line 1.
When this line is detected as
going low, it causes a 74LS3B
to change state, the output is
driven to Logic 1 which in
turn causes a 74LS76, which
before was dividing only by 2,
(4MHz to 2MHz) to now divide
by 4 down to IMHz for the
duration of the "Wait" line
being low (Logic B). The cir
cuitry is arranged so that no
bumps are added during switch
ing from 2 to 1 MHz. This al
lows us to use slow devices on
the system. For example, in a
Multi-user mode we could use
an on Hand memory card that is
normally only reliable at IMHz
as a not very busy user. Then
use a newer but more reliable
Card (probably more expensive)
at the full 2 MHz for a busy
user. Obvious advantage is to
save money when upgrading to
Mul ti-user.

ribbon cable to the disk
drives is terminated with
lSBohm resistors at the last
physical drive. All manufac
turers recommend OPEN Collec
tor drivers from the Con
troller (i.e., CPU end) onto
the lines. This allows typi
cally up to IB feet of line at
optimum performance. OSI use
7417 O/C bus drivers with
47Bohm pullups on each line.
D & N used 74LS367 bus drivers
(they have provision for tri
stated outputs but not used
here) with 47B ohm resistors.
While the 74LS367 is an ex
cellent device it just could
n't drive the 47Bohm and
lSBohm in parallel reliably.
Also, the address buffers use
74LS367 with 47Bohm resistors.
OSI terminate each bus line on
their motherboard with 47Bohm
too. Again, as the number of
boards in a system (multi
user) increased, we ran into
reliability problems. Partic
ularly on a 17 slot OSI back
plane as it has 47B ohms
resistors at each end of the
bus lines that made 3 x 47B in
parallel. A simple fix was
just to leave the 47Bs of the
D & N board (see table 2).
Also, the 74LS367 are NOT open
collector devices so pullup to
Logic 1 by themselves.

couple of gates out of package
U28 (a 74BB). This allowed me
to wire up and generate a new
signal onto the backplane on
Pin 41. This is called R/w
RAM (i.e., Read/Write RAM).
This rel'1ov·es reliabiiity tim
ing problems on static memory
cards. The simplest way to
use it is to cut the normal
Pjw line as it goes into the
static memory cards and con
nect the board onto the new

OS)
• repa.r8

C-2, C-3,& CD Series
200 Series

.board level service on:

.power supplies

.S"floppydrlves

.cpu,memories, etc.

.gold molex contacts

.custom printer cables
(1 w.ek turnaround typical)

Sokol Electronics tnc.
474 N.Potomac St.
Hagerstown, Md. 21740

The 16BS had (in my opinion) a
couple of design errors which
caused bus loading problems on
some systems. I did discuss
these with D & N who agreed
that some pullup resistors may
cause problems, but (I agree)
only under certain conditions.
Let me explain, - normally the

One added bonus of rearrang
ing the 27B8 was to free up a

~i (301) 791-2562

From Gander Software, Ltd. The Ultimate Personal Planner

TIME & TASK PLANNER
30 DA Y FREE TRIAL IF NOT SATISFIED. FULL REFUND UPON RETURN

• "Daily Appointment Schedule" • Work Sheets for all Aspects

• "Future Planning List" - sorted • Year & Month Printed Calendar
• "To Do List" - by rank or date • Transfers to Daily Schedule

A SIMPLE BUT POWERFUL TOOL FOR SUCCESS

Put the two most effective success techniques to work for you - every day of every year. Justlive to ten minutesa day allows your
mind and dreams to take charge of your life.

Set Your Goals: To reach a goal. you have to know where you are going. Just enter your goals or futureappointmenls and let your
computer remind you.

Set Your Priorities: Success depends upon doing first things first. Assign priorities (1-99) to your "To Do" list, let the computer
keep them ranked by date or priority, and then get to work. When the time comes, the computer will help you transfer ilems 10 your
choice of time on the daily Appointment Scheduler.

Technicalities - Appointment Scheduler: 18 time slots per day (you define) for 60 days. To Do List: 60 items ranked by date or
priority. Future Planning: 60 long range items, date sorted; days to event or days overdue. Transfer to Scheduler: just tell it the
date and time. Printed Calendars: Year on a page and one month box planning; any month, any year. System uses both Julian and
Gregorian calendars to handle dates from 1910-2399 and produce day of the week. Screen and menu driven; OMS Keybase com
patible files. Detailed 38 page manual. Simple installation; FD to Multi HD. Files for 5 users"5.400 appointments. Unlimited Wallanty.

HARDWARE: 48K OSI, 8" floppy or hard disk, serial terminal system,
OS-65U v. 1.3 or later.

FEATURES: package allows configuration to ANSI standard and
almost all non-ANSI terminals, AND user specification 01 printer port.

PRICE: $300,00 (User Manual, $25.00, credited toward TIP pur·
chase). Michigan residents add 4% sales tax.

DEALERS: Your inquiries are invited. This program should be on
every 65U machine, including your own. At dealer prices, you could

:::~::o;~:~:::;;,.o~.~ed.
3223 Bross Road
"The Ponds"
Hastings, MI 49058 "It Flies"
(616) 945-2821

21

line in lieu of the R/W. This
is very beneficial to getting
operational NMOS and CMOS 48K
RAM cards on 051 17 slot back
planes. Also, I found by
using a storage Oscilliscope a
difference in timing for the
51~ board and other CPU
boards. The result in prac
tice was that the 51~ board
would work sometimes with CMOS
6116s, never reliably with
NMOS equivalents and hardly
ever on a 17 slot backplane
with either devices. The ad
dition of a 22 pf capacitor at
pins 13 - 11 of U12 will
improve crystal oscillator
starting. I lay no claim to
the R/W RAM signal idea as
both Rockwell and Synertec
take great pains to point out
the special need of such a
line for static memory de
vices. I would certainly wel
come comments (crits) from any
others on this matter, in
particular from any ISOTRON
designers (nee OSI).

I anticipate that this letter
runs off at the mouth a bit
(my sty.le) so I will carry the
description of the 16~~ (555
I/O) board over into a second
letter. The second install
ment will cover a description
of the hardware needs and
operation to implement multi
user operation, and the meth
ods to do this with D & N
products. If we all hold
together, I will round off the
story with my own product
description, (unsolicited) of
a CPU I/O do-all board that I
have available for the 48 line
bus that uses CMOS memory for
4 x 2K of RAM, 6 serial ports,
Centronics Printer, CPU, full
4K of MONITOR ROM with port
masking, 16 Pin I/O bus, OKI
fllSM 5832 CMOS clock battery
supported, and pagination to
allow on board BASIC-IN-ROM
(in a 2764) or other utilities
to swap with the upper 8K of
48K RAM with software control.
All hardware 1~0% 051 compat
ible.

David Tasker
Tasmania, Australia 7303

* * * * *
ED:

I was glad to see the review
of OOS/65 in the July and
August issues of PEEK. In
general I have no specific
argument with the review,
however, I would like to add a
few comments.

1. DOS/65 has now been adopted
by Rockwell as the standard OS
for their products. In con
juction with Rockwell, the
system has been ported to the
Rockwell Design Center and is

22

being ported to the AIM/65 and
System 65 by Rockwell. In the
long run I expect that more
DOS/65 compatible software
will now be availablel

2. The system has been used
with hard disks and provides
exceptional performance and
capability. In my main de
velopment system (not an OSI
machine), I have two eight
inch dr ives, two f ive- inch
drives and a 19 megabyte Win
chester organized as two logi
cal dev ices.

3. For the most part 005/65
files are also compatible with
CP/M 2.2. As the reviewer
points out, the problem with
OSI is their very non-standard
disk controller (same with
Apple) that does not allow
diskettes to be interchanged.
If MODEM.ASM is used for file
transfer over a serial line,
the files can be interchanged
with any CP/M system.

4. I have implemented Micro
soft BASIC for the system. I
have been unable to get
Microsoft to listen to me and
hence cannot yet distribute it
as part of the package or as a
stand alone option. If that
log-jam is broken, I will let
all DOS/65 users know as soon
as possible.

5. The lK to 16K block length
is a function of the Disk
Control Block (DCB) that is
under user control. For all
distributed systems it is lK
but can be altered if desired
by the user. This kind of
change is most useful for
those having hard disks.

6. The problems reported by
the reviewer are being invest
igated. The problem with
FILESTAT is probably a problem
with duplicate array dimen
sioning in FILESTAT and not a
problem with BASIC-E/65 it
self. The reason for the AR
not working is not understood
but will be checked. The
compile-time option problem
with BASIC-E/65 has been fix
ed. EXP will be added to the
BASIC-E/65 documentation if it
is missing.

7. I agree that two drives is
really a much better system
configuration than one drive.

Thank you for the review.

Richard A. Leary
Micro Systems Technology
Norristown, PA 19401.

* * * * *

ED:

Recently I was reviewing the

baud clock circuits used in
the Challenger series, and
decided to design a better
one. The short cut, I fig
ured, would be to use a single
dedicated baud-rate generator
IC. One look at their price
tags, however, quickly changed
my mind.

So I fetched my pocket cal
culator and began dividing
various crystal frequencies.
The results are illustrated by
the enclosed schematic. A
number of mail-order IC deal
ers sell the 1.8432 mhz crys
tal for about $5. This is the
single most expensive part,
but it's about half the price
of most baud-rate generator
chips.

BAUD RATE
GENERATOR

OSI/ISOTRON
MICRO COMPUTER SYSTEM SERVICE

"C2 AND C3 SERIES

"200 AND 300 SERIES

"FLOPPY DISK DRIVES

"HARD DISK DRIVES

CD 7/23/36/74

"TERMINALS, PRINTERS, MODEMS

"BOARD SWAPS

"CUSTOM CONFIGURATIONS

"CUSTOM CABLES

"SERVICE CONTRACTS

PHONE (616) 451-3778

COMPUTERLAB, INC,
307 MICHIGAN ST, N,E,

GRAND RAPIDS, MI. 49503

•

•

•

•

•

•

The divider chain uses off
the-shelf TTL chips whose
total cost should be less than
the cost of the crystal. As
shown, all of the baud rates
are right on the nose, except
for the lIB which works out to
an acceptable lB9.

If any of' your readers have
had any experience with the
Exatron Stringy Floppy tape
storage system, I'd like to
correspond with them.

Bruce Showalter
857 Cedar
Abilene, TX 796Bl

* * * * *
ED:

I recently acquired an OSI
computer and am now a regular
subscriber to PEEK(65). My
problem is I have what must be
an odd model, CO 8 S OF, for
which I haven't seen anything
written. It looks much like a
C 8 P OF but, I understand,
the S is for serial, it does
have a serial terminal as
device 1. How do I relate
program listings and adver
tisements for hardware and
software to my model? Would
games run on a serial termi
nal? what about PEEK and POKE
locations?

Two specific questions. How
can I get into money mode on a
data field in OMS? I have the
9/79 version of OS-OMS
Nucleus, updated by Ron Fial.
If money mode is not possible,
then would I be able to enter
leading spaces in order to
justify a column to the right
when entering dollar amounts
in a data field? I thought of
using a dollar sign and then
spaces, but I thought this
might mess up the statisti
cal part of the report writer
when totaling the figures.

Another question, I've seen
ads for 6502A and 6502B chips
(2 and 3 Mhz) and wonder if it
is possible (or advantageous)
to replace my 1 Mhz unit with
either of these? What would I
need to change besides the
chip and the crystal? I have
two lMhz memory boards and one
2 Mhz memory board.

I understand that one way to
"pay" for help is to help
others. I'm so new I haven't
much to offer, however, I have
written a program that calcu
lates look-angles to syncro
nous satellites, if anyone
would be interested.

Dwight Finger
Anchorage, AK 995B4

Dwight:

Your CD 8 S OF is a new one to
us too, but that doesn't mean
you are not right. As you
say, it's probably just the
serial version of the C8P OF.
As such, anything written for
the C2-0EM (22B) and up,
should be on target, program
wise. In short, anything ,writ
ten for OSI serial machines.
Only those PEEKs and POKEs
addressing video vs serial
terminal systems would change.

We don't know what Ron has
done to OMS, but generally
speaking, money mode is not
available. With customizing,
it could be added to the re
port writers. Adding leading
spaces won't help - they are
truncated. $ __ lB.BB will make
the columns look right, but
you are in trouble for totals.
All OMS entries are strings.
For OS65U see page 14, item 6,
this issue.

2 Mhz will double your CPU
speed, but you must make sure
that your memory will handle 2
Mhz too. Have the 1 Mhz
boards checked. Many of the
chips may pass the 2 Mhz test.

Let's hear more about "look
angles."

Peek Staff

AD$

C-2 OEM (2 cases), dual 8"
drives, 48K RAM, serial &
parallel ports, printer inter
face, RS-232 for terminal, 650
3.3, 65U 1.42, OS-OMS Nucleus,
Sort, Planner Plotter, A/R,
A/P, G/L, Inventory I, Inven
tory II, Payroll, Purchasing,
Query, Education, OS AMCAP
Small Business Accounting Sys
tem, WP65B2 Word Processor, DO
Mail, Plot Basic, Home Control
- $18 BB. BB. C-2 converted to
C3-Sl (2-cases), Dual 8"
drives, 56K RAM, SIB 3 Pro
cessor 2 Mh CPU, Centronics
Parallel Port, Diablo Parallel
Port, 5 serial cluster ports,
RS-232 for terminal or con
figure for multi-user, same
software as above - $2lBB.BB.
UCSO PASCAL/FORTRAN system
$2BB.BB, extra boards and much
software - send S.A.S.E. for
complete list. Thomas Tech
nical Service, RO 11, Box 135,
Linden, PA., 17744. (717)
398-1893 evenings.

* * * * *
FOR SALE: C8P complete system,
two 8-inch disk drives (ss),
48K, Zenith green monitor,
Centronics printer 1779, all
manuals, OS-6SD V3.2, OS-6SU,
WP6SB2, DO-MAIL, SARGON II,

OS-DMS SOF'l'WARE, GMIES, DISKS
and other software. $75e firm.
In Maryland (3el) 263-l56B.

* * * * *
'OSI C2P single disk not work

ing DOS GSD V3.2, $300 or best
offer. D. Starshine, 1025 N.
Rodney, Helena, MT 59601,
(406) 442-5720.

* * * * *
Send for free catalog, Aurora
Software, 37 South Mitchell,
Arlington Heights, IL 6BBB5.
Phone (312) 259-4e7l

* * * * *

Good prices on collection of
OSI equipment and accessories.
Send SASE for complete list.
Ricky Peterson, 2B6 Pine
Valley, Warner Robins, GA
31093.

* * * * *

FOR SALE: 1 - C3A 48K computer
with dual sided 8" disks
(1.2MB). 1 - C20EM 48K com
puter with dual sided 8 n

disks(1.2MB). Various software
and manuals to go with both
systems. Phone 3e3-384-9B3B
or 383-384-4221 ask for Danny.
Write Tra-Sta Data Systems,
Box 427, SWink, CO 8lB77.

* * * * *

FOR SALE: C28P-MF, 48K, 2MHz,
RS Lineprinter 1, 65D3.3,
Planner Plus, OSI WP3-l, $650.
C3 w/Hazeltine 1500 w/o
drives, $400. Sanyo 7.5 MHz
RGB Monitor & modified 540,
$400. For details call Craig
Borst (616) 399-3109.

* * * * *

OSI 35e JJ 6 User Computer
with 2 8B Megabyte Hard Disc
Drives. Bought in 1983.
$14,BBB. Also, 4 visual 5B
green screen CRTs at $45B
each, NEC Spinwriter 773B with
tractor $2,B5B, NEC Spinwriter
7718 with tractor $1,888. All
basically new. Also, a C3-0EM
Computer $1,888. Feel free to
make offers. Call Ron at
1-589-248-7512.

* * * * *

FOR SALE: OSI C3-B with dual
single sided 8 inch floppy
disks, 74MB hard disk, Cen
tronics 782 parallel printer
(and interface), (4) 48K user
ports, and (2) Hazeltine l5BB
CRTs. Various software pack
ages included. Make an offer.
We will consider a trade for
IBM PC or PC compatibles. Call
or write: Lee D. Hoffmann,
FEECO International, Inc.,
3913 Algoma Road, Green Bay,
WI 54382, 4l4-468-lBBB.

23

.EE IIII BULK RATE
U.S. POSTAGE

PAID
Owings Mills, MD
PERMIT NO. 18

The Unofficial OSI Users Journal

P.O. Box 347
Owings Mills, Md. 21117

'"

24

DELIVER TO:

, ..
i\ ' ..

,",.. ~-'- .

. _. = .~ . '0-

.~. ':'" : ,

PEEK (65)
P. O. BOX 347

OWings Mills, MD 21117

-.-. ' .. '

Subscription rates for 12 issues (one year), effective with the July, 1981
issue. All rates quoted in U.S. dollars. Due to U.S. bank surcharges, all
funds payable to PEEK (65) must be in U.S. Dollars and be drawn on a U.S.
Bank or be an International Money Order.

Please fill out and return with check or money order.

U.S. (Maryland residents add 5% sales tax)
Canada and Mexico'. 1st Class Surface.
South and Central America. Air Mail.
Europe. Air Mail.
All other. Air Mail.

$15.00 Enclosed.
$23.00 Enclosed.
$35.00 Enclosed.
$35.00 Enclosed.
$40.00 Enclosed.
$27.00 Enclosed. South & Central America, Europe & all other. Surface.

NAME •••••••••••••••••••••••••••• STREET •••••••••••••••••••••••••

CITY •••••••••••••••••••••••••••• STATE •••••••••••..••••••••••••

ZIP CODE •••••••••••••••••••••••• COUNTRY ••••••••••••••••••••••••

Please send the following back issues. I enclose:

$2.00 ea. U.S. Surface. (Maryland usident.s add 51 sales tax.)
$2.50 ea. Canada and Mexico. Surface.
$3.00 ea. South and Central America. Surface.
$3.00 ea. Europe. Surface.
$3.50 ea. All other. Surface.

Vol 2. 1261
JAN n) FEB 112 MAR 113 () APR 114) MAY 115 JUN 116
JUL 117) AUG 118 SEP 119 () OCT no) NOV #11 DEC #12

-,1",- ~Q1 J. 126~
JAN n) 'FEB #2) MAR #3 () APR 114 MAY 115 JUN 116 .
JUL 117) AUG #8') SEP #9 () OCT no NOV 1111 DEC #12

~gl ~. 126J
JAN n FEB 112 MAR 113 () APR 114 MAY 115 JUN 116
JUL #7 AUG #8 SEP #9 () OCT #10 NOV #11 DEC #12

~gl 5. 126~
JAN n FEB 112 MAR #3 () APR 114 MAY #5 JUN #6
JUL #7 AUG #8 SEP #9

INDEXES ARE INCLUDED IN THE JAN. & DEC. 1981 AND DEC. 1982/3 ISSUES

.,'

•

••

