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Abstract. The classical version of simulated annealing is based on a cooling schedule. Generally, the initial
temperature is set such that the acceptance ratio of bad moves is equal to a certain value xo. In this paper, we first
propose a simple algorithm to compute a temperature which is compatible with a given acceptance ratio. Then,
we study the properties of the acceptance probability. It is shown that this function is convex for low temperatures
and concave for high temperatures. We also provide a lower bound for the number of plateaux of a simulated
annealing based on a geometric cooling schedule. Finally, many numerical experiments are reported.
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Introduction

Simulated annealing is a general probabilistic local search algorithm, proposed 20 years ago
by Cerny [3] and Kirkpatrick et al. [10] to solve difficult optimization problems. Many large
instances of practical difficult problems were successfully solved by simulated annealing
(see, e.g., [2, 7-9)).

To use a simulated annealing algorithm, one has first to define a set of solutions, generally
large, representing the solutions of an optimization problem. Then a neighborhood structure
is defined. To find a good solution we move from a solution to one of its neighbors in
accordance to a probabilistic criterion. If the cost decreases then the solution is changed and
the move is accepted. Otherwise, the move is accepted only with a probability depending on
the cost increase and a control parameter called temperature. Classically, the probability to
accept bad moves, i.e. moves with increase in terms of cost, is high at the beginning to allow
the algorithm to escape from local minimum. This probability decreases in a progressive
way by reducing the temperature. The method used to decrease the temperature is generally
called cooling schedule. The performance of the algorithm strongly depends on the choice
of the cooling schedule and the neighborhood structure.

Many theoretical papers focused on an optimal cooling schedule (see, e.g., [1, 4, 6, 12,
13]). One of the most important results may be the proof of optimality of a logarithmic
cooling schedule given in Hajek [6]. However, the number of iterations needed to guarantee
to find of a global optimum is generally very large (see, e.g., [1]). The transition probability
P;; from state i to state j is defined as the product of a generation probability G;; and an
acceptance probability A;;.



370 BEN-AMEUR

The acceptance probability considered in this paper is the one defined by Metropolis

[11]:
E; —E; . .
A;j = exp - ifE; > E and A;; =1 otherwise (D

where T is the current temperature and E; (resp. E;) is the energy of state i (resp. j).

A state is a solution of an optimization problem and energy is the cost function that has
to be minimized. We indifferently use energy and cost to designate the same thing.

We also assume that the homogenous Markov chain representing the simulated annealing
at a given temperature 7T is irreducible (i.e. all states can be reached from any other state
with a positive probability) and aperiodic (see, e.g., [1]). These conditions are generally
satisfied.

If we assume that the generation probabilities are symmetrical (G;; = G ,55)’ the stationary

exp(— )

distribution is nothing other than the Boltzmann distribution: ; = > o)’
j EXP= 7

Another generation strategy that is commonly used is given by

G, = iNo TIEND @)
0 else

where N(i) is the set of neighbors of i. The stationary distribution is then given by

NGl exp (- F)
E;

= (3)
> ING)lexp (=)

As previously said, one of the most important properties of simulated annealing is its hill
climbing feature. This is achieved by accepting some increasing cost moves. Consequently,
the average probability of accepting these moves is very important to evaluate the ability
of simulated annealing to escape from local minimum.

This acceptation ratio strongly depends on the temperature. To allow the simulated an-
nealing to find good solutions, one has to carefully compute the initial temperature. This
parameter plays an important role in simulated annealing, but is of course only a piece of a
large puzzle. This paper will focus on this initial temperature and some other properties of
the acceptance ratio.

Many methods have been proposed in literature to compute the initial temperature Tj. It
is suggested in Kirkpatrick et al. [10] to take Ty = A Enax Where A Eqax 1s the maximal cost
difference between any two neighboring solutions.

Another scheme based on a more precise estimation of the cost distribution is proposed
with multiple variants (see, e.g., [1, 16]). It is recommended to choose Tp = K 0020 where
K is a constant typically ranging from 5 to 10 and 0020 is the second moment of the energy
distribution when the temperature is 00. 0 is estimated using a random generation of some
solutions.
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A more classical and intuitive method is described in Kirkpatrick et al. [10]. It consists
in computing a temperature such that the acceptance ratio is approximately equal to a given
value xo. First, we choose a large initial temperature. Then, we have to perform a number of
transitions using this temperature. The ratio of accepted transitions is compared with xo. If
it is less than xo, then the temperature is multiplied by 2. The procedure continues until the
observed acceptance ratio exceeds xo. Other variants are proposed to obtain an acceptance
ratio which is close to y. It is, for example, possible to divide the temperature by 3 if the
acceptance ratio is much higher than y,. Using this kind of rules, cycles are avoided and a
good estimation of the temperature can be found.

Another procedure is proposed in Johnson et al. [7, 8]. Temperature is obtained using the
formula 7o = — 5 nA(fo 5 where AE is an estimation of the cost increase of strictly positive
transitions. This estimation is again obtained by randomly generating some transitions.
Notice that — mf;m)’ where §; is the cost increase induced by a transition #, is the temperature
allowing this transition to be accepted with a probability xo. In other terms, 7o = — %
is the average of these temperatures over a set of random transitions.

Finally, note that to accelerate the simulated annealing, a heuristic is sometimes used
to find a good initial solution. Then, simulated annealing is applied with a low initial
temperature (see, e.g., [5, 7, 15]). An algorithm is provided by Varanelli [15] to compute
an initial temperature such that the expected cost of the best solution that can be found at
this temperature is approximately equal to the cost of the solution given by the heuristic.

A new algorithm to compute the initial temperature is given in this paper. The algorithm
is fast and accurate. It is presented in next section. The convergence is proved in Section 1.
Some other properties of the acceptance probability are presented in Section 2. Many
numerical experiments are reported and commented in Section 3. Finally, some concluding
remarks are given in Section 4.

1. An efficient algorithm to compute the temperature

The initial temperature is often chosen such that the acceptance probability is approximately
equal to a certain value, for example, 0.8 (see, e.g., [1]). Let ¢ be a strictly positive transition
and let max, (resp. min,) be the state after (resp. before) the transition. As we assumed
that the transition is strictly positive, then Enay, > Emin,. To simplify notation, we use §; to
designate the cost difference Enax, — Emin,- Using the generation strategy (2), the acceptance
probability is given by:

1 $,
> ive TTmi —-GXP(__’)
t positive **MiN: | N (min,)| T

“4)

. 1
Zt positive T min, |N (min,)|

Note that ”minzw(nll—inm represents the probability to generate a transition ¢+ when the
energy states are distributed in conformance with the stationary distribution (3). Moreover,
exp(—‘%‘) is the probability to accept a positive transition ¢. Thus, x(7') is the conditional
expectation of the acceptance of positive transitions.
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We will use an estimation X (7") of this acceptance probability based on a random set S
of positive transitions. ¥ (7T') is defined as follows:

¥ e 5 Tomin, Ty ©XP (—7)
ZteSﬂmi“r\N(n]]—inm

. D ics€Xp (_%)

Yresexp(=55)

Now, let us assume that we are looking for a temperature 7y such that y (7y) = xo where
Xo € 10, 1[ is the wanted acceptance probability. We will propose a simple iterative method
to compute such a temperature. In fact, we will consider % (7') instead of x (7). First, we
randomly generate a set of positive transitions S. This can be done, for example, by gener-
ating some states and a neighbor for each state. The energies En,y, and Epiy, corresponding
with the states of the subset S are stored. Then we choose a value T} for temperature. T
can be any positive number.

T, may be far from 7. To find Ty we use the recursive formula

In((T,)\ 7
Ty =T,| ——— . 6
41 < 1n(x0) ) (6)

where p is a real number > 1.

When j (T,,) becomes close to xo we can stop: T, is a good approximation of the wanted
temperature 7.

Please note that we use at each iteration the energy values previously stored. In other
words, we do not have to generate new transitions.

Before proving the convergence of our procedure, let us give a summary of the whole
process. € denotes a small real number (e.g., 1073).

x(T) =

®)

Computing the temperature of simulated annealing

Step 1.

(a) Estimate the number of samples || S| needed to compute j (7).
(b) Generate and store ||.S|| random positive transitions.
(c) Set T at any strictly positive number and set n = 1.

Step 2.
Zr es exp(— Enrllr:x, )

Z,esexp(—lq';%).
() If [%(T) — xol < €, return T,.

(a) Compute ¥ (7T,) =

Otherwise
In(R(T,))\ L
= Ty = Tu(HES)
-n=n-+1.

— go to Step 2(a).
End.
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Steps 1(a) and (b) will be discussed later.
As said before, the value of T can be any strictly positive number. However, to slightly

accelerate the whole process, we compute 7} using the formula given in introduction Johnson
[7, 8]:

T, =

_ Zzesst

. 7
I S1I In(xo) @

In the rest of this section, we first prove under some assumptions the convergence of
the algorithm described above. Then we give some remarks about the sampling procedure
needed by the algorithm.

1.1. Algorithm convergence

2 1
To show the convergence of the algorithm, we will prove that 7 — T(%)F is a non
decreasing function and 7' — % (7T') is a strictly iPcreasing function. This means that Tj is
a unique fixed point of function 7 — T (BXTNy5 and min(Ty, T,) < Tor1 < max(Ty, T,).

N 1 In(xo)
Notice thatif T — T(%)F is anon decreasing function when p = 1, then it will have the
same behavior for any p > 1. This can be seen by computing the derivative of the logarithm
. S T B 4 ¢5) o 1,1 _ %M
of this ~functlon. T+ » XORGT)" If we assume that %' (T)=0, then T+ > WG
clearly increases when p increases. Therefore, we will focus on p = 1.
Before giving the proofs of the wanted results, we will present an hypothesis that will be

used to simplify calculation.

Hypothesis 1.1. We assume that the energy levels E,, and the cost differences &, of the
set of transitions S are independent.

More precisely, given a temperature 7, we assume that the positive transitions are gen-
erated in conformance with the equilibrium distribution. As we focus here on S, we con-

sider the conditional distribution where the probability to generate a transition  is given

Tmingy TN (ming)| . . .
by =—————9—. It is natural to assume that there is no correlation between {8;, Ein, }
21 e s Tming [N (ming)|

and {3;, Emin;} where i and j are two transitions of S obtained by independent trials in
conformance with the conditional equilibrium distribution. However, in Hypothesis 1.1
we also assume that Eny,, is independent with ;. This assumption is less easy to under-
stand. In fact, it depends on the distribution which is related to temperature. Said another
way, even if it is valid for some temperatures, it will be invalid for others. Note how-
ever that we do not need this assumption to be strictly satisfied. The convergence of the
algorithm is obtained in almost all cases when p =1. Moreover, it can be ensured by
increasing the value of the parameter p. More details will be given in the end of this
subsection.
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Lemma 1.2. Assuming hypothesis 1.1 is valid, then we have

Zz ,jeS|i<j exp( M)(Eminf - Eminj)(exp (_BTI) — €Xp (_BT/))

Zi,j cs CXp (_%)81

Proof: Let L (resp. R) be the numerator (resp. denomlnator) of the ratio g1ven in the
lemma. We want to show that £ = O In fact, L is nothing but 3 Y, jesexp(— m'"’ )
(Emin,- - mm )(CXP(——) - GXP(——’))

Moreover using formulas 3 and 2, the expectation of (Emm, — mlnj)(exp(— L)—
eXp(——’)) is given by, E((Emin, — Emin, )exp(—%) — eXp(——’)) li,j€S)= 21 cs

exp(— mm’ ) eXp(——)
X ((Emin; — Yexp(—2) — exp(—2))). Note that we
D kes eXp(—— D kes€Xp(— mmk) « miny _mm/)( p( T) p( r 2
used here the fact that the transitions of S are independent. We obtain

(l;eXp( m‘“k)>2E<(Emm,. - Emm/)(exp <—6?l>
en())]re3)

On the other hand,

mmk )

I
@
>
o

(_ mnj)zexp< max,>8
Jjes ieS

2 (") ]

min €x - : i

(Zexp( /)) Z P TEminv exp(—;)si
jes ies Y jesexp (=)

2
(Son( 55 sfen( £
jes T

Combination of the previous expressions related to L and R leads to

1 E((Emin, = Ewin,) (exp (%) —exp (-2)) | i,

2 E(exp(—%)s;i|ieS)

)

L
R
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Now using Hypothesis 1.1, one can deduce that

E((Emin. - Emmv)(exp (—ﬁ) —exp (—8—’)) i,je S)
! g T T
= E(Emin, — Enin, |i, je€ S)E(exp <—8—l> — exp <—8—/>
! ! T T

i,jeS)

Finally,
L 1E(Emin, = Emin, | i, jeS)E(exp(=%) —exp (=F) |ij )
R 2 E(exp(—2)s: |i €S)
=0
which means that % =0. O

Note that it is possible to build a particular small example for which both Hypothesis 1.1
and Lemma 1.2 are not valid. However, our experimental results (Section 3) show that the
algorithm works very well in practice, and the convergence is obtained in almost all cases.
More details will be given in the end of this subsection.

Proposition 1.3. Assuming Hypothesis 1.1 is valid, then the derivative of % (T) is given
by:

Proof: Let us calculate 3'(T).

%'(T)

Emax Enin Emin, Emax
(Z[ss Emax, eXp (77’))(2_/'6587(13 (* 7 )) - (ZieS Emin, exp (7#))(2/555"1’ (7 T ))
Enin \\?
TZ(Z; es €Xp (—T))
Emax; +Emin
Z,‘_‘/ exp (7 - T . )(Emax, - Emin,)
2 Ewin, \\?
T (Z[dexp (_ T ))
mm Emm/ + 6 )
) 2
Ermax; +Emin
Enin, = Enin, ) + . exp (=227 ),
2
TZ(Z s eXp ( ,,,,,, ))
Emi +E Y Emax; +Emin
Z,<]exp( )(Emm - mm)(CXP<—A—)—CXP<—TJ))+Z”CXP( T J)‘Si

) 7 (Lo (-5)

—
o]
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Using Lemma 1.2, the previous expression becomes:

Emux[ JFEminj )81

D exp (——7

T2( X csexp (_Em%))z
_ LZieseXP (_%)85
o Ziese"p(_@)

(1) =

O

Please note that even if Hypothesis 1.1 is not valid, we can be satisfied with a small value
of the ratio % of Lemma 1.2 to obtain a good approximate value of 3'(T).
Proposition 1.3 tells us that §'(T) > 0. To finish our proof of convergence, we have to

show that T — T l‘}(nfg))) is a non decreasing function.

Proposition 1.4. Assuming Hypothesis 1.1 is valid, then (T In(}(T)))’ <O.

Proof: Derivative of T In(} (7)) is given by In(x(T")) + T ’;((TT)) .

Using expression (5), one can write:

L Sen(-5)
x(T) > csexp (— E;" )

! - D icsXPp (_ E;)GXP(ST)
x(T) Dics€Xp (_ E,;ax, )

Emax;
exp (— =+ 8;
_ Z p( TELX,- exp(;)
)

ies Zjesexp(—

Emay;

By concavity of logarithm, one can deduce that In( Z (1T)) >3 LTL“)/ 87 Said
another way, we have Ljesexp(=—")
EI“&X’
. exp(——7- —&;
In(R(T) < > = E) —
ics Zjesexp(— T’)
On the other hand, using Proposition 1.3, we obtain:
T 1Y (- m)(s
7 X ) _ 12 iesexp(——7)d
5 = Emax\
I T3 sexp (—=5%)
Combination of the previous two results leads to (7 In(%(T))) <O. O

Propositions 1.3 and 1.4 clearly imply the convergence of the algorithm: (7,),cn i8S
monotonous and bounded.
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Note that even if the results of this subsection are based on Hypothesis 1.1, they are
useful in a general context. Let us give an insight into this point. First, to show that ¥ (T)
is an increasing function, we only need to have the ratio of Lemma 1.2 close to 0. In other
terms, we do not really require Hypothesis 1.1 to be strictly satisfied. Second, we already
said in the begmmng of this subsection that the derivative of the logarithm of the function
T—T( 1“11(1’(‘)((:))) )» increases when p increases. Said another way, if we get some convergence
problems when p = 1 due to the inaccuracy of Hypothesis 1.1, we can sufficiently increase
p to allow T — T('“(X(T))); to be an increasing function. Moreover, our experimental
results (Section 3) show that in most of cases p =1 is sufficient. We needed to take p =2
in about 1 run per 1000 to guarantee the convergence. However, to strictly guarantee the
convergence, we can slightly modify the algorithm of Section 1. If an oscillation is detected
G.e., (Ty41 — T)(T, — T,—1) < 0) then we multiply p by 2 and we continue the algorithm.

1.2.  On the sampling procedure

The first steps of the algorithm (1(a) and (b)) can be called the sampling procedure.

Even if the convergence of the algorithm is shown for a set S of random transitions
satisfying Hypothesis 1.1 (and experimentally in Section 3), the set S must be representative
to allow the algorithm to give a temperature which is close to the wanted temperature.
Obviously, the exact temperature is given when S contains all positive transitions. However,
it is generally not possible to consider all transitions.

We will not give a definitive description of the sampling procedure: we think that it
depends on the nature and the size of the problem that we are solving.

One can, for example, begin with a small value of ||S||, compute the temperature, and
increase the number of transitions until the temperature becomes stable.

Itis also possible to use the temperature 7} of Eq. (7) to perform a first simulated annealing
plateau. All positive transitions considered during this plateau can be stored and then used
to compute a more accurate temperature using our algorithm.

Numerical experiments that will be presented in Section 3, are based, for each value
of || S|, on a random generation of independent transitions. Notice that when we use the
transitions encountered during a plateau, transitions may not be independent.

2. Other properties

More properties of the acceptance probability are given in this section.

Proposition 2.1.  Assuming Hypothesis 1.1 is valid, then §'(T) < %

Emax;
. - — Iy,
Proof: It was shown in Proposition 1.3 that 3'(T) = % %.
ies eXp(=—7")

Emn

mm,

Jew- )

It implies that §'(T) = + Lies X T

Yiesexp(——r
Moreover, the function x — x e)bip( —x) is bounded by 1/e. Using this upper bound in

the previous approximation leads to the wanted result. O
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An important straightforward corollary dealing with the evolution of the acceptance
probability is given below.

. . . . N N 1 AT
Corollary 2.2.  Assuming Hypothesis 1.1 isvalid, then 3 (T +AT)—3(T) < - In(1+5-).

Proof: A simple integration of the inequality §'(T") < % gives the wanted result. O

Using the fact that In(1 4 x) < x, one can deduce that (T + AT) — 3(T) < %%

Corollary 2.2 implies that even if you divide the temperature by 2, you can not expect to
reduce the acceptance probability by more than @ ~ 0, 255.

It is also possible to use the previous corollary to have an indication about the number
of iterations of a classical simulated annealing with a geometric cooling schedule. As-
sume that the temperature is multiplied by o < 1 at the end of each plateau. In most of
cases, the initial temperature is chosen such that the acceptance probability of positive
moves is equal to xo. The stopping criterion can also be a low acceptance probability x ;.

Using Corollary 2.2, one can easily show that the number of plateaux N is higher than
e(xo—xr)
In(l/a) °

Proposition 2.3.  Assuming Hypothesis 1.1 is valid, then the number of plateaux is higher

e(xo—xr)
than (i) -

Assume, for example, that 0 =0.9, x =0.05 and « =0.95. The number of plateaux
is then higher than 46. If « =0.99, we need more than 230 plateaux. More precisely, if
o =1 — € where € < 1, then the number of plateaux is approximately higher than M

Note that one of the advantages of the upper bound % given in Proposition 2.1 is its
independence with energy. However, this upper bound is bad for low temperatures. In fact,
one can easily see that ¥'(T) =~ % exp(—%) where C is a constant depending on the
energies and the transitions and A is the difference between the smallest Ey,y, and the
smallest E iy, . This clearly implies that §'(T) is approximately equal to O when T is close
to 0.

To finish our study of the acceptance probability, let us consider the second derivative
x"(T).

First, another simple lemma will be stated.

Lemma 2.4. Assuming Hypothesis 1.1 is valid, then

Enmin; +Emin; ; .
Sijesics P (== 7) (Enin, — Emin,) (3 exp (=) — 8 exp (= 7))

- =0.
Zi,j cs €Xp (_ M)Sﬂ

This lemma can be easily proved using the same kind of arguments as those given to
prove the validity of Lemma 1.2.
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Proposition 2.5. Assuming Hypothesis 1.1 is valid, then the second derivative is given
by:

1 D ics€Xp (—@)Si(& —2T)

()= :
T e (=)

Proof: A simple derivation of T?%/(T) using Proposition 1.3 gives the following:

(T*3'(T)Y
_ L Y ics Emax exp (_@)Bi Zjes exp (_ E';"/ ) =i cs Emin, exp (_@ﬁf Z,‘es €Xp (_%)

r (Ziesexf’ (* E'; ))2

1 Xijcsic; XD (7 Enin ;E’"'"J )(Emin, — Eminj)(z?i exp <7‘§7> — 8 exp (*%’))
-7 E, 2

(Zoor( )
| 2ijeseXp (* v + P )5i2
T2

Using Lemma 2.4, we obtain:

1 X ()

(T*3(T)) = — ——
" (Eieson (-774))
Ermay;
L Xiesexp (—=7+)8”
- 2 Emini
T ¥ esexp (—=54)
Using again Proposition 1.3 gives the wanted result. O

One can easily see that the expression given above is positive when T is close to 0 and
negative when T is sufficiently high.

Corollary 2.6. Assuming Hypothesis 1.1 is valid, the probability to accept positive tran-
sitions is convex for low temperatures and concave for high temperatures.

Finally, we give here simple bounds for the second derivative 3" (7).

Corollary 2.7. Assuming Hypothesis 1.1 is valid, then

%(2 —2V2)exp(v2 = 2) < 3/(T) < %(2 +2v2)exp(—2 — V2).
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Emax;

111 A E A — ys;(8;—2T
Proof: Proposition 2.5 tells us that §”(T) = _714 ies OXP(— 7 Z«"m( )
leads to: Y g exp(—

. Simple calculation

1 Yiesexp (=) exp (- )3 (3 - 2)
T icseXp (_En%)

1 Yiesexp (=75) f(3)

T2 Y esexp (= 55)

- 2o

where f denotes the function x e R, — x(x — 2)exp(—x). One can easily see that the
minimum of f is obtained for x =2 — /2 and the maximum is reached for x =2 +
V2. Thus, for any x > 0 we have (2 — 2v/2)exp(+/2 —2) < f(x) < 2+ 2v2)

X1 =

exp(—2 — ﬁ).
Combinations of these inequalities and the expression of §”(T) leads to the wanted
result. -

Notice that (2 — 2+/2) exp(v/2 — 2) &~ —0.462 and (2 + 2+/2) exp(—2 — +/2) ~0.159.

3. Numerical experiments

To illustrate the results given in the previous sections, extensive numerical experiments are
carried out. Two kind of problems are considered: random problems and traveling salesman
problems (TSP).

3.1.  Random problems

A random problem is represented by a symmetric graph G = (V, E) where V is the set of
vertices corresponding with the solutions of the problem, and E is the set of edges repre-
senting the neighborhood relationship. Each solution (vertex) has a random cost. Simulated
annealing is applied to find a minimum cost solution.
The graphs used to represent random problems are described using three parameters:
the number of vertices || V||, the graph density d = % and an upper bound U for the
2

maximum degree. Two sets of problems are considered in this section where (|| V||, d, U) =
(5 x 10*, 1074, 30) in the first case and (2 x 10°%, 107, 5) in the second one. Notice that
these problems are small and can be solved by enumeration. However, the aim of this
section is only to study the procedure proposed in this paper to compute the temperature of
a simulated annealing.

Due to space limitation, we only give a summary of the results: more details will be
provided on Kluwer’s web site.
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We consider 4 different values of the number of samples || S||: 20, 100, 500 and 2500.
We also try 8 values of the acceptance probability xo: 0.99, 0.9, 0.7, 0.5, 0.3, 0.1, 0.05 and
0.01. Positive transitions are randomly and independently generated. For each value of g
and ||S|| the algorithm of Section 1 is used to give a temperature. Convergence was always
obtained with p = 1 (Formula 6).

Simulated annealing is then applied using the given temperature, without any decrease,
to provide the experimental acceptance probability x. We also apply simulated annealing
using the temperature 77 defined by Eq. (7) to obtain x (7)) defined as the experimental
acceptance probability corresponding with 77. Recall that this temperature is commonly
used by simulated annealing practitioners.

All experiments are repeated 200 times (200 runs for each value of x( and ||.S||). Results
are expressed in terms of average and standard deviation.

The ratios corresponding with Lemmas 1.2 and 2.4 are also considered here in order
to check the validity of our hypothesis. We also focus on the number of iterations of the
algorithm needed to compute the temperature. This number is null if the temperature 7;
given by Eq. (7) obtained in Step 1(c) is the final result of the algorithm. The precision term
€ used in the algorithm is here equal to 1073,

To summarize, we focus on the average and the standard deviation of the following quan-
tities: the experimental acceptance probability j, the experimental acceptance probability
obtained with T} of Eq. (7), the ratios corresponding with Lemmas 1.2 and 2.4 and the
number of iterations of the algorithm of Section 1.

First, the algorithm used to compute the temperature converges at each run. The average
and the standard deviation values corresponding with Lemmas 1.2 and 2.4 are generally
low. They are not null because Hypothesis 1.1 is not always valid. When both y and || S|
are very low, Lemma 1.2 does not seem to be satisfied. In fact, the denominator of the
fraction defined in Lemma 1.2 is close to O when T is very low. Moreover, Hypothesis 1.1 is
unlikely to be satisfied when |S] is very small. Nevertheless, as previously said, convergence
is always obtained, even if Hypothesis 1.1 is not satisfied.

The number of iterations needed by the algorithm to achieve convergence is small for
high values of (. In fact, when ¥ is high, temperature 7} seems to be a good one. This is
shown by x (77) which is very close to xo when g is high.

x (T1) becomes far from x, when y is low. We also observed that the standard deviation
of x(T)) generally decreases when ||.S|| increases. However, the average value of x (7}) can
be considered as stable. This is due to the fact that 7; is based on the average of the cost
variations. Although, ¥ is generally close to xo more than x (T;).

Moreover, our numerical experiments show that for high values of x, a small value of
[IS|I can be sufficient to obtain a temperature achieving the goal. However, if y is low, we
need higher values of || S|

The difference between x( and x decreases when the problem size decreases. The problem
size considered in the first case is smaller than the second problem size and the results are
slightly better: the standard deviation of ) is lower in the first case than in the second one.
Said another way, when the problem size is larger, we may need more transitions to compute
a temperature.
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Table 1. Ty =500and p=1.

X 0.9352 0.5114 0.5007 0.5000
T 500.0 48.3411 46.7738 46.6768

Table 2. Ty=5and p=1.

X 0.0461 0.2661 0.4687 0.4978 0.4999 0.5000
T 5.0 22.1953 42.3929 46.3526 46.6492 46.6687

Table 3. Ty =500and p=2.

X 0.9352 0.8067 0.6818 0.5993 0.5536 0.5286 0.5152 0.5081
0.5043 0.5023 0.5012 0.5006 0.5003 0.5002 0.5000

T 500.0 155.4690 86.5412 64.3252 55.2274 51.0096 48.9224 47.8533
47.2957 47.0020 46.8464 46.7639 46.72 46.6966 46.6842

Table4. Ty =5and p=2.

X 0.0461 0.1141 0.2208 0.3291 0.4043 0.4482 0.4722 0.4852
0.4921 0.4958 0.4976 0.4988 0.4994 0.4997 0.4998 0.4999
T 5.0 10.5345 18.6429 27.5214 34.8496 39.8314 42.8594 44.5904

45.5479 46.0682 46.3483 46.4984 46.5785 46.6213 46.6441 46.6562

Finally, some sequences of temperatures and acceptance ratios obtained by the algo-
rithm are given in Tables 1-4. We intend to compute a temperature corresponding with
an acceptance ratio yo = 0.5. Instead of using 7j, defined in Eq. (7), we take 77 =500 to
perform the experiments of Tables 1 and 3, and 77 =5 for the experiments of Tables 2 and
4. The precision € is here 10~*. Parameter p used in the recursive formula 6 is equal to 1 in
Tables 1 and 2. We take p = 2 in Tables 3 and 4.

We can see that the convergence of the algorithm is slower for p = 2 than for p = 1. This
can be easily understood from formula 6. However, recall that when p increases then the
derivative of the function 7 — T(“}ﬁfﬂ)% is more likely to be positive (Section 1.1). Said

Xo0), . =l .
another way, as we know that Hypothesis 1.1 is not always valid, it may be more advisable
to take p > 1. Although we did not need to take p > 1 to compute the temperature in the
case of these random problems, we will see in the next section that this may be necessary
in very few of cases.

3.2.  Traveling salesman problems

The algorithm of Section 1 is applied here for the traveling salesman problem. We consider
transitions based on the very classical 2-OPT moves (see, for example [9]). Two sets of
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Figure 1. Evolution of x(T') for TSP(100).

randomly generated Euclidean instances are used: 20-city and 100-city problems. Notice
that these problems can now be solved by efficient cutting plane algorithms.

Three values of ||S|| are considered: 20, 2500 and 62500. Eight values of x, are used:
0.99,0.9,0.7,0.5,0.3,0.1, 0.05 and 0.01. 200 experiments are performed for each value of
xo and [|S]|.

Comments given in the previous subsection about random problems are still valid here.
However, we noticed that || S|| = 2500 was sufficient to give a good approximation of the
temperature in the previous case, but does not seem to be sufficient here for some values
of xo. In other words, when the size of problems increases, we need larger size samples to
obtain a good approximation of the temperature.

The procedure used to compute the temperature does not converge in about 1 run per
1000 when p = 1. If p = 2, the algorithm always converges. In fact, when the algorithm
is applied, it is easy to check whether there is an oscillation in terms of temperature. In this
case, we multiply p by 2 and we continue the algorithm.

The experimental acceptance ratio is plotted as a function of temperature. The graph of
figure 1 corresponds with the 100-city problem. This ratio is, as claimed in Corollary 2.6,
convex for low temperatures and concave for high temperatures.

Finally, we studied the experimental number of plateaux of simulated annealing when a
geometric cooling schedule (o = 0.95) is used. Different values of the initial acceptance ratio
xo and the final acceptance ratio x r are considered. The number of Plateaux is compared with
the lower bound of Proposition 2.3. This lower bound seems to be good for intermediate
acceptance ratios and bad for extremal acceptance ratios (either very low or very high
ratios).
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4. Conclusion

A simple algorithm is proposed to compute a temperature such that the acceptance ratio of
increasing cost moves is equal to a given value xo. We also presented some properties of
the acceptance ratio.

We think that this algorithm can be used as a component of either classical or modern
simulated annealing schemes for which the cooling schedule is not necessarily monotonous.

The procedure proposed in this paper can be modified in different ways. First, the formula
linking 7, and 7,4 can be changed. Said another way, even if the algorithm is very fast, one
can find another formula allowing a faster convergence. Second, We assumed in this paper
that transitions are accepted in accordance with the Metropolis criterion. A further research
direction may consist in introducing some modifications and studying the convergence of
the algorithm when other acceptance probabilities are considered.

Finally, we considered the acceptance ratio of positive transitions. Although, we may want
to focus on the acceptance of all transitions. A similar algorithm allowing the computation
of a temperature that is compatible with a given acceptation probability of all transitions is
now under study.
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