REGULARS

Conceived, concocted and
cooked-up on these very
shores, AudioMulch 2 is
winning a swarm of friends
both at home and abroad.
We talk to its creator, Ross
Bencina, about his inspiration
for the program, and the
elbow grease required to get
a world-class application off
the ground.

Text: Brad Watts

AT 68

Earlier this year I had the pleasure of

meeting Ross Bencina, code-creator
extraordinaire, and the brains behind
AudioMulch. For those of you who've never heard
of the program, this fine audio application melds
the concepts of personal computer-based
production and digital signal processing into a
cohesive tool for performers and recordists looking
to push the boundaries of live performance and
digital improvisation.

But rather than interrogating Ross about the ins and
out (as it were) of AudioMulch, Ross and I chatted
about his background in live performance, and what
it takes to get a program like AudioMulch off the
ground and into the hands of eager-to-improvise
musicians. As it stands, AudioMulch has already
made permanent inroads into both performance
and recording spheres with acts like Girl Talk and
Four Tet, and luminaries such as Pete Townshend
and Trent Reznor, embracing the program
wholeheartedly. For a greater insight into to the
nuts and bolts of AudioMulch, see the roundup of
features overleaf.

PREPARING THE SOIL

Brad Watts: Ross, can I kick things off by asking
you what’s led you to becoming involved in software
development?

Ross Bencina: Well, to start at the beginning,
back when I was a teenager I guess I had two real
interests: music and computers. Back then T had a
MIDI keyboard - an Ensoniq EPS-16 Plus - and
a Mac for sequencing. That’s basically how I got

into programming. I was very interested in digital
sound as a kid, and wrote very basic programs that
generated waveforms and the like. I guess it’s fair to
say I was a bit of a teenage computer nerd.

After high school I went on to study music at

La Trobe Uni, which, back in the early ’90s, had a
great music technology course. This was back in the
days when the sequencing programs being taught
were Opcode’s Vision and Mastertracks Pro. Then
there was sound synthesis software like C-Sound...
but the really big deal was the fact that La Trobe had
a NeXT machine running IRCAM Signal Processing
Workstation software — that was super high-end
research signal processing stuff.

BW: Was all this sequencing and signal processing
easy to manage with a personal computer at that
time?

RB: In truth, it was really only beginning to become
practical . This was around the time when Apple had
just released its PowerPC Macintosh. The first real-
time processing I did was on the NeXT platform.
These machines were completely discontinued

by that stage, but Id bought a second-hand one
regardless, mainly because they had built-in DSP
chips. I hacked something together to process some
real-time sound with that.

So I was generally neglecting my studies and
spending most of my time hacking with computers.
That’s how it all began really. There’s a lot to learn
when you're trying to program computers, and it
can be a tedious slog at times, but when you've got a
real interest in achieving a specific goal - like I

had - you pursue things until you get the one you're after. It was a little

bit harder back then, of course. The internet was only just starting up, and
gathering information was a little harder. Some things could be garnered from
the net, but information gathering mostly involved asking people via email how
they were doing things. It wasn’t like it is now with Google search engines and
forum posts. You actually had to contact someone directly to get an answer.
Having access to the university library and 20 years of research publications
about the formative years of computer music production was probably the
biggest advantage I had.

BW: Was the latency monster an issue for you back then?

RB: Latency wasn’t too bad. It certainly wasn’t good, but it was manageable.

I think it was around 20 milliseconds or similar, which is noticeable, but
manageable. Like many others though, I saw the potential of computers to

do these things, so I was confident the latency issues would become easier to
manage over time. The IRCAM hardware I was using at university had less
than two milliseconds latency, so I knew the technology would eventually catch
up.

COMPUTER MUSIC

BW: How did all this coding relate back to your musical interests?

RB: I guess it all related back to my interest in samplers and hardware
synthesisers. This was all occurring around the end of the 80s when the
‘analogue’ sound was emerging from the dance scene, which is what I was
interested in, along with the musique concréte movement. But the technology
was also a bit hidden back then, and people seemed to regard it as some sort of
esoteric format from a bygone age.

By the early *90s, my perceptions were being bombarded by marketing about
digital synths and sample-based systems, like the Roland D-50 and the Yamaha
SY series — the analogue-modelling concepts hadn’t really begun at that stage.
So there was a vacuum of sorts, as I saw it. I wanted to create sounds with the
sort of attitude most people now associate with modular ‘analogue’ synthesis.

({4

It took me a long time to | wanted the
kind of fluidity that invites complete
improvisation, not just knob-twiddling
over already established processing
chains. Mulch was all about having the
ability to patch stuff together live.

’

For me, the first really significant machine at the time was the Kurzweil K2000.
I remember thinking, “whoa, this thing does everything and it’s really deep and
powerful”

BW: So when did this focus morph into an ambition to build AudioMulch?

RB: Being interested in processing sound as a musical entity, rather than

for sheer experimentation, I started writing programs with some musicality
behind them. The first was called Oversyte — a real-time sound granulation
program I wrote in about 1994 for the PowerPC Macintosh. Actually, that's
not strictly correct; T'll confess the first program I wrote along these lines was
a TB-303 Bassline simulation. That floated around for a while between friends
and work colleagues, but was never ‘released’ as such, although it did end up
being shoehorned into AudioMulch eventually. But with Oversyte there was a
project deadline. I had a gig lined up that involved processing the Astra Choir
- a chamber music choir in Melbourne - which had been organised between
myself and a few other people at La Trobe. The performance involved three
improvising vocalists, although we did rehearse quite a bit so we knew what
style of processing wed be doing.

Leading on from that I collaborated with flautist, Kylee Smith, doing live
improvised sound processing with the same software. In a lot of ways that’s
what got me started with what I do nowadays - live performances using
improvised sound. As a result of the collaboration with Kylee Smith, we

AKG
DMS 700

The new DMS 700 is a revolutionary digital
wireless solution designed for the future:

The First Professional
Digital Wireless System

« Up to 110MHz tuning range

« 256 bit RC4 signal encryption for secure audio
transmission

« 2-channel digital true-diversity receiver

» No Compander (used in analogue systems): higher
sound quality

« On-board DSP per channel (Compressor, EQ, Limiter)

« Quick setup via infrared data link to the transmitter

« Graphical spectrum analyser helps find clear channels

 Remote monitoring and control via PC

P&rStp

FOR YOUR NEAREST DEALER:

AUSTRALIA: Call 1300 13 44 00
or visit www.audioproducts.com.au

NEWZEALAND: Call 0800111450
or visit www.audioproducts.co.nz

AT 69

ended up doing a series of one-hour fully improvised
performances at the Adelaide Fringe Festival. From
that point on I was hooked.

The intense improvisational nature of these
performances led me to develop a huge laundry list
of the tools I'd need to continue. At the time I had
software doing some sound processing, while other
elements of the performance were pre-prepared and
pre-processed as stems in ProTools. These stems
would often include pre-production with non-real-
time software like C-Sound and C-Mix, which are
command line processing programs — completely
off-line and non-real-time.

So I guess the turning point for me was realising

that I needed software that was more modular; far
more configurable for real-time performance, and
completely real-time. I wanted to improvise and

I wanted to plug lots of stuff together and do it all
on-the-fly. I wanted the kind of fluidity that invites
complete improvisation, not just knob-twiddling over
already established processing chains. Mulch was all
about having the ability to patch stuff together live.

That concept in itself wasn’t a new idea, of course.
People had been doing that throughout the *70s with
hardware modular synths, but it was nevertheless an
idea I really connected with: improvised performance
where everything is completely dynamic, with no pre-
composition whatsoever.

KEY IDEAS

BW: Can you tell us a bit about the hard work involved
with getting a program like AudioMulch developed for
commercial release?

RB: Software stability is the main issue with

AudioMulch, without a doubt. Getting the program
to the point where it’s stable for all users — not just
for me personally - has been the biggest challenge.
I remember early on in Mulch’s development, the
bug list was literally in the hundreds. That was a real
struggle that demanded my constant attention. But
my attitude to the program was always: ‘Okay if I
want this thing to be rock solid I need to be paying
attention to these bugs, and if someone says it’s
crashing then it’s not something to just add to a list
and think about later’

It's hard to describe, but basically I like to think

of software as a big clockwork mechanism, with a
lot of little inter-meshing components all working
together. Not just gears, but chains and pulleys

and weird tracks where balls run down slots and
countless switches turn on and off. Probably every
kind of mechanical thing you can think of is in
there, but it all has to sync together and function
properly. But unlike a clockwork mechanism, where
you can sit back and observe the whole thing,

with software, it’s all electrons flowing through a
microscopic circuit. So when something goes wrong,
you can't see what's occurred. Even the methods
and tools used to find the bugs themselves can be
unreliable, which can be extremely frustrating at
times.

BW: Presumably you've got to hunt down and tag
these bugs somehow?

RB: Yeah, if the software crashes you've got to
find out exactly what happened and why. I guess
you could liken it to paper jamming up a printer
mechanism or a trolley going off the rails on a
production line. With software, beyond simply

finding it, the real trick is to find out why it went oft
the rails in the first place. It could be that the rail just
led off into oblivion, in which case it's no wonder
the trolley fell off, or it could be any number of
other less obvious possibilities. One thing can lead
to another inside a program, and in an instant, the
entire application falls over.

BW: User bug reports must be invaluable to you
then?

RB: They are, absolutely. And the program wouldn’t
be where it is today without that feedback. I've

kept a close relationship with the AudioMulch
community from the beginning, and the program
has really benefited from that. I've always
encouraged people to contact me with bugs. That
sort of community-based testing process has been
a big part of my development process. I mean, if
you're a big company like Microsoft you can afford
to have whole teams of people doing the testing

for you, and you've also got a heavy investment in
automated testing. But 'm essentially one guy and I
don’t have that capacity.

CLEAR AIMS

BW: It sounds like one of the things that must be
hard is simply keeping the program on track, and
resisting the temptation to try to make it ‘all things
to all people’ Is it?

RB: I think it’s very important, when writing a
program, to have a clear idea of what your goals
are. That’s half the struggle with making anything,
really, and it’s crucially important when writing
software. To be honest, that’s something I've
learned over time; it's not something that’s always
been foremost in my mind. It was a lot easier

AUDIOMULCH: WHAT IS IT?

AudioMulch is sometimes hard
for people to grasp, so imagine

it this way. Close your eyes and
picture your favourite rehearsal
space. The floor is cluttered with
chains of esoteric effects pedals,
each tied to their own instrument
and amplifier via cables. There's a
keyboard player taking up a third
of the room (and even more of the
mixer channels). He's surrounded
by a modular synth, drum
machine, sampler and controller
keyboard, so there's only a few
channels left on the console for
vocals, trumpet and percussion
mics. A MiniDisc deck in the PA
rack is documenting the jam - if
you're lucky - and once you're all
connected, that's it. Everyone's

in his or her own channel and
space - locked In.

But what if, while you were
playing, the guitar could be
repatched via the filters in the
synth, the trumpet routed through
the fuzz pedal and tape delay, the
drum machine used to gate the
keys? What if the vocal recording
from last week's jam could be
pumped back into the Fender Twin

AT 70

from the MiniDisc; all on-the-fly,
all without interrupting the audio
and all spontaneously? What if

all this could be done during a
single performance, reconfigured
to another combination and then
returned, all before the coda? This
is the domain of AudioMulch.

AudioMulch is an ‘interactive
modular environment’ for
improvised performance,
composition and sound design.
Synthesis and processing can

be limited to within a single
computer, or alternatively, live
instrumental performances can
be patched into the program

via audio interface for direct
interaction. Several laptop
performers can even interact

in this way running multiple
instances of AudioMulch; all
locked together via MIDI or
network sync. The resulting
performances can then be
captured as a multichannel audio
recording or automation curves to
be replicated later or refined.

The process is as simple as
plugging two modules together
with the program’s virtual patch
leads, so it's not surprising

AudioMulch has been used
extensively to teach students
about audio signal flow and
processing. Almost all of the
program can be controlled

via MIDI, so the concept of
performance can become even
more physical. AudioMulch
emphasises finding your own
non-linear path and removes the
conventional structure imposed
by the discrete multichannel
environment of most DAWs.
Feedback loops can be combined
with Live Looping processes

to create self-generating and
evolving soundscapes.

AudioMulch is, above all, a
computer instrument. It brings
together elements of traditional
analogue modelling with effects
and routing options only possible
within the computer.

The Metasurface: The
Metasurface is a control interface
unique to AudioMulch, which
allows for the manipulation

of many parameters at once
through fluid mouse or controller
gestures. By placing snapshots
of settings around the two-
dimensional plane the performer

==

is able to create a ‘geography’

of effects. Moving between
snapshots with the cursor then
smoothly morphs these parameter
values, creating shifting sonic
effects. The Metasurface can

be controlled using an X/Y MIDI
controller (Korg Kaoss Pad etc),
two individual MIDI controllers
mapped to X and Y parameters, or
simply with the mouse. If you've
got the appropriate interface
software you could even use a
Wacom tablet, WiiMote or multi-
touch device.

Coming Attractions: AudioMulch

2.1 (a free upgrade for registered
users) is slated for release in
coming months. Aside from the
usual host of user improvements
and optimisations, 2.1 promises

a suite of dynamics processing
effects (a compressor, limiter and
gate), support for non-4/4 time
signatures, and AudioUnit plug-in
support for Mac users. To read
about and participate in shaping
the future development trajectory
of AudioMulch visit:

www.audiomulch.com/
audiomulch-roadmap-2009-2010

L R0 1= = & i

AudioMulch is an ‘interactive modular environment’ for
improvised performance, composition and sound design.

when I started building the program for my own
performances, before I went public with it. Even
after I first started calling it AudioMulch, sharing

it over the web, and making it available for other
people to use, it was foremost in my mind that this
was software I was writing for myself, and that I had
to be happy with its performance.

Now that the program has been around for more
than a decade in some form or other, the things

I mostly think about are issues like marketing —
communicating the value of the product I know
so well to people who may want to use it. It’s very
much about communicating clearly what it is 'm
trying to do, and being clear about what AudioMulch
is designed for. As you say, it’s very easy to just
grab onto whatever the latest hype is and attempt
to ride that bandwagon, whatever it happens to be.
The real challenge for me is in promoting the fact
that AudioMulch isn’t for everyone and doesn’t

do everything. It’s not a tracking program and it’s
certainly not a DAW.

I still remember the first time I got an email from
someone saying, “Hey man I love your product.”

I was quite confronted by the concept of my software
being referred to as a ‘product’! I didn’t relate to it
like that at all. These days I can look at the program
in that light, and I think that’s helped a lot with
keeping the concept of AudioMulch clear in my

own mind, and consequently relay that concept
more effectively to the user-base.

BW: What’s the estimated size of your user-base now,
do you know?

RB: That’s a difficult question to answer, mainly
because of software piracy. I don’t actually think
most of the downloads are from my website. The
other day I was at a bar listening to these guys
from Argentina play and one of them was doing
this laptop experimental stuff and I said, “I liked
your set... I make audio software, a program called
AudioMulch.” He was like, “AudioMulch! Wow! I
use that software all the time, but I didn’t pay for
it. I always use a pirated version!” So I think there’s

AT 72

a lot of people like that out there. Fortunately,
there are enough people using legitimate
versions to allow the program to continue.

FUTURE DEVELOPMENT
BW: So what does the future hold for
AudioMulch?

RB: There’s plenty of stuff planned for this

year, but in terms of crystal ball predictions, the
future for Mulch is all about creating something
that’s easy to use and even better suited to live
performance. Performing live with laptops is
much more commonplace nowadays than when
I started with AudioMulch. Back then I was
carting a desktop computer around to gigs, so

I think there’s still a lot of potential in paring
down the equipment required for processing
audio. 'm also very interested in physical
interfaces — I actually spent some time in Spain,
working with the research team that developed
reacTable (www.reactable.com) — getting away
from that sitting-behind-a-computer-with-
a-mouse paradigm. Things like the Novation
Launchpad, the Monome, and so forth all look
to be viable alternative control systems for live
performance. I see that whole interface trend as
something that’s going to expand greatly during
the next few years, and I'm interested in taking
that beyond mere control surfaces, into wearable
and movement-sensing controllers, taking
things more in the direction of the WiiMote
idea. I've actually done some experiments using
WiiMotes to control AudioMulch already -
there are videos of that stuff online if you want
to check it out. It’s looking quite promising.
Whether that’s something I just end

up doing for my own musical interest, or
something that becomes part of AudioMulch, or
indeed a separate product altogether, I'm really
not sure yet. ll

Ross Bencina: “The real challenge for me is in promoting
the fact that AudioMulch isn't for everyone and doesn’t
do everything.”

NEED TO KNOW

Price
AudioMulch 2: US$189 or $189 to Australian residents
via email: (info@audiomulch.com)

Contact
info@audiomulch.com
www.audiomulch.com

Supported Operating Systems

Windows XP, Vista, Windows 7.

Mac OSX (Intel processors only) 10.4,10.5,10.6.
Any computer capable of running a supported OS.

Afully functioning 60-day trial version of the program
is available from the AudioMulch website.

Key Features

AudioMulch contains a range of built-in signal
generation and sound processing modules, including
studio and performance classics like delay, parametric
EQ, reverb, phaser, flanger, a drum machine and
arpeggiator, as well as unique digital synthesis and
processing effects like granulators, shifters & shapers,
risset filters and tone generators...

There's multitrack live looping functionality, a unique
Metasurface effects morphing interface, timeline
automation of contraption and program parameters,
and VST plug-in support for further expansion of the
audio and MIDI processing possibilities.

There's support for up to 256 channels of real-time
audio I/0, multichannel file recording and playback,
along with playback and recording support for WAV an
AIFF files up to 32-bit/192k.

There are assignable MIDI input ports, patchable MIDI
routing, along with quick mapping of MIDI controllers to
contraption and program parameters. There's support
for MIDI & network sync with other devices and MIDI
control of document switching.

