
Leo Brodie

THINKING
FORTH

A Language
and Philosophy
for Solving Problems

Includes interviews with Forth’s inventor, CHARLES H.
MOORE, and other Forth thinkers

With illustrations by the author

c©1984, 1994, and 2004 by Leo Brodie, version 1.1

Attribution-NonCommercial-ShareAlike 2.0

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

Attribution. You must give the original author credit.

Noncommercial. You may not use this work for commer-
cial purposes.

Share Alike. If you alter, transform, or build upon this
work, you may distribute the resulting work only un-
der a license identical to this one.

• For any reuse or distribution, you must make clear to others the
license terms of this work.

• Any of these conditions can be waived if you get permission from
the copyright holder.

Your fair use and other rights are in no way affected by the

above.

This is a human-readable summary of the Legal Code
(the full license).

You can download the electronic version from
http://thinking-forth.sourceforge.net/

ISBN 0-9764587-0-5

http://creativecommons.org/licenses/by-nc-sa/2.0/legalcode
http://thinking-forth.sourceforge.net/

Leo Brodie has been thinking professionally about software develop-
ment since 1980, when he joined Forth, Inc. as a technical writer. He
has also served as a consultant, author, developer and program man-
ager for companies including IBM, NCR, Digalog Corp., Microsoft, and
Real Networks. He is also the owner of Punch & Brodie productions,
which occasionally provides puppet characters for corporate videos and
company meetings. He is married and the father of three children. He
also authored Starting Forth (Prentice-Hall, 1981).

It is impossible to disassociate language from science or
science from language, because every natural science al-
ways involves three things: the sequence of phenomena
on which the science is based, the abstract concepts which
call these phenomena to mind, and the words in which the
concepts are expressed. To call forth a concept, a word
is needed; to portray a phenomenon, a concept is needed.
All three mirror one and the same reality.

—Antoine Lavoisier, 1789

PREFACE TO THE 2004
EDITION

It is an honor to find myself writing a preface again, twenty years after
the original publication of Thinking Forth. It is gratifying to know that
the concepts covered here still have validity after so many waves of
technology have crested in popularity. These are simply concepts of
good programming, discovered and rediscovered by countless working
developers over the years, and given a fresh twist by a genius named
Chuck Moore.

I’ve never claimed to be an expert on comparative language studies.
My recent career has centered more on requirements and functional
design than on development technologies. But with the honor of writ-
ing another preface to this book comes another opportunity to express
my opinion.

In the course of designing Internet applications I’ve picked up a
little of Java and C#. Enough to recognize in them glimmers of
the elegance that Chuck has espoused all along, but burdened with
baggage. I looked into some of the recent books that describe design
patterns, assuming that they would address recurring code designs for
real-world phenomenon. Some of the patterns do, like the controller

Preface to the 2004 Edition iii

pattern, but too many others, such as the factory pattern, address
problems that are created by the programming language itself.

In the 1994 Preface, I apologized that my dismissal of objected-
oriented programming in the 1984 edition was a little overreaching.
What motivated that apology was having worked for a time with an
object-oriented flavor of Forth developed by Gary Friedlander

for Digalog Corp. I discovered that the principles of encapsulation
could be applied elegantly to Forth “objects” that derived from classes
that each had their own implementation of common methods. The
objects “knew” information about themselves, which made code that
called them simpler. But these were still just Forth constructs, and
the syntax was still Forth. It wasn’t Java written in Forth. There
was no need for garbage collection, etc. I won’t apologize now for my
apology then, but please know that I didn’t mean to sell out in favor
of full-blown object oriented languages.

Some people have noted parallels between Thinking Forth and Ex-
treme Programming. For example, emphasis on iterative development,
incrementally enhancing code that “works,” and not over-solving the
problem, and so on.

But in my opinion, Extreme Programming seems to miss an impor-
tant step in the software development lifecycle: the design of the con-
ceptual model. With only one or two developers working on a project,
this phase doesn’t need to be formalized because good developers do
it intuitively. But in the projects I’ve been working on, involving five
or more developers, it’s crucial.

I define the conceptual model as the representation of how the soft-
ware appears to work. The conceptual model is not just a restatement
of the requirements. It is the result of carefully analyzing the top-level
requirements and creatively addressing them in a design that will make
sense to the user. An example is the “shopping basket” construct in a
commerce application. The conceptual design forms the basis for a sec-
ond tier of requirements and drives use cases describing user/system

Preface to the 2004 Edition iv

interactions. This second tier of requirements then drives the technical
design and implementation, or how the software actually works. The
conceptual model is designed collaboratively by the program manager,
developers, and business owners.

What I’ve read about Extreme Programming seems to instead as-
sume that requirements directly drive the implementation. In my ca-
reer, I’ve gravitated to the position of Program Manager, the champion
of the conceptual model. Most software developers I’ve worked with
appreciate my attention to defining the conceptual model before com-
mitting to a logical and technical design. But the irony in comparing
Thinking Forth with Extreme Programming is that some developers
of the XP stripe (and who of course have never heard of this book)
don’t even see the value of a spec!

Ah well.

May wisdom, fun, and the greater good shine forth in all your work.

Leo Brodie

Acknowledgments for 2004 Edition

Normally, this is where the author thanks those who helped with the
book. In this case, it’s the other way around. This entire project was
conceived, executed and completed by an inspired group of people
with no prompting or significant assistance from me.

For that reason, I have asked them to describe their contributions
in their own words:

Acknowledgments for 2004 Edition v

John R. Hogerhuis:

I contacted Leo Brodie to discuss the conditions under which he
would be willing to allow republishing Thinking Forth, in electronic
format under an open content license. I acquired a copy of 1984
edition, chopped off the binding, and scanned it in. Then I did a
proof-of-concept and typeset the first chapter of the book in LyX.

It turned out to be a lot more work than I had time to do by myself
(I have more ambition than sense sometimes, as my wife will attest),
so I solicited help from the Forth community on comp.lang.forth.
The outpouring of support, based on love for this book, was so
tremendous that I discovered—after dividing up work and setting
the ground rules (stick to 1984 version, use LATEX for the typesetting
language, and copyrights had to be assigned to Leo Brodie)—that
the more I stayed out of the way and avoided being a bottleneck
the faster the work came together.

I also OCRed all the pages at some point using Transym OCR tool
(others used the same tool in their transcription effort), and did the
cleanup/vectorization pass on the images for Chapter Three.

Bernd Paysan:

I set up the infrastructure. I got the project approved by Sourceforge,
set up CVS, mailing lists and added developers. The approval de-
spite the non-commercial license is due to Jacob Moorman, who
knew this book (“despite limitations on use, I recommend approval;
this is a unique and excellent resource on Forth”). The actual ap-
proval was processed by David Burley.

As the LATEX guru, I created most of the style file, and cleaned up
most of the submissions so that they work with the style file.

Acknowledgments for 2004 Edition vi

I cleaned up pictures, restoring halftone and removing raster as
necessary. I translated non-hand-drawn figures to LATEX.∗

Andrew Nicholson:

• extracted, rotated and converting the scanned images from
Chapter One, Chapter Two, Chapter Seven, Chapter Eight into
PNGs and adding the images into the correct places.

• transcribed Chapter Two from OCR to LATEX

• rebuilt the index from 1984

• revised and cleaned up Chapter One and Chapter Five

• cleaned up Chapter Six, Chapter Seven, Chapter Eight

Nils Holm:

Transcription/initial typesetting of Chapter Four, Chapter Seven,
and Chapter Eight

Anton Ertl:

I LATEXified (typeset) and did some cleanup of Chapter Three.

Joseph Knapka:

Transcription of Chapter Three

∗Note from John: I’ll add that Bernd really took the ball and ran with it,

employing the “Free Software” development model to impressive effect. Of course,

an important part of most Free Software projects is one dedicated super developer

who blazes the trail and gets a large percentage of the work done. Bernd is that

guy.

Acknowledgments for 2004 Edition vii

Josef Gabriel:

I transcribed Chapter Six. I see my contribution as helping to pass
on Forth to other folks. I hope folks will read “Thinking Forth” and
have their code changed.

Ed Beroset:

Typeset the epilog and appendices, and did some of the LATEX cod-
ing.

Albert van der Horst:

Transcribed/did initial typesetting for Chapter Five

Steve Fisher:

Ran the OCR for Chapter Seven and Chapter Eight

To all of the above, I am deeply indebted and honored.

Leo Brodie

Seattle, WA
November 2004

Acknowledgments for 2004 Edition viii

PREFACE TO THE 1994
EDITION

I’m honored that the Forth Interest Group is reprinting Thinking Forth.
It’s gratifying to know that the book may have value to appreciators
and users of Forth.

This edition is a reproduction of the original edition, with only mi-
nor typographical corrections. A lot has happened in the ten years
since the book’s original publication, rendering some of the opinions
obsolete, or at best archaic. A “revised, updated edition” would have
entrailed a rewrite of many sections, a larger effort than I’m able to
make at the time.

Of all the opinions in the book, the one that I most regret seeing in
print is my criticism of object-oriented programming. Since penning
this book, I’ve had the pleasure of writing an application in a version
of Forth with support for object-oriented programming, developed by
Digalog Corp. of Ventura, California. I’m no expert, but it’s clear that
the methodology has much to offer.

With all this, I believe that many of the ideas in Thinking Forth are
as valid today as they were back then. Certainly Charles Moore’s
comments remain a telling insight on the philosophy that triggered
the development of Forth.

Preface to the 1994 Edition ix

I wish to thank Marlin Ouverson for his excellent job, patiently
struggling against incompatible file formats and OCR errors, to bring
this reprint to life.

Preface to the 1994 Edition x

PREFACE

Programming computers can be crazy-making. Other professions give
you the luxury of seeing tangible proof of your efforts. A watchmaker
can watch the cogs and wheels; a seamstress can watch the seams
come together with each stitch. But programmers design, build, and
repair the stuff of imagination, ghostly mechanisms that escape the
senses. Our work takes place not in RAM, not in an editor, but within
our own minds.

Building models in the mind is both the challenge and the joy of pro-
gramming. How should we prepare for it? Arm ourselves with better
debuggers, decompilers, and disassemblers? They help, but our most
essential tools and techniques are mental. We need a consistent and
practical methodology for thinking about software problems. That is
what I have tried to capture in this book. Thinking Forth is meant
for anyone interested in writing software to solve problems. It focuses
on design and implementation; deciding what you want to accomplish,
designing the components of the system, and finally building the pro-
gram.

The book stresses the importance of writing programs that not only
work, but that are also readable, logical, and that express the best
solution in the simplest terms.

Preface xi

Although most of the principles described here can be applied to any
language, I’ve presented them in the context of Forth. Forth is a lan-
guage, an operating system, a set of tools, and a philosophy. It is an
ideal means for thinking because it corresponds to the way our minds
work. Thinking Forth is thinking simple, thinking elegant, thinking
flexible. It is not restrictive, not complicated, not over-general. You
don’t have to know Forth to benefit from this book. Thinking Forth
synthesizes the Forth approach with many principles taught by modern
computer science. The marriage of Forth’s simplicity with the tradi-
tional disciplines of analysis and style will give you a new and better
way to look at software problems and will be helpful in all areas of
computer application.

If you want to learn more about Forth, another book of mine, Start-
ing Forth, covers the language aspects of Forth. Otherwise, Appendix
A of this book introduces Forth fundamentals.

A few words about the layout of the book: After devoting the
first chapter to fundamental concepts, I’ve patterned the book after
the software development cycle; from initial specification up through
implementation. The appendixes in back include an overview of Forth
for those new to the language, code for several of the utilities described,
answers to problems, and a summary of style conventions.

Many of the ideas in this book are unscientific. They are based on
subjective experience and observations of our own humanity. For this
reason, I’ve included interviews with a variety of Forth professionals,
not all of whom completely agree with one another, or with me. All
these opinions are subject to change without notice. The book also
offers suggestions called “tips.” They are meant to be taken only as
they apply to your situation. Forth thinking accepts no inviolable rules.
To ensure the widest possible conformity to available Forth systems, all
coded examples in this book are consistent with the Forth-83 Standard.

One individual who greatly influenced this book is the man who
invented Forth, Charles Moore. In addition to spending several

Preface xii

days interviewing him for this book, I’ve been privileged to watch him
at work. He is a master craftsman, moving with speed and deftness,
as though he were physically altering the conceptual models inside the
machine—building, tinkering, playing. He accomplishes this with a
minimum of tools (the result of an ongoing battle against insidious
complexity) and few restrictions other than those imposed by his own
techniques. I hope this book captures some of his wisdom. Enjoy!

Acknowledgments

Many thanks to all the good people who gave their time and ideas
to this book, including: Charles Moore, Dr. Mark Bernstein,
Dave Johnson, John Teleska, Dr. Michael Starling, Dr. Pe-

ter Kogge, Tom Dowling, Donald Burgess, Cary Camp-

bell, Dr. Raymond Dessy, Michael Ham, and Kim Harris.
Another of the interviewees, Michael LaManna, passed away while
this book was in production. He is deeply missed by those of us who
loved him.

Acknowledgments xiii

CONTENTS

Preface to the 2004 Edition, iii
Preface to the 1994 Edition, ix

Preface, xi
Contents, xiv

The Philosophy of Forth, 1

An Armchair History of Software Elegance, 2
The Superficiality of Structure, 24

Looking Back, and Forth, 25
Component Programming, 27

Hide From Whom?, 32
Hiding the Construction of Data Structures, 33

But Is It a High-Level Language?, 36
The Language of Design, 41

The Language of Performance, 42
Summary, 46

References, 46

Analysis, 48

Contents xiv

The Nine Phases of the Programming Cycle, 49
The Iterative Approach, 50
The Value of Planning, 52

The Limitations of Planning, 56
The Analysis Phase, 60

Defining the Interfaces, 64
Defining the Rules, 70

Defining the Data Structures, 80
Achieving Simplicity, 80

Budgeting and Scheduling, 88
Reviewing the Conceptual Model, 91

References, 92

Preliminary Design/Decomposition, 93

Decomposition by Component, 94
Example: A Tiny Editor, 98

Maintaining a Component-based Application, 103
Designing and Maintaining a Traditional Application, 105

The Interface Component, 111
Decomposition by Sequential Complexity, 116

The Limits of Level Thinking, 118
Summary, 126

For Further Thinking, 126

Detailed Design/Problem Solving, 130

Problem-Solving Techniques, 132
Interview with a Software Inventor, 141

Detailed Design, 144
Forth Syntax, 145

Algorithms and Data Structures, 157

Contents xv

Calculations vs. Data Structures vs. Logic, 159
Solving a Problem: Computing Roman Numerals, 162

Summary, 178
References, 178

For Further Thinking, 179

Implementation: Elements of Forth Style, 181

Listing Organization, 183
Screen Layout, 197

Comment Conventions, 203
Vertical Format vs. Horizontal Format, 215

Choosing Names: The Art, 220
Naming Standards: The Science, 227

More Tips for Readability, 229
Summary, 230

References, 231

Factoring, 235

Factoring Techniques, 237
Factoring Criteria, 244

Compile-Time Factoring, 259
The Iterative Approach in Implementation, 265

References, 270

Handling Data: Stacks and States, 271

The Stylish Stack, 272
The Stylish Return Stack, 283

The Problem With Variables, 284
Local and Global Variables/Initialization, 289

Contents xvi

Saving and Restoring a State, 290
Application Stacks, 293

Sharing Components, 294
The State Table, 297

Vectored Execution, 302
Using DOER/MAKE, 304

Summary, 310
References, 310

Minimizing Control Structures, 314

What’s So Bad about Control Structures?, 315
How to Eliminate Control Structures, 320

A Note on Tricks, 335
Summary, 356

References, 357
For Further Thinking, 357

Forth’s Effect on Thinking, 362

Appendix A Overview of Forth (For Newcomers), 366
Appendix B Defining DOER/MAKE, 371

Appendix C Other Utilities Described in This Book, 380
Appendix D Answers to “Further Thinking” Problems, 384

Appendix E Summary of Style Conventions, 387
Index, 396

Contents xvii

List of Program Examples

Program Page number

Apples 33–36
Phone Rates 70–79, 160, 338–338
Tiny Editor 98–110, 160, 338–340
Colors 152, 243, 258, 351, 355
Roman Numerals 162–178, 253
Drawing Boxes 260–262, 265
Automatic Teller 317–320

Contents xviii

ONE

The Philosophy
of Forth

Forth is a language and an operating system. But that’s not all: It’s
also the embodiment of a philosophy. The philosophy is not generally
described as something apart from Forth. It did not precede Forth,
nor is it described anywhere apart from discussions of Forth, nor does
it even have a name other than “Forth.”

What is this philosophy? How can you apply it to solve your software
problems?

Before we can answer these questions, let’s take 100 steps backwards
and examine some of the major philosophies advanced by computer sci-
entists over the years. After tracing the trajectory of these advances,
we’ll compare—and contrast—Forth with these state-of-the-art pro-
gramming principles.

An Armchair History of Software Elegance

In the prehistoric days of programming, when computers were di-
nosaurs, the mere fact that some genius could make a program run
correctly provided great cause for wonderment. As computers became
more civilized, the wonder waned. Management wanted more from
programmers and from their programs.

An Armchair History of Software Elegance 2

As the cost of hardware steadily dropped, the cost of software soared.
It was no longer good enough for a program to run correctly. It also
had to be developed quickly and maintained easily. A new demand
began to share the spotlight with correctness. The missing quality was
called “elegance.”

In this section we’ll outline a history of the tools and techniques for
writing more elegant programs.

Memorability

The first computer programs looked something like this:

00110101

11010011

11011001

Programmers entered these programs by setting rows of switches—
“on” if the digit was “1,” “off” if the digit was “0.” These values were
the “machine instructions” for the computer, and each one caused the
computer to perform some mundane operation like “Move the contents
of Register B to Register A,” or “Add the contents of Register C into
the contents of Register A.”

This proved a bit tedious.
Tedium being the stepmother of invention, some clever program-

mers realized that the computer itself could be used to help. So they
wrote a program that translated easy-to-remember abbreviations into
the hard-to-remember bit patterns. The new language looked some-
thing like this:

MOV B,A

ADD C,A

JMC REC1

The translator program was called an assembler, the new language
assembly language. Each instruction “assembled” the appropriate bit

Memorability 3

pattern for that instruction, with a one-to-one correspondence between
assembly instruction and machine instruction. But names are easier
for programmers to remember. For this reason the new instructions
were called mnemonics.

Power

Assembly-language programming is characterized by a one-for-one cor-
respondence between each command that the programmer types and
each command that the processor performs.

In practice, programmers found themselves often repeating the same
sequence of instructions over and again to accomplish the same thing
in different parts of the program. How nice it would be to have a
name which would represent each of these common sequences.

This need was met by the “macro assembler,” a more complicated
assembler that could recognize not only normal instructions, but also
special names (“macros”). For each name, the macro assembler as-
sembles the five or ten machine instructions represented by the name,
just as though the programmer had written them out in full.

Abstraction

A major advance was the invention of the “high-level language.” Again
this was a translator program, but a more powerful one. High-level
languages make it possible for programmers to write code like this:

X = Y (456/A) - 2

which looks a lot like algebra. Thanks to high-level languages, engi-
neers, not just bizarre bit-jockeys, could start writing programs. BA-
SIC and FORTRAN are examples of high-level languages.

High-level languages are clearly more “powerful” than assembly lan-
guages in the sense that each instruction might compile dozens of

Power 4

So then I typed GOTO 500—and here I am!

machine instructions. But more significantly, high-level languages elim-
inate the linear correspondence between source code and the resulting
machine instructions.

The actual instructions depend on each entire “statement” of source
code taken as a whole. Operators such as + and = have no meaning
by themselves. They are merely part of a complex symbology that
depends upon syntax and the operator’s location in the statement.

This nonlinear, syntax-dependent correspondence between source
and object code is widely considered to be an invaluable step in the
progress of programming methodology. But as we’ll see, the approach
ultimately offers more restriction than freedom.

Manageability

Most computer programs involve much more than lists of instructions
to work down from start to finish. They also involve testing for various
conditions and then “branching” to the appropriate parts of the code
depending upon the outcome. They also involve “looping” over the
same sections of code repeatedly, usually testing for the moment to
branch out of the loop.

Both assembler and high-level languages provide branching and loop-
ing capabilities. In assembly languages you use “jump instructions;” in
some high-level languages you use “GO TO” commands. When these
capabilities are used in the most brute-force way, programs tend to
look like the jumble you see in Figure 1.1.

This approach, still widely used in languages like FORTRAN and
BASIC, suffers from being difficult to write and difficult to change
if corrections need to be made. In this “bowl-of-spaghetti” school of
programming, it’s impossible to test a single part of the code or to
figure out how something is getting executed that isn’t supposed to
be getting executed.

Difficulties with spaghetti programs led to the discovery of “flow
charts.” These were pen-and-ink drawings representing the “flow” of

Manageability 6

Figure 1.1: Unstructured code using jumps or “GOTOs.”

INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
TEST
JUMP
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
JUMP
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
TEST
JUMP
TEST
JUMP

execution used by the programmer as an aid to understanding the code
being written. Unfortunately the programmer had to make the trans-
lation from code to flow chart and back by hand. Many programmers
found old-fashioned flow charts less than useful.

Modularity

A significant advance arose with the invention of “Structured Program-
ming,” a methodology based on the observation that large problems
are more easily solved if treated as collections of smaller problems [1].
Each piece is called a module. Programs consist of modules within
modules.

Structured programming eliminates spaghetti coding by insisting
that control flow can be diverted only within a module. You can’t
jump out from the middle of one module into the middle of another
module.

For example, Figure 1.2 shows a structured diagram of a module
to “Make Breakfast,” which consists of four submodules. Within each
submodule you’ll find a whole new level of complexity which needn’t
be shown at this level.

A branching decision occurs in this module to choose between the
“cold cereal” module and the “eggs” module, but control flow stays
within the outer module

Structured programming has three premises:

1. Every program is described as a linear sequence of self-contained
functions, called modules. Each module has exactly one entry
point and one exit point.

2. Each module consists of one or more functions, each of which
has exactly one entry point and one exit point and can itself be
described as a module.

3. A module can contain:

(a) operations or other modules

Modularity 8

Figure 1.2: Design for a structured program

(b) decision structures (IF THEN statements)
(c) looping structures

The idea of modules having “one-entry, one-exit” is that you can unplug
them, change their innards, and plug them back in, without screwing
up the connections with the rest of the program. This means you
can test each piece by itself. That’s only possible if you know exactly
where you stand when you start the module, and where you stand
when you leave it.

In “Make Breakfast” you’ll either fix cereal or make eggs, not both.
And you’ll always clean up. (Some programmers I know circumvent
this last module by renting a new apartment every three months.)

Structured programming was originally conceived as a design ap-
proach. Modules were imaginary entities that existed in the mind of

Modularity 9

Figure 1.3: Structured programming with a non-structured language

10 INSTRUCTION

20 INSTRUCTION

}

Decide – in a hurry?

30 IF H=TRUE THEN GOTO 80 If yes, go to instr.# 80

40 INSTRUCTION

50 INSTRUCTION

}

Make eggs

60 INSTRUCTION

70 GOTO 110 Go to instr.# 110

80 INSTRUCTION

90 INSTRUCTION

}

Make cereal

100 INSTRUCTION

110 INSTRUCTION

120 INSTRUCTION

}

Clean up

130 INSTRUCTION

the programmer or designer, not actual units of source code. When
structured programming design techniques are applied to non-structured
languages like BASIC, the result looks something like Figure 1.3.

Writeability

Yet another breakthrough encouraged the use of structured programs:
structured programming languages. These languages include control
structures in their command sets, so you can write programs that have
a more modular appearance. Pascal is such a language, invented by
Niklaus Wirth to teach the principles of structured programming
to his students.

Figure 1.4 shows how this type of language would allow “Make Break-
fast” to be written.

Structured programming languages include control structure oper-
ators such as IF and THEN to ensure a modularity of control flow.
As you can see, indentation is important for readability, since all the

Writeability 10

instructions within each module are still written out rather than be-
ing referred to by name (e.g., “MAKE-CEREAL”). The finished program
might take ten pages, with the ELSE on page five.

Designing from the Top

How does one go about designing these modules? A methodology
called “top-down design” proclaims that modules should be designed
in order starting with the most general, overall module and working
down to the nitty-gritty modules.

Proponents of top-down design have witnessed shameful wastes of
time due to lack of planning. They’ve learned through painful expe-
rience that trying to correct programs after they’ve been written—a
practice known as “patching”—is like locking the barn door after the
horse has bolted.

So they offer as a countermeasure this official rule of top-down
programming:

Figure 1.4: Using a structured language.

INSTRUCTION

INSTRUCTION

}

Decide – in a hurry?

IF HURRIED THEN

INSTRUCTION

INSTRUCTION

}

Make cereal

INSTRUCTION

ELSE

INSTRUCTION

INSTRUCTION

}

Make eggs

INSTRUCTION

ENDIF

INSTRUCTION

INSTRUCTION

}

Clean up

Designing from the Top 11

Write no code until you have planned every last detail.

Because programs are so difficult to change once they’ve been written,
any design oversight at the preliminary planning stage should be re-
vealed before the actual code-level modules are written, according to
the top-down design, Otherwise, man-years of effort may be wasted
writing code that cannot be used.

Subroutines

We’ve been discussing “modules” as abstract entities only. But all
high-level programming languages incorporate techniques that allow
modules of design to be coded as modules of code—discrete units
that can be given names and “invoked” by other pieces of code. These
units are called subroutines, procedures, or functions, depending on
the particular high-level language and on how they happen to be im-
plemented.

Suppose we write “MAKE-CEREAL” as a subroutine. It might look
something like this:

procedure make-cereal
get clean bowl
open cereal box
pour cereal
open milk
pour milk
get spoon

end

We can also write “MAKE-EGGS” and “CLEANUP” as subroutines. Else-
where we can define “MAKE-BREAKFAST” as a simple routine that in-
vokes, or calls, these subroutines:

procedure make-breakfast
var h: boolean (indicates hurried)

Subroutines 12

Software patches are ugly and conceal structural weaknesses.

test for hurried
if h = true then

call make-cereal

else
call make-eggs

end
call cleanup

end

The phrase “call make-cereal” causes the subroutine named “make-
cereal” to be executed. When the subroutine has finished being exe-
cuted, control returns back to the calling program at the point follow-
ing the call. Subroutines obey the rules of structured programming.

As you can see, the effect of the subroutine call is as if the sub-
routine code were written out in full within the calling module. But
unlike the code produced by the macro assembler, the subroutine can
be compiled elsewhere in memory and merely referenced. It doesn’t
necessarily have to be compiled within the object code of the main
program (Figure 1.5).

Over the years computer scientists have become more forceful in
favoring the use of many small subroutines over long-winded, contin-
uous programs. Subroutines can be written and tested independently.
This makes it easier to reuse parts of previously written programs, and
easier to assign different parts of a program to different programmers.
Smaller pieces of code are easier to think about and easier to verify
for correctness.

When subroutines are compiled in separate parts of memory and
referred to you can invoke the same subroutine many times throughout
a program without wasting space on repeated object code. Thus the
judicious use of subroutines can also decrease program size.

Unfortunately, there’s a penalty in execution speed when you use
a subroutine. One problem is the overhead in saving registers before

Subroutines 14

jumping to the subroutine and restoring them afterwards. Even more
time-consuming is the invisible but significant code needed to pass
parameters to and from the subroutine.

Subroutines are also fussy about how you invoke them and particu-
larly how you pass data to and from them. To test them independently
you need to write a special testing program to call them from.

For these reasons computer scientists recommend their use in mod-
eration. In practice subroutines are usually fairly large between a half
page to a full page of source code in length.

Successive Refinement

An approach that relies heavily on subroutines is called “Successive
Refinement” [2]. The idea is that you begin by writing a skeletal
version of your program using natural names for procedures for data
structures. Then you write versions of each of the named procedures.
You continue this process to greater levels of detail until the procedures
can only be written in the computer language itself.

Figure 1.5: A main program and a subroutine in memory.

Successive Refinement 15

At each step the programmer must make decisions about the algo-
rithms being used and about the data structures they’re being used on.
Decisions about the algorithms and associated data structures should
be made in parallel.

If an approach doesn’t work out the programmer is encouraged to
back track as far as necessary and start again.

Notice this about successive refinement: You can’t actually run
any part of the program until its lowest-level components are written.
Typically this means you can’t test the program until after you’ve
completely designed it.

Also notice: Successive refinement forces you to work out all details
of control structure on each level before proceeding to the next lower
level.

Structured Design

By the middle of late ’70s, the computing industry had tried all the con-
cepts we’ve described, and it was still unhappy. The cost of maintain-
ing software—keeping it functional in the face of change—accounted
for more than half of the total cost of software, in some estimates as
much as ninety percent!

Everyone agreed that these atrocities could usually be traced back
to incomplete analysis of the program, or poorly thought-out designs.
Not that there was anything wrong with structured programming per
se. When projects came in late, incomplete, or incorrect, the designers
took the blame for not anticipating the unforeseen.

Scholars naturally responded by placing more emphasis on design.
“Next time let’s think things out better.”

About this time a new philosophy arose, described in an article
called “Structured Design” [3]. One of its principles is stated in this
paragraph:

Structured Design 16

Tobias, I think you’ve carried the successive refinement of that
module far enough.

Simplicity is the primary measurement recommended for evaluating
alternative designs relative to reduced debugging and modification
time. Simplicity can be enhanced by dividing the system into sepa-
rate pieces in such a way that pieces can be considered, implemented,
fixed and changed with minimal consideration or effect on the other
pieces of the system.

By dividing a problem into simple modules, programs were expected
to be easier to write, easier to change, and easier to understand.

But what is a module, and on what basis does one make the divi-
sions? “Structured Design” outlines three factors for designing mod-
ules.

Functional Strength

One factor is something called “functional strength,” which is a mea-
sure of the uniformity of purpose of all the statements within a module.
If all the statements inside the module collectively can be thought of
as performing a single task, they are functionally bound.

You can generally tell whether the statements in a module are func-
tionally bound by asking the following questions. First, can you de-
scribe its purpose in one sentence? If not, the module is probably not
functionally bound. Next, ask these four questions about the module:

1. Does the description have to be a compound sentence?

2. Does it use words involving time, such as “first,” “next,” “then,”
etc.?

3. Does it use a general or nonspecific object following the verb?

4. Does it use words like “initialize” which imply a lot of different
functions being done at the same time?

If the answer to any of these four questions is “yes,” you’re looking at
some less cohesive type of binding than functional binding. Weaker
forms of binding include:

Functional Strength 18

Coincidental binding: (the statements just happen to appear in the
same module)

Logical binding: (the module has several related functions and re-
quires a flag or parameter to decide which particular function to
perform)

Temporal binding: (the module contains a group of statements that
happen at the same time, such as initialization but have no other
relationship)

Communicational binding: (the module contains a group of state-
ments that all refer to the same set of data)

Sequential binding: (where the output of one statement serves as
input for the next statement)

Our “MAKE-CEREAL” module exhibits functional binding, because it
can be thought of as doing one thing, even though it consists of
several subordinate tasks.

Coupling

A second tenet of structured design concerns “coupling,” a measure of
how modules influence the behavior of other modules. Strong coupling
is considered bad form. The worst case is when one module actually
modifies code inside another module. Even passing control flags to
other modules with the intent to control their function is dangerous.

An acceptable form of coupling is “data coupling,” which involves
passing data (not control information) from one module to another.
Even then, systems are easiest to build and maintain when the data
interfaces between modules are as simple as possible.

When data can be accessed by many modules (for instance, global
variables), there’s stronger coupling between the modules. If a pro-
grammer needs to change one module, there’s a greater danger that
the other modules will exhibit “side effects.”

Coupling 19

The safest kind of data coupling is the passing of local variables as
parameters from one module to another. The calling module says to
the subordinate module, in effect, “I want you to use the data I’ve put
in these variables named X and Y, and when you’re done, I expect you
to have put the answer in the variable named Z. No one else will use
these variables.”

As we said, conventional languages that support subroutines include
elaborate methods of passing arguments from one module to another.

Hierarchical Input-Process-Output Designing

A third precept of structured design concerns the design process. De-
signers are advised to use a top-down approach, but to pay less atten-
tion initially to control structures. “Decision designing” can wait until
the later, detailed design of modules. Instead, the early design should
focus on the program’s hierarchy (which modules call which modules)
and to the passing of data from one module to another.

To help designers think along these new lines, a graphic represen-
tation was invented, called the “structure chart.” (A slightly different
form is called the “HIPO chart,” which stands for “hierarchical input-
process-output.”) Structure charts include two parts, a hierarchy chart
and an input-output chart.

Figure 1.6 shows these two parts. The main program, called DOIT,
consists of three subordinate modules, which in turn invoke the other
modules shown below them. As you can see, the design emphasizes
the transformation of input to output.

The tiny numbers of the hierarchy chart refer to the lines on the
in-out chart. At point 1 (the module READ), the output is the value
A. At point 2 (the module TRANSFORM-TO-B), the input is A, and
the output is B.

Perhaps the greatest contribution of this approach is recognizing
that decisions about control flow should not dominate the emerging

Hierarchical Input-Process-Output Designing 20

Figure 1.6: The form of a structured chart, from “Structured Design,”
IBM Systems Journal.

TO E

TRANSFORMTRANSFORM

2

4

11

DOIT

TRANSFORM
TO D

TO C
TRANSFORMTRANSFORM

TO B TO F

GETC

GETB

PUTD

PUTE

WRITE

10

3 8 9

5 76 . . .

.

READ

.

.

.

.

.

.

1

IN OUT

A1

A B2

3

4

5

6

7

8

9

10

11

B

B C

C

C D

D

D E

E

E F

F

design. As we’ll see, control flow is a superficial aspect of the prob-
lem. Minor changes in the requirements can profoundly change the

Hierarchical Input-Process-Output Designing 21

program’s control structures, and “deep-six” years of work. But if pro-
grams are designed around other concerns, such as the flow of data,
then a change in plan won’t have so disastrous an effect.

Information-Hiding

In a paper [4] published back in 1972, Dr. David L. Parnas showed
that the criteria for decomposing modules should not be steps in the
process, but rather pieces of information that might possibly change.
Modules should be used to hide such information.

Let’s look at this important idea of “information-hiding”: Suppose
you are writing a Procedures Manual for your company. Here’s a
portion:

Sales Dept. takes order
sends blue copy to Bookkeeping
orange copy to Shipping

Jay logs the orange copy in the red binder on his desk, and completes
packing slip.

Everyone agrees that this procedure is correct, and your manual gets
distributed to everyone in the company.

Then Jay quits, and Marilyn takes over. The new duplicate forms
have green and yellow sheets, not blue and orange. The red binder
fills up and gets replaced with a black one.

Your entire manual is obsolete. You could have avoided the ob-
solescence by using the term “Shipping Clerk” instead of the name
“Jay,” the terms “Bookkeeping Dept. copy” and “Shipping Dept. copy”
instead of “blue” and “orange,” etc.

This example illustrates that in order to maintain correctness in the
face of a changing environment, arbitrary details should be excluded
from procedures. The details can be recorded elsewhere if necessary.
For instance, every week or so the personnel department might issue

Information-Hiding 22

a list of employees and their job titles, so anyone who needed to know
who the shipping clerk was could look it up in this single source. As
the personnel changes, this list would change.

This technique is very important in writing software. Why would a
program ever need to change, once it’s running? For any of a million
reasons. You might want to run an old program on new equipment;
the program must be changed just enough to accommodate the new
hardware. The program might not be fast enough, or powerful enough,
to suit the people who are using it. Most software groups find them-
selves writing “families” of programs; that is, many versions of related
programs in their particular application field, each a variant on an
earlier program.

To apply the principle of information-hiding to software, certain de-
tails of the program should be confined to a single location, and any
useful piece of information should be expressed only once. Programs
that ignore this maxim are guilty of redundancy. While hardware re-
dundancy (backup computers, etc.) can make a system more secure,
redundancy of information is dangerous.

As any knowledgeable programmer will tell you, a number that
might conceivably change in future versions of the program should
be made into a “constant” and referred to throughout the program by
name, not by value. For instance, the number of columns represent-
ing the width of your computer paper forms should be expressed as
a constant. Even assembly languages provide “EQU”s and labels for
associating values such as addresses and bit-patterns with names.

Any good programmer will also apply the concept of information-
hiding to the development of subroutines, ensuring that each module
knows as little as possible about the insides of other modules. Con-
temporary programming languages such as C, Modula 2, and Edison
apply this concept to the architecture of their procedures.

But Parnas takes the idea much further. He suggests that the
concept should be extended to algorithms and data structures. In

Information-Hiding 23

fact, hiding information—not decision-structure or calling-hierarchy—
should be the primary basis for design!

The Superficiality of Structure

Parnas proposes two criteria for decomposition:

1. possible (though currently unplanned) reuse, and
2. possible (though unplanned) change.

This new view of a “module” is different than the traditional view. This
“module” is a collection of routines, usually very small, which together
hide information about some aspect of the problem.

Two other writers describe the same idea in a different way, using the
term “data abstraction” [5]. Their example is a push-down stack. The
stack “module” consists of routines to initialize the stack, push a value
onto the stack, pop a value from the stack, and determine whether the
stack is empty. This “multiprocedure module” hides the information
of how the stack is constructed from the rest of the application. The
procedures are considered to be a single module because they are
interdependent. You can’t change the method for pushing a value
without also changing the method for popping a value.

The word uses plays an important role in this concept. Parnas

writes in a later paper [6]:

Systems that have achieved a certain “elegance”. . . have done so
by having parts of the system use other parts. . .

If such a hierarchical ordering exists then each level offers a testable
and usable subset of the system. . .

The design of the “uses” hierarchy should be one of the major mile-
stones in a design effort. The division of the system into indepen-
dently callable subprograms has to go in parallel with the decisions
about uses, because they influence each other.

The Superficiality of Structure 24

A design in which modules are grouped according to control flow or
sequence will not readily allow design changes. Structure, in the sense
of control-flow hierarchy, is superficial.

A design in which modules are grouped according to things that
may change can readily accommodate change.

Looking Back, and Forth

In this section we’ll review the fundamental features of Forth and relate
them to what we’ve seen about traditional methodologies.

Here’s an example of Forth code;

: BREAKFAST

HURRIED? IF CEREAL ELSE EGGS THEN CLEAN ;

This is structurally identical to the procedure MAKE-BREAKFAST on
page 11. (If you’re new to Forth, refer to Appendix A for an expla-
nation.) The words HURRIED?, CEREAL, EGGS, and CLEAN are (most
likely) also defined as colon definitions.

Up to a point, Forth exhibits all the traits we’ve studied: mnemonic
value, abstraction, power, structured control operators, strong func-
tional binding, limited coupling, and modularity. But regarding mod-
ularity, we encounter what may be Forth’s most significant break-
through:

The smallest atom of a Forth program is not a module or a subrou-
tine or a procedure, but a “word.”

Furthermore, there are no subroutines, main programs, utilities, or
executives, each of which must be invoked differently. Everything in
Forth is a word.

Before we explore the significance of a word-based environment, let’s
first study two Forth inventions that make it possible.

Looking Back, and Forth 25

Implicit Calls

First, calls are implicit. You don’t have to say CALL CEREAL, you
simply say CEREAL. In Forth, the definition of CEREAL “knows” what
kind of word it is and what procedure to use to invoke itself.

Thus variables and constants, system functions, utilities, as well
as any user-defined commands or data structures can all be “called”
simply by name.

Implicit Data Passing

Second, data passing is implicit. The mechanism that produces this
effect is Forth’s data stack. Forth automatically pushes numbers onto
the stack; words that require numbers as input automatically pop them
off the stack; words that produce numbers as output automatically
push them onto the stack. The words PUSH and POP do not exist in
high-level Forth.

Thus we can write:

: DOIT

GETC TRANSFORM-TO-D PUT-D ;

confident that GETC will get “C,” and leave it on the stack. TRANSFORM-TO-D
will pick up “C” from the stack, transform it, and leave “D” on the stack.
Finally, PUT-D will pick up “D” on the stack and write it. Forth elimi-
nates the act of passing data from our code, leaving us to concentrate
on the functional steps of the data’s transformation.

Because Forth uses a stack for passing data, words can nest within
words. Any word can put numbers on the stack and take them off
without upsetting the f1ow of data between words at a higher level
(provided, of course, that the word doesn’t consume or leave any unex-
pected values). Thus the stack supports structured, modular program-
ming while providing a simple mechanism for passing local arguments.

Implicit Calls 26

Forth eliminates from our programs the details of how words are
invoked and how data are passed. What’s left? Only the words that
describe our problem.

Having words, we can fully exploit the recommendations of Parnas—
to decompose problems according to things that may change, and have
each “module” consist of many small functions, as many as are needed
to hide information about that module. In Forth we can write as many
words as we need to do that, no matter how simple each of them may
be.

A line from a typical Forth application might read:

20 ROTATE LEFT TURRET

Few other languages would encourage you to concoct a subroutine
called LEFT, merely as a modifier, or a subroutine called TURRET,
merely to name part of the hardware.

Since a Forth word is easier to invoke than a subroutine (simply by
being named, not by being called), a Forth program is likely to be
decomposed into more words than a conventional program would be
into subroutines.

Component Programming

Having a larger set of simpler words makes it easy to use a tech-
nique we’ll call “component programming.” To explain, let’s first re-
examine these collections we have vaguely described as “things that
may change.” In a typical system, just about everything is subject to
change: I/O devices such as terminals and printers, interfaces such as
UART chips, the operating system, any data structure or data repre-
sentation, any algorithm, etc.

The question is: “How can we minimize the impact of any such
change? What is the smallest set of other things that must change
along with such a change?”

Component Programming 27

Figure 1.7: Structured design vs. component design.

The answer is: “The smallest set of interacting data structures and
algorithms that share knowledge about how they collectively work.”
We’ll call this unit a “component.”

A component is a resource. It may be a piece of hardware such as
a UART or a hardware stack. Or the component may be a software
resource such as a queue, a dictionary, or a software stack.

All components involve data objects and algorithms. It doesn’t mat-
ter whether the data object is physical (such as a hardware register),
or abstract (such as a stack location or a field in a data base). It
doesn’t matter whether the algorithm is described in machine code or
in problem-oriented words such as CEREAL and EGGS.

Component Programming 28

Figure 1.7 contrasts the results of structured design with the results
of designing by components. Instead of modules called READ-RECORD,
EDIT-RECORD, and WRITE-RECORD, we’re concerned with components
that describe the structure of records, provide a set of editor com-
mands, and provide read/write routines to storage.

What have we done? We’ve inserted a new stage in the develop-
ment process: We decomposed by components in our design, then
we described the sequence, hierarchy, and input-process-output in our
implementation. Yes, it’s an extra step, but we now have an extra
dimension for decomposition—not just slicing but dicing .

Suppose that, after the program is written, we need to change the
record structure. In the sequential, hierarchical design, this change
would affect all three modules. In the design by components, the
change would be confined to the record-structure component. No
code that uses this component needs to know of the change.

Aside from maintenance, an advantage to this scheme is that pro-
grammers on a team can be assigned components individually, with
less interdependence. The principle of component programming ap-
plies to team management as well as to software design. We’ll call
the set of words which describe a component a “lexicon.” (One mean-
ing of lexicon is “a set of words pertaining to a particular field of
interest.”) The lexicon is your interface with the component from the
outside (Figure 1.8).

In this book, the term “lexicon” refers only to those words of a com-
ponent that are used by name outside of a component. A component
may also contain definitions written solely to support the externally
visible lexicon. We’ll call the supporting definitions “internal” words.

The lexicon provides the logical equivalents to the data objects and
algorithms in the form of names. The lexicon veils the component’s
data structures and algorithms—the “how it works.” It presents to the
world only a “conceptual model” of the component described in simple
words—the “what it does.”

Component Programming 29

Figure 1.8: A lexicon describes a component.

These words then become the language for describing the data struc-
tures and algorithms of components written at a a higher level. The
“what” of one component becomes the “how” of a higher component.

Written in Forth, an entire application consists of nothing but com-
ponents. Figure 1.9 shows how a robotics application might be de-
composed.

You could even say that each lexicon is a special-purpose compiler,
written solely for the purpose of supporting higher-level application
code in the most efficient and reliable way.

By the way, Forth itself doesn’t support components. It doesn’t
need to. Components are the product of the program designer’s de-
composition. (Forth does have “screens,” however—small units of
mass storage for saving source code. A component can usually be
written in one or two screens of Forth.)

It’s important to understand that a lexicon can be used by any and
all of the components at higher levels. Each successive component
does not bury its supporting components, as is often the case with
layered approaches to design. Instead, each lexicon is free to use all of
the commands beneath it. The robot-movement command relies on

Component Programming 30

Figure 1.9: The entire application consists of components.

the root language, with its variables, constants, stack operators, math
operators, and so on, as heavily as any other component.

An important result of this approach is that the entire application
employs a single syntax, which makes it easy to learn and maintain.
This is why I use the term “lexicon” and not “language.” Languages
have unique syntaxes.

This availability of commands also makes the process of testing
and debugging a whole lot easier. Because Forth is interactive, the
programmer can type and test the primitive commands, such as

RIGHT SHOULDER 20 PIVOT

Component Programming 31

from the “outside” as easily as the more powerful ones like

LIFT COFFEE-POT

At the same time, the programmer can (if he or she wants) deliberately
seal any commands, including Forth itself, from being accessed by the
end user, once the application is complete.

Now Forth’s methodology becomes clear. Forth programming con-
sists of extending the root language toward the application, providing
new commands that can be used to describe the problem at hand.

Programming languages designed especially for particular applica-
tions such as robotics, inventory control, statistics, etc., are known as
“application-oriented languages.” Forth is a programming environment
for creating application-oriented languages. (That last sentence may
be the most succinct description of Forth that you’ll find.)

In fact, you shouldn’t write any serious application in Forth; as a
language it’s simply not powerful enough. What you should do is write
your own language in Forth (lexicons) to model your understanding of
the problem, in which you can elegantly describe its solution.

Hide From Whom?

Because modern mainstream languages give a slightly different mean-
ing to the phrase “information-hiding,” we should clarify. From what,
or whom are we hiding information?

The newest traditional languages (such as Modula 2) bend over
backwards to ensure that modules hide internal routines and data
structures from other modules. The goal is to achieve module inde-
pendence (a minimum coupling). The fear seems to be that modules
strive to attack each other like alien antibodies. Or else, that evil
bands of marauding modules are out to clobber the precious family
data structures.

Hide From Whom? 32

This is not what we’re concerned about. The purpose of hiding
information, as we mean it, is simply to minimize the effects of a
possible design-change by localizing things that might change within
each component.

Forth programmers generally prefer to keep the program under their
own control and not to employ any techniques to physically hide data
structures. (Nevertheless a brilliantly simple technique for adding
Modula-type modules to Forth has been implemented, in only three
lines of code, by Dewey Val Shorre [7].)

Hiding the Construction of Data Structures

We’ve noted two inventions of Forth that make possible the methodol-
ogy we’ve described—implicit calls and implicit data passing. A third
feature allows the data structures within a component to be described
in terms of previously-defined components. This feature is direct ac-
cess memory.

Suppose we define a variable called APPLES, like this:

VARIABLE APPLES

We can store a number into this variable to indicate how many apples
we currently have:

20 APPLES !

We can display the contents of the variable:

APPLES ? 20 ok

We can up the count by one:

1 APPLES +!

Hiding the Construction of Data Structures 33

(The newcomer can study the mechanics of these phrases in Appendix
A.)

The word APPLES has but one function: to put on the stack the
address of the memory location where the tally of apples is kept. The
tally can be thought of as a “thing,” while the words that set the tally,
read the tally, or increment the tally can be considered as “actions.”

Forth conveniently separates “things” from “actions” by allowing ad-
dresses of data structures to be passed on the stack and providing the
“fetch” and “store” commands.

We’ve discussed the importance of designing around things that
may change. Suppose we’ve written a lot of code using this variable
APPLES. And now, at the eleventh hour, we discover that we must
keep track of two different kinds of apples, red and green!

We needn’t wring our hands, but rather remember the function of
APPLES: to provide an address. If we need two separate tallies, APPLES
can supply two different addresses depending on which kind of apple
we’re currently talking about. So we define a more complicated version
of APPLES as follows:

VARIABLE COLOR (pointer to current tally)

VARIABLE REDS (tally of red apples)

VARIABLE GREENS (tally of green apples)

: RED (set apple-type to RED) REDS COLOR ! ;

: GREEN (set apple-type to GREEN) GREENS COLOR ! ;

: APPLES (-- adr of current apple tally) COLOR @ ;

Here we’ve redefined APPLES.Now it fetches the contents of a variable
called COLOR. COLOR is a pointer, either to the variable REDS or to
the variable GREENS. These two variables are the real tallies.

If we first say RED, then we can use APPLES to refer to red apples.
If we say GREEN, we can use it to refer to green apples (Figure 1.10).

We didn’t need to change the syntax of any existing code that uses
APPLES. We can still say

Hiding the Construction of Data Structures 34

Figure 1.10: Changing the indirect pointer.

20 APPLES !

and

1 APPLES +!

Look again at what we did. We changed the definition of APPLES

from that of a variable to a colon definition, without affecting its
usage. Forth allows us to hide the details of how APPLES is defined
from the code that uses it. What appears to be “thing” (a variable) to
the original code is actually defined as an “action” (a colon definition)
within the component.

Forth encourages the use of abstract data types by allowing data
structures to be defined in terms of lower level components. Only
Forth, which eliminates the CALLs from procedures, which allows ad-
dresses and data to be implicitly passed via the stack, and which
provides direct access to memory locations with @ and !, can offer
this level of information-hiding.

Forth pays little attention to whether something is a data structure
or an algorithm. This indifference allows us programmers incredible

Hiding the Construction of Data Structures 35

freedom in creating the parts of speech we need to describe our appli-
cations.

I tend to think of any word which returns an address, such as
APPLES, as a “noun,” regardless of how it’s defined. A word that
performs an obvious action is a “verb.”

Words such as RED and GREEN in our example can only be called
“adjectives” since they modify the function of APPLES. The phrase

RED APPLES ?

is different from

GREEN APPLES ?

Forth words can also serve as adverbs and prepositions. There’s little
value in trying to determine what part of speech a particular word
is, since Forth doesn’t care anyway. We need only enjoy the ease of
describing an application in natural terms.

But Is It a High-Level Language?

In our brief technical overview, we noted that traditional high-level
languages broke away from assembly-language by eliminating not only
the one-for-one correspondence between commands and machine op-
erations, but also the linear correspondence. Clearly Forth lays claim
to the first difference; but regarding the second, the order of words
that you use in a definition is the order in which those commands are
compiled.

Does this disqualify Forth from the ranks of high-level languages?
Before we answer, let’s explore the advantages of the Forth approach.

Here’s what Charles Moore, the inventor of Forth, has to say:

But Is It a High-Level Language? 36

Two points of view.

You define each word so that the computer knows what it means.
The way it knows is that it executes some code as a consequence
of being invoked. The computer takes an action on every word. It
doesn’t store the word away and keep it in mind for later.

In a philosophical sense I think this means that the computer “un-
derstands” a word. It understands the word DUP, perhaps more
profoundly than you do, because there’s never any question in its
mind what DUP means.

The connection between words that have meaning to you and words
that have meaning to the computer is a profound one. The com-
puter becomes the vehicle for communication between human being
and concept.

One advantage of the correspondence between source code and ma-
chine execution is the tremendous simplification of the compiler and
interpreter. This simplification improves performance in several ways,
as we’ll see in a later section.

From the standpoint of programming methodology, the advantage
to the Forth approach is that new words and new syntaxes can easily
be added. Forth cannot be said to be “looking” for words—it finds
words and executes them. If you add new words Forth will find and
execute them as well. There’s no difference between existing words
and words that you add.

What’s more, this “extensibility” applies to all types of words, not
just action-type functions. For instance, Forth allows you to add new
compiling words—like IF and THEN that provide structured control
flow. You can easily add a case statement or a multiple-exit loop if
you need them, or, just as importantly, take them out if you don’t
need them.

By contrast, any language that depends on word order to understand
a statement must “know” all legal words and all legal combinations.
Its chances of including all the constructs you’d like are slim. The

But Is It a High-Level Language? 38

language exists as determined by its manufacturer; you can’t extend
its knowledge.

Laboratory researchers cite flexibility and extensibility as among
Forth’s most important benefits in their environment. Lexicons can
be developed to hide information about the variety of test equipment
attached to the computer. Once this work has been done by a more
experienced programmer, the researchers are free to use their “software
toolbox” of small words to write simple programs for experimentation.
As new equipment appears, new lexicons are added.

Mark Bernstein has described the problem of using an off-the-
shelf special-purpose procedure library in the laboratory [8]: “The com-
puter, not the user, dominates the experiment.” But with Forth, he
writes, “the computer actually encourages scientists to modify, repair,
and improve the software, to experiment with and characterize their
equipment. Initiative becomes once more the prerogative of the re-
searcher.”

For those purists who believe Forth isn’t fit to be called a high-
level language, Forth makes matters even worse. While strong syntax
checking and data typing are becoming one of the major thrusts of
contemporary programming languages, Forth does almost no syntax
checking at all. In order to provide the kind of freedom and flexibility
we have described, it cannot tell you that you meant to type RED

APPLES instead of APPLES RED. You have just invented syntax!
Yet Forth more than makes up for its omission by letting you compile

each definition, one at a time, with turnaround on the order of seconds.
You discover your mistake soon enough when the definition doesn’t
work. In addition, you can add appropriate syntax checking in your
definitions if you want to.

An artist’s paintbrush doesn’t notify the artist of a mistake; the
painter will be the judge of that. The chef’s skillet and the composer’s
piano remain simple and yielding. Why let a programming language
try to out think you?

But Is It a High-Level Language? 39

Two solutions to the problem of security.

So is Forth a high-level language? On the question of syntax check-
ing, it strikes out. On the question of abstraction and power, it seems
to be of infinite level—supporting everything from bit manipulation at
an output port to business applications.

You decide. (Forth doesn’t care.)

The Language of Design

Forth is a design language. To the student of traditional computer
science, this statement is self-contradictory. “One doesn’t design with
a language, one implements with a language. Design precedes imple-
mentation.”

Experienced Forth programmers disagree. In Forth you can write
abstract, design-level code and still be able to test it at any time by
taking advantage of decomposition into lexicons. A component can
easily be rewritten, as development proceeds, underneath any compo-
nents that use it. At first the words in a component may print numbers
on your terminal instead of controlling stepper motors. They may print
their own names just to let you know they’ve executed. They may do
nothing at all.

Using this philosophy you can write a simple but testable version of
your application, then successively change and refine it until you reach
your goal.

Another factor that makes designing in code possible is that Forth,
like some of the newer languages, eliminates the “batch-compile” devel-
opment sequence (edit-compile-test-edit-compile-test). Because the
feedback is instantaneous, the medium becomes a partner in the cre-
ative process. The programmer using a batch-compiler language can
seldom achieve the productive state of mind that artists achieve when
the creative current flows unhindered.

For these reasons, Forth programmers spend less time planning than
their classical counterparts, who feel righteous about planning. To

The Language of Design 41

them, not planning seems reckless and irresponsible. Traditional envi-
ronments force programmers to plan because traditional programming
languages do not readily accommodate change.

Unfortunately, human foresight is limited even under the best con-
ditions. Too much planning becomes counterproductive.

Of course Forth doesn’t eliminate planning. It allows prototyping.
Constructing a prototype is a more refined way to plan, just as bread-
boarding is in electronic design.

As we’ll see in the next chapter, experimentation proves more reli-
able in arriving at the truth than the guesswork of planning.

The Language of Performance

Although performance is not the main topic of this book, the new-
comer to Forth should be reassured that its advantages aren’t purely
philosophical. Overall, Forth outdoes all other high-level languages in
speed, capability and compactness.

Speed

Although Forth is an interpretive language, it executes compiled code.
Therefore it runs about ten times faster than interpretive BASIC.

Forth is optimized for the execution of words by means of a tech-
nique known as “threaded code” [9], [10], [11]. The penalty for mod-
ularizing into very small pieces of code is relatively slight.

It does not run as fast as assembler code because the inner inter-
preter (which interprets the list of addresses that comprise each colon
definition) may consume up to 50% of the run time of primitive words,
depending on the processor.

But in large applications, Forth comes very close to the speed of
assembler. Here are three reasons:

First and foremost, Forth is simple. Forth’s use of a data stack
greatly reduces the performance cost of passing arguments from word

The Language of Performance 42

to word. In most languages, passing arguments between modules is
one of the main reasons that the use of subroutines inhibits perfor-
mance.

Second, Forth allows you to define words either in high-level or in
machine language. Either way, no special calling sequence is needed.
You can write a new definition in high level and, having verified that
it is correct, rewrite it in assembler without changing any of the code
that uses it. In a typical application, perhaps 20% of the code will
be running 80% of the time. Only the most often used, time-critical
routines need to be machine coded. The Forth system itself is largely
implemented in machine-code definitions, so you’ll have few applica-
tion words that need to be coded in assembler.

Third, Forth applications tend to be better designed than those
written entirely in assembler. Forth programmers take advantage of
the language’s prototyping capabilities and try out several algorithms
before settling on the one best suited for their needs. Because Forth
encourages change, it can also be called the language of optimization.

Forth doesn’t guarantee fast applications. It does give the program-
mer a creative environment in which to design fast applications.

Capability

Forth can do anything any other language can do—usually easier.
At the low end, nearly all Forth systems include assemblers. These

support control-structure operators for writing conditionals and loops
using structured programming techniques. They usually allow you to
write interrupts—you can even write interrupt code in high level if
desired.

Some Forth systems are multitasked, allowing you to add as many
foreground or background tasks as you want.

Forth can be written to run on top of any operating system such as
RT-11, CP/M, or MS-DOS—or, for those who prefer it, Forth can be

Capability 43

The best top-down designs of mice and young men.

written as a self-sufficient operating system including its own terminal
drivers and disk drivers.

With a Forth cross-compiler or target compiler, you can use Forth
to recreate new Forth systems, for the same computer or for different
computers. Since Forth is written in Forth, you have the otherwise un-
thinkable opportunity to rewrite the operating system according to the
needs of your application. Or you can transport streamlined versions
of applications over to embedded systems.

Size

There are two considerations here: the size of the root Forth system,
and the size of compiled Forth applications.

The Forth nucleus is very flexible. In an embedded application, the
part of Forth you need to run your application can fit in as little as
1K. In a full development environment, a multitasked Forth system
including interpreter, compiler, assembler, editor, operating system,
and all other support utilities averages 16K. This leaves plenty of room
for applications. (And some Forths on the newer processors handle 32-
bit addressing, allowing unimaginably large programs.)

Similarly, Forth compiled applications tend to be very small—usually
smaller than equivalent assembly language programs. The reason,
again, is threaded code. Each reference to a previously defined word,
no matter how powerful, uses only two bytes.

One of the most exciting new territories for Forth is the production of
Forth chips such as the Rockwell R65F11 Forth-based microprocessor
[12]. The chip includes not only hardware features but also the run-
time portions of the Forth language and operating system for dedicated
applications. Only Forth’s architecture and compactness make Forth-
based micros possible.

Size 45

Summary

Forth has often been characterized as offbeat, totally unlike any other
popular language in structure or in philosophy. On the contrary, Forth
incorporates many principles now boasted by the most contemporary
languages. Structured design, modularity, and information-hiding are
among the buzzwords of the day.

Some newer languages approach even closer to the spirit of Forth.
The language C, for instance, lets the programmer define new functions
either in C or in assembly language, as does Forth. And as with Forth,
most of C is defined in terms of functions.

But Forth extends the concepts of modularity and information-hiding
further than any other contemporary language. Forth even hides the
manner in which words are invoked and the way local arguments are
passed.

The resulting code becomes a concentrated interplay of words, the
purest expression of abstract thought. As a result, Forth programmers
tend to be more productive and to write tighter, more efficient, and
better maintainable code.

Forth may not be the ultimate language. But I believe the ultimate
language, if such a thing is possible, will more closely resemble Forth
than any other contemporary language.

References

[1] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Struc-
tured Programming, London, Academic Press, 1972.

[2] Niklaus Wirth, “Program Development by Stepwise Refine-
ment,” Communications of ACM, 14, No. 4 (1971), 221-27.

[3] W. P. Stevens, G. J. Myers, and L. L. Constantine,
“Structured Design,” IBM Systems Journal, Vol. 13, No. 2, 1974.

Summary 46

[4] David L. Parnas, “On the Criteria To Be Used in Decomposing
Systems into Modules,” Communications of the ACM, December
1972.

[5] Barbara H. Liskov and Stephen N. Zilles, “Specification
Techniques for Data Abstractions,” IEEE Transactions on Soft-
ware Engineering, March 1975.

[6] David L. Parnas, “Designing Software for Ease of Extension
and Contraction,” IEEE Transactions on Software Engineering,
March 1979.

[7] Dewey Val Shorre, “Adding Modules to Forth,” 1980
FORML Proceedings, p. 71.

[8] Mark Bernstein, “Programming in the Laboratory,” unpub-
lished paper, 1983.

[9] James R. Bell, “Threaded Code,” Communications of ACM,
Vol. 16, No. 6, 370-72.

[10] Robert B. K. DeWar, “Indirect Threaded Code,” Communi-
cations of ACM, Vol. 18, No. 6, 331.

[11] Peter M. Kogge, “An Architectural Trail to Threaded-Code
Systems,” Computer, March, 1982.

[12] Randy Dumse, “The R65F11 Forth Chip,” Forth Dimensions,
Vol. 5, No. 2, p. 25.

References 47

TWO

Analysis

Anyone who tells you there is some definite number of phases to the
software development cycle is a fool.

Nevertheless . . .

The Nine Phases of the Programming Cycle

As we’ve seen, Forth integrates aspects of design with aspects of im-
plementation and maintenance. As a result, the notion of a “typical
development cycle” makes as much sense as a “typical noise.”

But any approach is better than no approach, and indeed, some
approaches have worked out better than others. Here is a development
cycle that represents an “average” of the most successful approaches
used in software projects:

Analysis

1. Discover the Requirements and Constraints
2. Build a Conceptual Model of the Solution
3. Estimate Cost/Schedule/Performance

Engineering

4. Preliminary Design

The Nine Phases of the Programming Cycle 49

5. Detailed Design
6. Implementation

Usage

7. Optimization
8. Validation and Debugging
9. Maintenance

In this book we’ll treat the first six stages of the cycle, focusing on
analysis, design, and implementation.

In a Forth project the phases occur on several levels. Looking at a
project from the widest perspective, each of these steps could take a
month or more. One step follows the next, like seasons.

But Forth programmers also apply these same phases toward defin-
ing each word. The cycle then repeats on the order of minutes.

Developing an application with this rapid repetition of the program-
ming cycle is known as using the “Iterative Approach.”

The Iterative Approach

The iterative approach was explained eloquently by Kim Harris [1].
He begins by describing the scientific method:

. . . a never-ending cycle of discovery and refinement. It first stud-
ies a natural system and gathers observations about its behavior.
Then the observations are modeled to produce a theory about the
natural system. Next, analysis tools are applied to the model, which
produces predictions about the real system’s behavior. Experiments
are devised to compare actual behavior to the predicted behavior.
The natural system is again studied, and the model is revised.

The goal of the method is to produce a model which accurately
predicts all observable behavior of the natural system.

The Iterative Approach 50

Harris then applies the scientific method to the software develop-
ment cycle, illustrated in Figure 2.1:

1. A problem is analyzed to determine what functions are required
in the solution.

2. Decisions are made about how to achieve those functions with
the available resources.

3. A program is written which attempts to implement the design.

4. The program is tested to determine if the functions were imple-
mented correctly.

Mr. Harris adds:

Software development in Forth seeks first to find the simplest so-
lution to a given problem. This is done by implementing selected
parts of the problem separately and by ignoring as many constraints
as possible. Then one or a few constraints are imposed and the
program is modified.

Figure 2.1: The iterative approach to the software development cycle,
from “The Forth Philosophy,” by Kim Harris, Dr. Dobb’s Journal.

The Iterative Approach 51

An excellent testimonial to the development/testing model of design
is evolution. From protozoa to tadpoles to people, each species along
the way has consisted of functional, living beings. The Creator does
not appear to be a top-down designer.

2.1

Tip

Start simple. Get it running. Learn what you’re trying to do.
Add complexity gradually, as needed to fit the requirements and
constraints. Don’t be afraid to restart from scratch.

The Value of Planning

In the nine phases at the start of this chapter we listed five steps before
“implementation.” Yet in Chapter One we saw that an overindulgence
in planning is both difficult and pointless.

Clearly you can’t undertake a significant software project—regardless
of the language—without some degree of planning. Exactly what de-
gree is appropriate?

More than one Forth programmer has expressed high regard for Dave

Johnson’s meticulous approach to planning. Johnson is supervisor
at Moore Products Co. in Springhouse, Pennsylvania. The firm spe-
cializes in industrial instrumentation and process control applications.
Dave has been using Forth since 1978.

He describes his approach:

Compared with many others that use Forth, I suppose we take a
more formal approach. I learned this the hard way, though. My lack
of discipline in the early years has come back to haunt me.

We use two tools to come up with new products: a functional
specification and a design specification. Our department of Sales

The Value of Planning 52

& Applications comes up with the functional specification, through
customer contact.

Once we’ve agreed on what we’re going to do, the functional spec-
ification is turned over to our department. At that point we work
through a design, and come up with the design specification.

Up to this point our approach is no different from programming in
any language. But with Forth, we go about designing somewhat
differently. With Forth you don’t have to work 95% through your
design before you can start coding, but rather 60% before you can
get into the iterative process.

A typical project would be to add a functional enhancement to
one of our products. For example, we have an intelligent terminal
with disk drives, and we need certain protocols for communicating
with another device. The project to design the protocols, come up
with displays, provide the operator interfaces, etc. may take several
months. The functional specification takes a month; the design
specification takes a month; coding takes three months; integration
and testing take another month.

This is the typical cycle. One project took almost two years, but six
or seven months is reasonable.

When we started with Forth five years ago, it wasn’t like that. When
I received a functional specification, I just started coding. I used a
cross between top-down and bottom-up, generally defining a struc-
ture, and as I needed it, some of the lower level, and then returning
with more structure.

The reason for that approach was the tremendous pressure to show
something to management. We wound up never writing down what
we were doing. Three years later we would go back and try to modify
the code, without any documentation. Forth became a disadvantage
because it allowed us to go in too early. It was fun to make the

The Value of Planning 53

lights flash and disk drives hum. But we didn’t go through the nitty-
gritty design work. As I said, our “free spirits” have come back to
haunt us.

Now for the new programmers, we have an established requirement:
a thorough design spec that defines in detail all the high-level Forth
words—the tasks that your project is going to do. No more reading
a few pages of the functional specification, answering that, reading
a few more, answering that, etc.

No living programmer likes to document. By ensuring the design
ahead of time, we’re able to look back several years later and re-
member what we did.

I should mention that during the design phase there is some amount
of coding done to test out certain ideas. But this code may not be
part of the finished product. The idea is to map out your design.

Johnson advises us to complete the design specification before start-
ing to code, with the exception of needed preliminary tests. The next
interview backs up this point, and adds some additional reasons.

John Teleska has been an independent software consultant since
1976, specializing in custom applications for academic research envi-
ronments. He enjoys providing research tools “right at the edge of
what technology is able to do.” Teleska works in Rochester, New
York:

I see the software development process as having two phases. The
first is making sure I understand what the problem is. The second
is implementation, including debugging, verification, etc.

My goal in Phase One is an operational specification. I start with
a problem description, and as I proceed it becomes the operational
specification. My understanding of the problem metamorphoses into
a solution. The better the understanding, the more complete the

The Value of Planning 54

solution. I look for closure; a sense of having no more questions
that aren’t answered in print.

I’ve found that on each project I’ve been putting more time into
Phase One, much to the initial dismay of many of my clients. The
limiting factor is how much I can convince the client it’s necessary
to spend that time up front. Customers generally don’t know the
specifications for the job they want done. And they don’t have the
capital—or don’t feel they do—to spend on good specs. Part of my
job is to convince them it will end up costing more time and money
not to.

Some of Phase One is spent on feasibility studies. Writing the spec
unearths uncertainties. I try to be as uncertain about uncertainties
as possible. For instance, they may want to collect 200,000 samples
a second to a certain accuracy. I first need to find out if it’s even
possible with the equipment they’ve got. In this case I’ve got to
test its feasibility by writing a patch of code.

Another reason for the spec is to cover myself. In case the appli-
cation performs to the spec but doesn’t fully satisfy the customer,
it’s the customer’s responsibility. If the customer wants more, we’ll
have to renegotiate. But I see it as the designer’s responsibility to
do whatever is necessary to generate an operational specification
that will do the job to the customer’s satisfaction.

I think there are consultants who bow to client pressure and limit
the time they spend on specs, for fear of losing the job. But in these
situations nobody ends up happy.

We’ll return to the Teleska interview momentarily.

The Value of Planning 55

The Limitations of Planning

Experience has taught us to map out where we’re going before we
begin coding. But planning has certain limitations. The following
interviews give different perspectives to the value of planning.

Despite Teleska’s preference for a well-planned project, he suggests
that the choice between a top-down and bottom-up approach may
depend on the situation:

On two recent projects involving a lot of technical interface work, I
did the whole thing bottom-up. I milled around in a bunch of data-
sheets and technical descriptions of little crannies of the operating
system I was dealing with. I felt lost most of the time, wondering
why I ever took the job on. Then finally I reached a critical mass
of some sort and began putting small programs together that made
small things happen. I continued, bottom-up, until I matched the
target application.

My top-down sense was appalled at this procedure. But I’ve seen
me go through this process successfully too many times to discount
it for any pedagogical reasons. And there is always this difficult
phase which it seems no amount of linear thinking will penetrate.
Programming seems a lot more intuitive than we, in this business,
tell each other it ought to be.

I think if the application elicits this sense of being lost, I proceed
bottom-up. If the application is in familiar territory then I’ll probably
use a more traditional by-the-book approach.

And here’s another view:

At the time I interviewed him, Michael Starling of Union Car-
bide was putting the final touches on two applications involving user-
configurable laboratory automation and process control automation

The Limitations of Planning 56

systems. For the pilot plant system, Starling designed both the
hardware and software to known requirements; on the laboratory au-
tomation system he also defined the requirements himself.

His efforts were extremely successful. On one project, the new sys-
tem typically costs only 20% as much as the equivalent system and
requires days, instead of months, to install and configure.

I asked him what techniques of project management he employed.

On both of these projects much design was needed. I did not follow
the traditional analysis methods, however. I did employ these steps:

First, I clearly defined the boundaries of the problem.

Second, I determined what the smaller functional pieces, the soft-
ware subsystems, had to be.

Third, I did each piece, put them together, and the system ran.

Next, I asked the users “Does this meet your requirements?” Some-
times it didn’t, and in ways that neither the users nor the specifica-
tion designers could have anticipated.

For instance, the designers didn’t realize that the original specifi-
cation wouldn’t produce pleasing, human-oriented graphics displays.
After working with the interactive graphics on the first version, users
were applying arbitrary scales and coming up with oddball displays.

So even after the basic plot algorithm was designed, we realized we
needed auto-scaling. We went back in and analyzed how human
beings plot data and wrote a first level plot function that evaluates
the x and y data and how much will fit on the graph.

After that, we realized that not all the data taken will be of interest
to experimenters. So we added a zoom capability.

This iterative approach resulted in cleaner code and better thought
out code. We established a baseline set of goals and built a minimal

The Limitations of Planning 57

system to the users’ known requirements. Then we’d crank in the
programmer’s experience to improve it and determine what the users
forgot they needed when they generated the specs.

The users did not invent most of the new ideas. The programmers
did, and they would bounce these ideas off the users. The problem
definition was a two-way street. In some cases they got things
they didn’t know they could do on such a small computer, such as
applying digital filters and signal processing to the data.

One of the things about Forth that makes this approach possible
is that primitives are easily testable. It takes some experience with
Forth to learn how to take advantage of this. Guys from traditional
environments want to write ten pages of code at their desk, then
sit down to type it in and expect it to work.

To summarize my approach: I try to find out from the users what
they need, but at the same time recognizing its incompleteness.
Then I keep them involved in the design during the implementation,
since they have the expertise in the application. When they see the
result, they feel good because they know their ideas were involved.

The iterative approach places highest value on producing a good
solution to the real problem. It may not always give you the most
predictable software costs. The route to a solution may depend
upon your priorities. Remember:

Good

Fast

Cheap

Pick any two!

As Starling observes, you don’t know completely what you’re doing
till you’ve done it once. In my own experience, the best way to write

The Limitations of Planning 58

an application is to write it twice. Throw away the first version and
chalk it up to experience.

Peter Kogge is Senior Technical Staff in the IBM Federal Systems
Division, Oswego, New York:

One of the key advantages I find in Forth is that it allows me to very
quickly prototype an application without all the bells and whistles,
and often with significant limitations, but enough to wring out the
“human interface” by hands-on trial runs.

When I build such a prototype, I do so with the firm constraint
that I will use not a single line of code from the prototype in the
final program. This enforced “do-over” almost always results in far
simpler and more elegant final programs, even when those programs
are written in something other than Forth.

Our conclusions? In the Forth environment planning is necessary. But
it should be kept short. Testing and prototyping are the best ways to
discover what is really needed.

A word of caution to project managers: If you’re supervising any
experienced Forth programmers, you won’t have to worry about them
spending too much time on planning. Thus the following tip has two
versions:

2.2

Tip

For newcomers to Forth (with “traditional” backgrounds): Keep
the analysis phase to a minimum.

For Forth addicts (without a “traditional” background): Hold off
on coding as long as you can possibly stand it.

Or, as we observed in Chapter One:

The Limitations of Planning 59

2.3

Tip

Plan for change (by designing components that can be changed).

Or, simply:

2.4

Tip

Prototype.

The Analysis Phase

In the remainder of this chapter we’ll discuss the analysis phase. Anal-
ysis is an organized way of understanding and documenting what the
program should do.

With a simple program that you write for yourself in less than an
hour, the analysis phase may take about 250 microseconds. At the
other extreme, some projects will take many man-years to build. On
such a project, the analysis phase is critical to the success of the entire
project.

We’ve indicated three parts to the analysis phase:

1. Discovering the requirements and constraints

2. Building a conceptual model of the solution

3. Estimating cost, scheduling, and performance

Let’s briefly describe each part:

Discovering the Requirements

The first step is to determine what the application should do. The
customer, or whoever wants the system, should supply a “requirements

The Analysis Phase 60

specification.” This is a modest document that lists the minimum
capabilities for the finished product.

The analyst may also probe further by conducting interviews and
sending out questionnaires to the users.

Discovering the Constraints

The next step is to discover any limiting factors. How important is
speed? How much memory is available? How soon do you need it?

No matter how sophisticated our technology becomes, programmers
will always be bucking limitations. System capacities inexplicably di-
minish over time. The double-density disk drives that once were the
answer to my storage prayers no longer fill the bill. The double-sided,
double-density drives I’ll get next will seem like a vast frontier—for a
while. I’ve heard guys with 10-megabyte hard disks complain of feeling
cramped.

Whenever there’s a shortage of something—and there always will
be—tradeoffs have to be made. It’s best to use the analysis phase to
anticipate most limitations and decide which tradeoffs to make.

On the other hand, you should not consider other types of con-
straints during analysis, but should instead impose them gradually
during implementation, the way one stirs flour into gravy.

The type of constraint to consider during analysis includes those that
might affect the overall approach. The type to defer includes those
that can be handled by making iterative refinements to the planned
software design.

As we heard in our earlier interviews, finding out about hardware
constraints often requires writing some test code and trying things
out.

Finding out about the customer’s constraints is usually a matter of
asking the customer, or of taking written surveys. “How fast do you
need such-and-such, on a scale of one to ten?”, etc.

Discovering the Constraints 61

Building a Conceptual Model of the Solution

A conceptual model is an imaginary solution to the problem. It is a
view of how the system appears to work. It is an answer to all the
requirements and constraints.

If the requirements definition is for “something to stand on to paint
the ceiling,” then a description of the conceptual model is “a device
that is free-standing (so you can paint the center of the room), with
several steps spaced at convenient intervals (so you can climb up and
down), and having a small shelf near the top (to hold your paint can).”

A conceptual model is not quite a design, however. A design begins
to describe how the system really works. In design, the image of a
step ladder would begin to emerge.

Forth blurs the distinction a little, because all definitions are written
in conceptual terms, using the lexicons of lower level components. In
fact, later in this chapter we’ll use Forth “pseudocode” to describe
conceptual model solutions.

Nevertheless, it’s useful to make the distinction. A conceptual
model is more flexible than a design. It’s easier to fit the requirements
and constraints into the model than into a design.

2.5

Tip

Strive to build a solid conceptual model before beginning the
design.

Analysis consists of expanding the requirements definition into a con-
ceptual model. The technique involves two-way communication with
the customer in successive attempts to describe the model.

Like the entire development cycle, the analysis phase is best ap-
proached iteratively. Each new requirement will tend to suggest some-
thing in your mental model. Your job is to juggle all the requirements
and constraints until you can weave a pattern that fits the bill.

Building a Conceptual Model of the Solution 62

Refining the conceptual model to meet requirements and constraints.

Figure 2.2 illustrates the iterative approach to the analysis phase.
The final step is one of the most important: show the documented
model to the customer. Use whatever means of communication are
necessary—diagrams, tables, or cartoons—to convey your understand-
ing to the customer and get the needed feedback. Even if you cycle
through this loop a hundred times, it’s worth the effort.

In the next three sections we’ll explore three techniques for defining
and documenting the conceptual model:

1. defining the interfaces

2. defining the rules

3. defining the data structures.

Defining the Interfaces

2.6

Tip

First, and most importantly, the conceptual model should de-
scribe the system’s interfaces.

Figure 2.2: An iterative approach to analysis.

Defining the Interfaces 64

Teleska:

The “spec” basically deals with WHAT. In its most glorious form, it
describes what the system would look like to the user—you might
call it the user’s manual. I find I write more notes on the human
interaction—what it will look like on the outside—than on the part
that gets the job done. For instance, I’ll include a whole error-action
listing to show what happens when a particular error occurs. Oddly,
this is the part that takes the most time to implement anyway.

I’m currently working on a solid-state industrial washing-machine
timer. In this case, the user interface is not that complex. What is
complex is the interface to the washing machine, for which I must
depend on the customer and the documentation they can provide.

The significant interface is whatever is the arms and legs of the prod-
uct. I don’t make the distinction between hardware and software at
this early stage. They can be interchanged in the implementation.

The process of designing hardware and the process of designing
software are analogous. The way I design hardware is to treat it as
a black box. The front panel is input and output. You can do the
same with software.

I use any techniques, diagrams, etc., to show the customer what
the inputs and outputs look like, using his description of what the
product has to do. But in parallel, in my own mind, I’m imagining
how it will be implemented. I’m evaluating whether I can do this
efficiently. So to me it’s not a black box, it’s a gray box. The
designer must be able to see inside the black boxes.

When I design a system that’s got different modules, I try to make
the coupling as rational and as little as possible. But there’s always
give and take, since you’re compromising the ideal.

Defining the Interfaces 65

For the document itself, I use DFDs [data-flow diagrams, which
we’ll discuss later], and any other kind of representation that I can
show to my client. I show them as many diagrams as I can to
clarify my understanding. I don’t generally use these once it comes
to implementation. The prose must be complete, even without
reference to the diagrams.

2.7

Tip

Decide on error- and exception-handling early as part of defining
the interface.

It’s true that when coding for oneself, a programmer can often concen-
trate first on making the code run correctly under normal conditions,
then worry about error-handling later. When working for someone else,
however, error-handling should be worked out ahead of time. This is
an area often overlooked by the beginning programmer.

The reason it’s so important to decide on error-handling at this
stage is the wide divergence in how errors can be treated. An error
might be:

• ignored

• made to set a flag indicating that an error occurred, while pro-
cessing continues

• made to halt the application immediately

• designed to initiate procedures to correct the problem and keep
the program running.

There’s room for a serious communications gap if the degree of com-
plexity required in the error-handling is not nailed down early. Obvi-
ously, the choice bears tremendous impact on the design and imple-
mentation of the application.

Defining the Interfaces 66

2.8

Tip

Develop the conceptual model by imagining the data traveling
through and being acted upon by the parts of the model.

A discipline called structured analysis [2] offers some techniques for de-
scribing interfaces in ways that your clients will easily understand. One
of these techniques is called the “data-flow diagram” (DFD), which
Teleska mentioned.

Figure 2.3: A data-flow diagram.

A data-flow diagram, such as the one depicted in Figure 2.3, empha-
sizes what happens to items of data as they travel through the system.
The circles represent “transforms,” functions that act upon information.
The arrows represent the inputs and outputs of the transforms.

Defining the Interfaces 67

The diagram depicts a frozen moment of the system in action. It
ignores initialization, looping structures, and other details of program-
ming that relate to time.

Three benefits are claimed for using DFDs:
First, they speak in simple, direct terms to the customer. If your

customer agrees with the contents of your data-flow diagram, you
know you understand the problem.

Second, they let you think in terms of the logical “whats,” with-
out getting caught up in the procedural “hows,” which is consistent
with the philosophy of hiding information as we discussed in the last
chapter.

Third, they focus your attention on the interfaces to the system and
between modules.

Forth programmers, however, rarely use DFDs except for the cus-
tomer’s benefit. Forth encourages you to think in terms of the con-
ceptual model, and Forth’s implicit use of a data stack makes the
passing of data among modules so simple it can usually be taken for
granted. This is because Forth, used properly, approaches a functional
language.

For anyone with a few days’ familiarity with Forth, simple definitions
convey at least as much meaning as the diagrams:

: REQUEST (quantity part# --)

ON-HAND? IF TRANSFER ELSE REORDER THEN ;

: REORDER AUTHORIZATION? IF P.O. THEN ;

: P.O. BOOKKEEPING COPY RECEIVING COPY

VENDOR MAIL-COPY ;

This is Forth pseudocode. No effort has been made to determine what
values are actually passed on the stack, because that is an implemen-
tation detail. The stack comment for REQUEST is used only to indicate
the two items of data needed to initiate the process.

(If I were designing this application, I’d suggest that the user inter-
face be a word called NEED, which has this syntax:

Defining the Interfaces 68

NEED 50 AXLES

NEED converts the quantity into a numeric value on the stack, trans-
lates the string AXLES into a part number, also on the stack, then calls
REQUEST. Such a command should be defined only at the outer-most
level.)

Johnson of Moore Products Co. has a few words on Forth pseu-
docode:

IBM uses a rigorously documented PDL (program design language).
We use a PDL here as well, although we call it FDL, for Forth
design language. It’s probably worthwhile having all those standards,
but once you’re familiar with Forth, Forth itself can be a design
language. You just have to leave out the so-called “noise” words:
C@, DUP, OVER, etc., and show only the basic flow. Most Forth
people probably do that informally. We do it purposefully.

During one of our interviews I asked Moore if he used diagrams of
any sort to plan out the conceptual model, or did he code straight into
Forth? His reply:

The conceptual model is Forth. Over the years I’ve learned to think
that way.

Can everyone learn to think that way?

I’ve got an unfair advantage. I codified my programming style and
other people have adopted it. I was surprised that this happened.
And I feel at a lovely advantage because it is my style that others are
learning to emulate. Can they learn to think like I think? I imagine
so. It’s just a matter of practice, and I’ve had more practice.

Defining the Interfaces 69

Defining the Rules

Most of your efforts at defining a problem will center on describing
the interface. Some applications will also require that you define the
set of application rules.

All programming involves rules. Usually these rules are so simple it
hardly matters how you express them: “If someone pushes the button,
ring the bell.”

Some applications, however, involve rules so complicated that they
can’t be expressed in a few sentences of English. A few formal tech-
niques can come in handy to help you understand and document these
more complicated rules.

Here’s an example. Our requirements call for a system to compute
the charges on long-distance phone calls. Here’s the customer’s ex-
planation of its rate structure. (I made this up; I have no idea how
the phone company actually computes their rates except that they
overcharge.)

All charges are computed by the minute, according to distance in
hundreds of miles, plus a flat charge. The flat charge for direct dial
calls during weekdays between 8 A.M. and 5 P.M. is .30 for the
first minute, and .20 for each additional minute; in addition, each
minute is charged .12 per 100 miles. The flat charge for direct calls
during weekdays between 5 P.M. and 11 P.M. is .22 for the first
minute, and .15 for each additional minute; the distance rate per
minute is .10 per 100 miles. The flat charge for direct calls late
during weekdays between 11 P.M. or anytime on Saturday, Sundays,
or holidays is .12 for the first minute, and .09 for each additional
minute; the distance rate per minute is .06 per 100 miles. If the
call requires assistance from the operator, the flat charge increases
by .90, regardless of the hour.

Defining the Rules 70

This description is written in plain old English, and it’s quite a mouth-
ful. It’s hard to follow and, like an attic cluttered with accumulated
belongings, it may even hide a few bugs.

In building a conceptual model for this system, we must describe
the rate structure in an unambiguous, useful way. The first step to-
wards cleaning up the clutter involves factoring out irrelevant pieces
of information—that is, applying the rules of limited redundancy. We
can improve this statement a lot by splitting it into two statements.
First there’s the time-of-day rule:

Calls during weekdays between 8 A.M. and 5 P.M. are charged at
“full” rate. Calls during weekdays between 5 P.M. and 11 P.M. are
charged at “lower” rate. Calls placed during weekdays between 11
P.M. or anytime on Saturday, Sundays, or holidays are charged at
the “lowest” rate.

Then there’s the rate structure itself, which should be described in
terms of “first-minute rate,” “additional minute rate,” “distance rate,”
and “operator-assistance rate.”

2.9

Tip

Factor the fruit. (Don’t confuse apples with oranges.)

These prose statements are still difficult to read, however. System an-
alysts use several techniques to simplify these statements: structured
English, decision trees, and decision tables. Let’s study each of these
techniques and evaluate their usefulness in the Forth environment.

Structured English

Structured English is a sort of structured pseudocode in which our rate
statement would read something like this:

Structured English 71

IF full rate
IF direct-dial

IF first-minute
.30 + .12/100miles

ELSE (add’l- minute)
.20 + .12/100miles

ENDIF
ELSE (operator)

IF first-minute
1.20 + .12/100miles

ELSE (add’l- minute)
.20 + .12/100miles

ENDIF
ENDIF

ELSE (not-full-rate)
IF lower-rate

IF direct-dial
IF first-minute

.22 + .10/100miles
ELSE (add’l- minute)

.15 + .10/100miles
ENDIF

ELSE (operator)
IF first-minute

1.12 + .10/100miles
ELSE (add’l- minute)

.15 + .10/100miles
ENDIF

ENDIF
ELSE (lowest-rate)

IF direct-dial
IF first-minute

.12 + .06/100miles
ELSE (add’l- minute)

Structured English 72

.09 + .O6/100miles
ENDIF

ELSE (operator)
IF first-minute

1.02 + .O6/100miles
ELSE (add’l- minute)

.09 + .06/100miles
ENDIF

ENDIF
ENDIF

ENDIF

This is just plain awkward. It’s hard to read, harder to maintain, and
hardest to write. And for all that, it’s worthless at implementation
time. I don’t even want to talk about it anymore.

The Decision Tree

Figure 2.4 illustrates the telephone rate rules by means of a decision
tree. The decision tree is the easiest method of any to “follow down”
to determine the result of certain conditions. For this reason, it may
be the best representation to show the customer.

Unfortunately, the decision tree is difficult to “follow up,” to deter-
mine which conditions produce certain results. This difficulty inhibits
seeing ways to simplify the problem. The tree obscures the fact that
additional minutes cost the same, whether the operator assists or not.
You can’t see the facts for the tree.

The Decision Table

The decision table, described next, provides the most usable graphic
representation of compound rules for the programmer, and possibly
for the customer as well. Figure 2.5 shows our rate structure rules in
decision-table form.

The Decision Tree 73

Figure 2.4: Example of a decision tree.

Figure 2.5: The decision table.

In Figure 2.5 there are three dimensions: the rate discount, whether
an operator intervenes, and initial minute vs. additional minute.

The Decision Table 74

Drawing problems with more than two dimensions gets a little tricky.
As you can see, these additional dimensions can be depicted on paper
as subdimensions within an outer dimension. All of the subdimension’s
conditions appear within every condition of the outer dimension. In
software, any number of dimensions can be easily handled, as we’ll
see.

All the techniques we’ve described force you to analyze which con-
ditions apply to which dimensions. In factoring these dimensions, two
rules apply:

First, all the elements of each dimension must be mutually exclusive.
You don’t put “first minute” in the same dimension as “direct dial,”
because they are not mutually exclusive.

Second, all possibilities must be accounted for within each dimen-
sion. If there were another rate for calls made between 2 A.M. to 2:05
A.M., the table would have to be enlarged.

But our decision tables have other advantages all to themselves.
The decision table not only reads well to the client but actually benefits
the implementor in several ways:

Transferability to actual code. This is particularly true in Forth, where
decision tables are easy to implement in a form very similar to
the drawing.

Ability to trace the logic upwards. Find a condition and see what
factors produced it.

Clearer graphic representation. Decision tables serve as a better tool
for understanding, both for the implementor and the analyst.

Unlike decision trees, these decision tables group the results together
in a graphically meaningful way. Visualization of ideas helps in under-
standing problems, particularly those problems that are too complex
to perceive in a linear way.

For instance, Figure 2.5 clearly shows that the charge for additional
minutes does not depend on whether an operator assisted or not. With

The Decision Table 75

Figure 2.6: A simplified decision table.

this new understanding we can draw a simplified table, as shown in
Figure 2.6.

It’s easy to get so enamored of one’s analytic tools that one for-
gets about the problem. The analyst must do more than carry out
all possibilities of a problem to the nth degree, as I have seen authors
of books on structured analysis recommend. That approach only in-
creases the amount of available detail. The problem solver must also
try to simplify the problem.

2.10

Tip

You don’t understand a problem until you can simplify it.

If the goal of analysis is not only understanding, but simplification,
then perhaps we’ve got more work to do.

Our revised decision table (Figure 2.6) shows that the per-mile
charge depends only on whether the rate is full, lower, or lowest. In
other words, it’s subject to only one of the three dimensions shown in
the table. What happens if we split this table into two tables, as in
Figure 2.7?

The Decision Table 76

Figure 2.7: The sectional decision table.

Now we’re getting the answer through a combination of table look-
up and calculation. The formula for the per-minute charge can be
expressed as a pseudoForth definition:

: PER-MINUTE-CHARGE (-- per-minute-charge)

CONNECT-CHARGE MILEAGE-CHARGE + ;

The “+” now appears once in the definition, not nine times in the table.
Taking the principle of calculation one step further, we note (or re-

member from the original problem statement) that operator assistance
merely adds a one-time charge of .90 to the total charge. In this sense,
the operator charge is not a function of any of the three dimensions.
It’s more appropriately expressed as a “logical calculation”; that is, a
function that combines logic with arithmetic:

: ?ASSISTANCE

(direct-dial-charge -- total-charge)

OPERATOR? IF .90 + THEN ;

(But remember, this charge applies only to the first minute.)

The Decision Table 77

This leaves us with the simplified table shown in Figure 2.8, and
an increased reliance on expressing calculations. Now we’re getting
somewhere.

Let’s go back to our definition of PER-MINUTE-CHARGE:

: PER-MINUTE-CHARGE (-- per-minute-charge)

CONNECT-CHARGE MILEAGE-CHARGE + ;

Let’s get more specific about the rules for the connection charge and
for the mileage charge.

The connection charge depends on whether the minute is the first
or an additional minute. Since there are two kinds of per-minute
charges, perhaps it will be easiest to rewrite PER-MINUTE-CHARGE as
two different words.

Let’s assume we will build a component that will fetch the appropri-
ate rates from the table. The word 1MINUTE will get the rate for the
first minute; +MINUTES will get the rate for each additional minute.
Both of these words will depend on the time of day to determine
whether to use the full, lower, or lowest rates.

Now we can define the pair of words to replace PER-MINUTE-CHARGE:

Figure 2.8: The decision table without operator involvement depicted.

The Decision Table 78

: FIRST (-- charge)

1MINUTE ?ASSISTANCE MILEAGE-CHARGE + ;

: PER-ADDITIONAL (-- charge)

+MINUTES MILEAGE-CHARGE + ;

What is the rule for the mileage charge? Very simple. It is the rate
(per hundred miles) times the number of miles (in hundreds). Let’s
assume we can define the word MILEAGE-RATE, which will fetch the
mileage rate from the table:

: MILEAGE-CHARGE (-- charge)

#MILES @ MILEAGE-RATE * ;

Finally, if we know the total number of minutes for a call, we can now
calculate the total direct-dial charge:

: TOTAL (-- total-charge)

FIRST (first minute rate)

(#minutes) 1- (additional minutes)

PER-ADDITIONAL * (times the rate)

+ ; (added together)

We’ve expressed the rules to this particular problem through a combi-
nation of simple tables and logical calculations.

(Some final notes on this example: We’ve written something very
close to a running Forth application. But it is only pseudocode. We’ve
avoided stack manipulations by assuming that values will somehow be
on the stack where the comments indicate. Also, we’ve used hyphen-
ated names because they might be more readable for the customer.
Short names are preferred in real code—see Chapter Five.)

We’ll unveil the finished code for this example in Chapter Eight.

The Decision Table 79

Defining the Data Structures

After defining the interfaces, and sometimes defining the rules, occa-
sionally you’ll need to define certain data structures as well. We’re
not referring here to the implementation of the data structures, but
rather to a description of their conceptual model.

If you’re automating a library index, for instance, a crucial portion of
your analysis will concern developing the logical data structure. You’ll
have to decide what information will be kept for each book: title,
author, subject, etc. These “attributes” will comprise an “entity” (set
of related records) called BOOKS. Then you’ll have to determine what
other data structures will be required to let the users search the BOOKS
efficiently.

Certain constraints will also affect the conceptual model of the data
structure. In the library index example, you need to know not only
what information the users need, but also how long they’re willing to
wait to get it.

For instance, users can request listings of topics by year of publication—
say everything on ladies’ lingerie between 1900 and 1910. If they ex-
pect to get this information in the snap of a girdle, you’ll have to index
on years and on topics. If they can wait a day, you might just let the
computer search through all the books in the library.

Achieving Simplicity

2.11

Tip

Keep it simple.

While you are taking these crucial first steps toward understanding the
problem, keep in mind the old saying:

Given two solutions to a problem, the correct one is the simpler.

Defining the Data Structures 80

Given two adequate solutions, the correct one is the simpler.

This is especially true in software design. The simpler solution is often
more difficult to discover, but once found, it is:

• easier to understand

• easier to implement

• easier to verify and debug

• easier to maintain

• more compact

• more efficient

• more fun

One of the most compelling advocates of simplicity is Moore:

You need a feeling for the size of the problem. How much code
should it take to implement the thing? One block? Three? I think
this is a very useful design tool. You want to gut-feel whether it’s a
trivial problem or a major problem, how much time and effort you
should spend on it.

When you’re done, look back and say, “Did I come up with a solution
that is reasonable?” If your solution fills six screens, it may seem
you’ve used a sledgehammer to kill a mosquito. Your mental image
is out of proportion to the significance of the problem.

I’ve seen nuclear physics programs with hundreds of thousands of
lines of FORTRAN. Whatever that code does, it doesn’t warrant
hundreds of thousands of lines of code. Probably its writers have
overgeneralized the problem. They’ve solved a large problem of
which their real needs are a subset. They have violated the principle
that the solution should match the problem.

Achieving Simplicity 82

2.12

Tip

Generality usually involves complexity. Don’t generalize your
solution any more than will be required; instead, keep it change-
able.

Moore continues:

Given a problem, you can code a solution to it. Having done that,
and found certain unpleasantnesses to it, you can go back and
change the problem, and end up with a simpler solution.

There’s a class of device optimization—minimizing the number of
gates in a circuit-where you take advantage of the “don’t care” sit-
uation. These occur either because a case won’t arise in practice
or because you really don’t care. But the spec is often written by
people who have no appreciation for programming. The designer
may have carefully specified all the cases, but hasn’t told you, the
programmer, which cases are really important.

If you are free to go back and argue with him and take advantage
of the “don’t cares,” you can come up with a simpler solution.

Take an engineering application, such as a 75-ton metal powder
press, stamping out things. They want to install a computer to
control the valves in place of the hydraulic control previously used.
What kind of spec will you get from the engineer? Most likely
the sensors were placed for convenience from an electromechanical
standpoint. Now they could be put somewhere else, but the engineer
has forgotten. If you demand explanations, you can come closer to
the real world and further from their model of the world.

Another example is the PID (proportional integration and differen-
tiation) algorithm for servos. You have one term that integrates,
another term that differentiates, and a third term that smooths.

Achieving Simplicity 83

You combine those with 30% integration, 10% differentiation, or
whatever. But it’s only a digital filter. It used to be convenient in
analog days to break out certain terms of the digital filter and say,
“This is the integrator and this is the differentiator. I’ll make this
with a capacitor and I’ll make that with an inductor.”

Again the spec writers will model the analog solution which was
modeling the electromechanical solution, and they’re several models
away from reality. In fact, you can replace it all with two or three
coefficients in a digital filter for a much cleaner, simpler and more
efficient solution.

2.13

Tip

Go back to what the problem was before the customer tried to
solve it. Exploit the “don’t cares.”

Moore continues:

Sometimes the possibilities for simplification aren’t immediately ob-
vious.

There’s this problem of zooming in a digitized graphics display, such
as CAD systems. You have a picture on the screen and you want
to zoom in on a portion to see the details.

I used to implement it so that you move the cursor to the position of
interest, then press a button, and it zooms until you have a window
of the desired size. That was the way I’ve always done it. Until I
realized that that was stupid. I never needed to zoom with such
fine resolution.

So instead of moving the cursor a pixel at a time, I jump the cursor
by units of, say, ten. And instead of increasing the size of box, I

Achieving Simplicity 84

An overgeneralized solution.

jump the size of the box. You don’t have a choice of sizes. You
zoom by a factor of four. The in-between sizes are not interesting.
You can do it as many times as you like.

By quantizing things fairly brutally, you make it easier to work with,
more responsive, and simpler.

2.14

Tip

To simplify, quantize.

Moore concludes:

It takes arrogance to go back and say “You didn’t really mean this,”
or “Would you mind if I took off this page and replaced it with this
expression?” They get annoyed. They want you to do what they
told you to do.

LaFarr Stuart took this attitude when he redesigned Forth [3].
He didn’t like the input buffer, so he implemented Forth without it,
and discovered he didn’t really need an input buffer.

If you can improve the problem, it’s a great situation to get into.
It’s much more fun redesigning the world than implementing it.

Effective programmers learn to be tactful and to couch their approaches
in non-threatening ways: “What would be the consequences of replac-
ing that with this?” etc.

Yet another way to simplify a problem is this:

2.15

Tip

To simplify, keep the user out of trouble.

Achieving Simplicity 86

Suppose you’re designing part of a word processor that displays a
directory of stored documents on the screen, one per line. You plan
that the user can move the cursor next to the name of any document,
then type a one-letter command indicating the chosen action: “p” for
print, “e” for edit, etc.

Initially it seems all right to let the user move the cursor anywhere on
the screen. This means that those places where text already appears
must be protected from being overwritten. This implies a concept of
“protected fields” and special handling. A simpler approach confines
the cursor to certain fields, possibly using reverse video to let the user
see the size of the allowable field.

Another example occurs when an application prompts the user for
a numeric value. You often see such applications that don’t check
input until you press “return,” at which time the system responds
with an error message such as “invalid number.” It’s just as easy—
probably easier—to check each key as it’s typed and simply not allow
non-numeric characters to appear.

2.16

Tip

To simplify, take advantage of what’s available.

Michael LaManna, a Forth programmer in Long Island, New York,
comments:

I always try to design the application on the most powerful processor
I can get my hands on. If I have a choice between doing development
on a 68000-based system and a 6809-based system, I’d go for the
68000-based system. The processor itself is so powerful it takes care
of a lot of details I might otherwise have to solve myself.

Achieving Simplicity 87

If I have to go back later and rewrite parts of the application for
a simpler processor, that’s okay. At least I won’t have wasted my
time.

A word of caution: If you’re using an existing component to simplify
your prototype, don’t let the component affect your design. You don’t
want the design to depend on the internals of the component.

Budgeting and Scheduling

Another important aspect of the analysis phase is figuring the price
tag. Again, this process is much more difficult than it would seem.
If you don’t know the problem till you solve it, how can you possibly
know how long it will take to solve it?

Careful planning is essential, because things always take longer than
you expect. I have a theory about this, based on the laws of probability:

2.17

Tip

The mean time for making a “two-hour” addition to an applica-
tion is approximately 12 hours.

Imagine the following scenario: You’re in the middle of writing a large
application when suddenly it strikes you to add some relatively simple
feature. You think it’ll take about two hours, so without further plan-
ning, you just do it. Consider: That’s two hours coding time. The
design time you don’t count because you perceived the need—and the
design—in a flash of brilliance while working on the application. So
you estimate two hours.

But consider the following possibilities:

1. Your implementation has a bug. After two hours it doesn’t work.
So you spend another two hours recoding. (Total 4.)

Budgeting and Scheduling 88

Conventional wisdom reveres complexity.

2. OR, before you implemented it, you realized your initial design
wouldn’t work. You spend two hours redesigning. These two
hours count. Plus another two hours coding it. (Total 4.)

3. OR, you implement the first design before you realize the design
wouldn’t work. So you redesign (two more hours) and reimple-
ment (two more). (Total 6.)

4. OR, you implement the first design, code it, find a bug, rewrite
the code, find a design flaw, redesign, recode, find a bug in the
new code, recode again. (Total 10.)

You see how the thing snowballs?

5. Now you have to document your new feature. Add two hours
to the above. (Total 12.)

6. After you’ve spent anywhere from 2 to 12 hours installing and
debugging your new feature, you suddenly find that element Y
of your application bombs out. Worst yet, you have no idea why.
You spend two hours reading memory dumps trying to divine the
reason. Once you do, you spend as many as 12 additional hours
redesigning element Y. (Total 26.) Then you have to document
the syntax change you made to element Y. (Total 27.)

That’s a total of over three man-days. If all these mishaps befell you at
once, you’d call for the men with the little white coats. It rarely gets
that bad, of course, but the odds are decidedly against any project
being as easy as you think it will be.

How can you improve your chances of judging time requirements
correctly? Many fine books have been written on this topic, notably
The Mythical Man-Month by Frederick P. Brooks, Jr. [4]. I
have little to add to this body of knowledge except for some personal
observations.

Budgeting and Scheduling 90

1. Don’t guess on a total. Break the problem up into the smallest
possible pieces, then estimate the time for each piece. The sum
of the pieces is always greater than what you’d have guessed the
total would be. (The whole appears to be less than the sum of
the parts.)

2. In itemizing the pieces, separate those you understand well enough
to hazard a guess from those you don’t. For the second category,
give the customer a range.

3. A bit of psychology: always give your client some options. Clients
like options. If you say, “This will cost you $6,000,” the client
will probably respond “I’d really like to spend $4,000.” This puts
you in the position of either accepting or going without a job.

But if you say, “You have a choice: for $4,000 I’ll make it walk
through the hoop; for $6,000 I’ll make it jump through the
hoop. For $8,000 I’ll make it dance through the hoop waving
flags, tossing confetti and singing ‘Roll Out the Barrel.’ ”

Most customers opt for jumping through the hoop.

2.18

Tip

Everything takes longer than you think, including thinking.

Reviewing the Conceptual Model

The final box on our iterative analytic wheel is labeled “Show Model
to Customer.” With the tools we’ve outlined in this chapter, this job
should be easy to do.

In documenting the requirements specification, remember that specs
are like snowmen. They may be frozen now, but they shift, slip, and

Reviewing the Conceptual Model 91

melt away when the heat is on. Whether you choose data-flow di-
agrams or straight Forth pseudocode, prepare yourself for the great
thaw by remembering to apply the concepts of limited redundancy.

Show the documented conceptual model to the customer. When
the customer is finally satisfied, you’re ready for the next big step: the
design!

References

[1] Kim Harris, “The Forth Philosophy,” Dr. Dobb’s Journal, Vol.
6, Iss. 9, No. 59 (Sept. 81), pp. 6-11.

[2] Victor Weinberg, Structured Analysis, Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1980.

[3] LaFarr Stuart, “LaFORTH,” 1980 FORML Proceedings, p. 78.

[4] Frederick P. Brooks, Jr., The Mythical Man-Month, Reading,
Massachusetts, Addison-Wesley, 1975.

References 92

THREE

Preliminary Design/
Decomposition

Assuming you have some idea of what your program should accom-
plish, it’s time to begin the design. The first stage, preliminary design,
focuses on shrinking your mountainous problem into manageable mole-
hills.

In this chapter we’ll discuss two ways to decompose your Forth
application.

Decomposition by Component

Has this sort of thing ever happened to you? You’ve been planning for
three months to take a weekend vacation to the mountains. You’ve
been making lists of what to bring, and daydreaming about the slopes.

Meanwhile you’re deciding what to wear to your cousin’s wedding
next Saturday. They’re informal types, and you don’t want to over-
dress. Still, a wedding’s a wedding. Maybe you should rent a tuxedo
anyway.

For all this planning, it’s not until Thursday that you realize the two
events coincide. You have expletives for such moments.

Decomposition by Component 94

How is such a mental lapse possible, in one so intelligent as yourself?
Apparently the human mind actually makes links between memories.
New ideas are somehow added onto existing paths of related thoughts.

Figure 3.1: Pools of thought not yet linked

In the mishap just described, no connection was ever made between
the two separately-linked pools of thought until Thursday. The conflict
probably occurred when some new input (something as trivial as hear-
ing Saturday’s weather report) got linked into both pools of thought.
A lightning flash of realization arced between the pools, followed inex-
orably by thunderous panic.

A simple tool has been invented to avoid such disasters. It’s called
a calendar. If you had recorded both plans in the same calendar, you
would have seen the other event scheduled, something your brain failed
to do for all its intricate magnificence.

3.1

Tip

To see the relationship between two things, put them close to-
gether. To remind yourself of the relationship, keep them to-
gether.

These truisms apply to software design, particularly to the preliminary
design phase. This phase is traditionally the one in which the designer
dissects a large application into smaller, programmer-sized modules.

Decomposition by Component 95

In Chapter One we discovered that applications can be conveniently
decomposed into components.

3.2

Tip

The goal of preliminary design is to determine what components
are necessary to accomplish the requirements.

For instance, you might have an application in which events must occur
according to some predetermined schedule. To manage the scheduling,
you might first design a few words to constitute a “schedule-building
lexicon.” With these words you’ll be able to describe the order of
events that must occur within your application.

Thus within a single component, you’ll not only share information,
but also work out potential conflicts. The wrong approach would be
to let each functional module “know” things about its schedule that
could potentially conflict with another module’s schedule.

How can you know, in designing a component, what commands
the using components will need? Admittedly, this is something of a
“chicken vs. egg” problem. But Forth programmers handle it the same
way chickens and eggs do: iteratively.

If the component is well-designed, completeness doesn’t matter. In
fact, a component need only suffice for the current iteration’s design.
No component should be considered a “closed book” until the appli-
cation has been completed—which, in the case of maintained applica-
tions, is never.

As an example, imagine that your product needs to “talk” to other
machines in the outside world via a universal I/O chip that is part of
your system. This particular chip has a “control register” and a “data
register.” In a badly designed application, pieces of code throughout
the program would access the communication chip by simply invoking

Decomposition by Component 96

the OUT instruction to put an appropriate command byte into the com-
mand register. This makes the entire application needlessly dependent
on that particular chip—very risky.

Instead, Forth programmers would write a component to control the
I/O chip. These commands would have logical names and a convenient
interface (usually Forth’s stack) to allow usage by the rest of the
application.

For any iteration of your product’s design, you would implement
only the commands needed so far—not all the valid codes that could
be sent to the “control register.” If later in the project cycle you realize
that you need an additional command, say one to change the baud
rate, the new command would be added to the I/O chip lexicon, not to
the code needed to set the baud rate. There’s no penalty for making
this change except the few minutes (at most) it takes to edit and
recompile.

3.3

Tip

Within each component, implement only the commands needed
for the current iteration. (But don’t preclude future additions.)

What goes on inside a component is pretty much its own business. It’s
not necessarily bad style for definitions within the component to share
redundant information.

For instance, a record in a certain data structure is fourteen bytes
long. One definition in the component advances a pointer 14 bytes to
point to the next record; another definition decrements the pointer 14
bytes.

As long as that number 14 remains a “secret” to the component
and won’t be used elsewhere, you don’t need to define it as constant.
Just use the number 14 in both definitions:

Decomposition by Component 97

: +RECORD 14 RECORD# +! ;

: -RECORD -14 RECORD# +! ;

On the other hand, if the value will be needed outside of the compo-
nent, or if it’s used several times within the component and there’s a
good chance that it will change, you’re better off hiding it behind a
name:

14 CONSTANT /RECORD

: +RECORD /RECORD RECORD# +! ;

: -RECORD /RECORD NEGATE RECORD# +! ;

(The name /RECORD, by convention, means “bytes per record.”)

Example: A Tiny Editor

Let’s apply decomposition by component to a real problem. It would
be nice to design a large application right here in Chapter Three, but
alas, we don’t have the room and besides, we’d get sidetracked in
trying to understand the application.

Instead, we’ll take a component from a large application that has al-
ready been decomposed. We’ll design this component by decomposing
it further, into subcomponents.

Imagine that we must create a tiny editor that will allow users to
change the contents of input fields on their terminal screen. For in-
stance, the screen might look like this:

Name of Member Justine Time

The editor will provide three modes for users to change the contents
of the input field:

Overwrite. Typing ordinary characters overwrites any characters that
were there before.

Example: A Tiny Editor 98

Delete. Pressing the combination of keys “Ctrl D” deletes the char-
acter under the cursor and slides the remaining characters left-
wards.

Insert. Pressing the combination of keys “Ctrl I” switches the editor
into “Insert Mode,” where subsequently typing ordinary charac-
ters inserts them at the cursor position, sliding the remaining
characters rightwards.

As part of the conceptual model we should also consider the error or
exception-handling; for instance, what is the limit of the field? what
happens in insert mode when characters spill off the right? etc.

That’s all the specification we have right now. The rest is up to us.
Let’s try to determine what components we’ll need. First, the editor

will react to keys that are typed at the keyboard. Therefore we’ll need
a keystroke interpreter—some kind of routine that awaits keystrokes
and matches them up with a list of possible operations. The keystroke
interpreter is one component, and its lexicon will consist of a single
word. Since that word will allow the editing of a field, let’s call the
word EDIT.

The operations invoked by the keystroke interpreter will comprise a
second lexicon. The definitions in this lexicon will perform the various
functions required. One word might be called DELETE, another INSERT,
etc. Since each of these commands will be invoked by the interpreter,
each of them will process a single keystroke.

Below these commands should lie a third component, the set of
words that implement the data structure to be edited.

Finally, we’ll need a component to display the field on the video
screen. For the sake of simplicity, let’s plan on creating one word only,
REDISPLAY, to redisplay the entire field after each key is pressed.

: EDITOR BEGIN KEY REVISE REDISPLAY ... UNTIL ;

This approach separates revising the buffer from updating the display.
For now, we’ll only concentrate on revising the buffer.

Example: A Tiny Editor 99

Figure 3.2: Generalized decomposition of the Tiny Editor problem.

Let’s look at each component separately and try to determine the
words each will need. We can begin by considering the events that
must occur within the three most important editing functions: over-
writing, deleting, and inserting. We might draw something like the
following on the back of an old pizza menu (we won’t pay much at-
tention to exception-handling in the present discussion):

To Overwrite:

Store new character into byte pointer
to by pointer.
Advance pointer (unless at end of
field).

F U N
ˆ
K T I O N A L I T Y

F U N
ˆ
C T I O N A L I T Y

F U N C
ˆ
T I O N A L I T Y

To Delete:

Copy leftwards, by one place, the
string beginning one place to the
right of the pointer.
Store a “blank” into the last position
on the line.

F U N C T I O N
ˆ
S A L I T Y

F U N C T I O N
ˆ
A L I T Y Y

F U N C T I O N
ˆ
A L I T Y

To Insert:

Example: A Tiny Editor 100

Copy rightwards, by one place, the
string beginning at the pointer.
Store new character into byte
pointed to by pointer.
Advance pointer (unless at end of
field).

F U N
ˆ
T I O N A L I T Y

F U N
ˆ
T T I O N A L I T Y

F U N
ˆ
C T I O N A L I T Y

F U N C
ˆ
T I O N A L I T Y

We’ve just developed the algorithms for the problem at hand.
Our next step is to examine these three essential procedures, looking

for useful “names”—that is procedures or elements which can either:

1. possibly be reused, or

2. possibly change

We discover that all three procedures use something called a “pointer.”
We need two procedures:

1. to get the pointer (if the pointer itself is relative, this function
will perform some computation).

2. to advance the pointer

Wait, three procedures:

3. to move the pointer backwards

because we will want “cursor keys” to move the cursor forward and
back without editing changes.

These three operators will all refer to a physical pointer somewhere
in memory. Where it is kept and how (relative or absolute) should be
hidden within this component.

Let’s attempt to rewrite these algorithms in code:

: KEY# (returns value of key last pressed) ... ;

: POSITION (returns address of character pointed-to) ;

Example: A Tiny Editor 101

: FORWARD (advance pointer, stopping at last position)

: BACKWARD (decrement pointer, stopping at first position)

: OVERWRITE KEY# POSITION C! FORWARD ;

: INSERT SLIDE> OVERWRITE ;

: DELETE SLIDE< BLANK-END ;

To copy the text leftwards and rightwards, we had to invent two new
names as we went along, SLIDE< and SLIDE> (pronounced “slide-
backwards” and “slide-forwards” respectively). Both of them will cer-
tainly use POSITION, but they also must rely on an element we’ve
deferred considering: a way to “know” the length of the field. We can
tackle that aspect when we get to writing the third component. But
look at what we found out already: we can describe “Insert” as simply
“SLIDE> OVERWRITE”.

In other words, “Insert” actually uses “Overwrite” even though they
appear to exist on the same level (at least to a Structured Program-
mer).

Instead of probing deeper into the third component, let’s lay out
what we know about the first component, the key interpreter. First
we must solve the problem of “insert mode.” It turns out that “insert”
is not just something that happens when you press a certain key, as
delete is. Instead it is a different way of interpreting some of the
possible keystrokes.

For instance in “overwrite” mode, an ordinary character gets stored
into the current cursor position; but in “insert mode” the remainder
of the line must first be shifted right. And the backspace key works
differently when the editor is in Insert Mode as well.

Since there are two modes, “inserting” and “not-inserting,” the keystroke
interpreter must associate the keys with two possible sets of named
procedures.

We can write our keystroke interpreter as a decision table (worrying
about the implementation later):

Example: A Tiny Editor 102

Key Not-inserting Inserting

Ctrl-D DELETE INSERT-OFF

Ctrl-I INSERT-ON INSERT-OFF

backspace BACKWARD INSERT<

left-arrow BACKWARD INSERT-OFF

right-arrow FORWARD INSERT-OFF

return ESCAPE INSERT-OFF

any printable OVERWRITE INSERT

We’ve placed the possible types of keys in the left column, what they
do normally in the middle column, and what they do in “insert mode”
in the right column.

To implement what happens when “backspace” is pressed while in
Insert Mode, we add a new procedure:

: INSERT< BACKWARD SLIDE< ;

(move the cursor backwards on top of the last character typed, then
slide everything to the right leftward, covering the mistake).

This table seems to be the most logical expression of the problem
at the current level. We’ll save the implementation for later (Chapter
Eight).

Now we’ll demonstrate the tremendous value of this approach in
terms of maintainability. We’ll throw ourselves a curve—a major
change of plans!

Maintaining a Component-based Application

How well will our design fare in the face of change? Envision the
following scenario:

We originally assumed that we could refresh the video display simply
by retyping the field every time a key is pressed. We even implemented
the code on our personal computer, with its memory-mapped video

Maintaining a Component-based Application 103

that refreshes an entire line in the blink of a scan cycle. But now our
customer wants the application to run on a telephone-based network,
with all I/O being done at a not-so-fast baud rate. Since some of
our input fields are almost as wide as the video screen, maybe 65
characters, it just takes too long to refresh the entire line on every key
stroke.

We’ve got to change the application so that we only refresh that
part of the field that actually changes. In “insert” and “delete,” this
would mean the text to the right of the cursor. In “overwrite” it would
mean changing just the single character being overwritten.

This change is significant. The video refresh function, which we
cavalierly relegated to the key interpreter, now must depend on which
editing functions occur. As we’ve discovered, the most important
names needed to implement the key interpreter are:

FORWARD
BACKWARD
OVERWRITE
INSERT
DELETE
INSERT<

None of their descriptions make any reference to the video refresh
process, because that was originally assumed to happen later.

But things aren’t as bad as they seem. Looking at it now, the
process OVERWRITE could easily include a command to type the new
character where the terminal’s cursor is. And SLIDE< and SLIDE>

could include commands to type everything to the right of, and includ-
ing, POSITION, then reset the terminal’s cursor to its current position.

Here are our revised procedure names. The commands just added
are in boldface:

: OVERWRITE KEY# POSITION C! KEY# EMIT FORWARD ;

: RETYPE (type from
urrent position to
Maintaining a Component-based Application 104

end of field and reset
ursor) ;
: INSERT SLIDE> RETYPE OVERWRITE ;

: DELETE SLIDE< BLANK-END RETYPE ;

Since these are the only three functions that change memory, they are
the only three functions that need to refresh the screen. This idea is
critical. We must be able to make such assertions to assure program
correctness. The assertion is intrinsic to the nature of the problem.

Note that the additional problem of video refresh adds an additional
“pointer”: the current cursor position on the screen. But decomposition
by component has encouraged us to view the OVERWRITE process as
changing both the data field and the video vision of it; similarly with
SLIDE< and SLIDE>. For this reason it seems natural now to maintain
only one real pointer—a relative one—from which we can compute
either the data address in memory, or the column number on the
screen.

Since the nature of the pointer is wholly hidden within the three
processes POSITION, FORWARD, and BACKWARD, we can readily accom-
modate this approach, even if it wasn’t our first approach.

This change may have seemed simple enough here—even obvious.
If so, it’s because the technique ensures flexible design. If we had used
a traditional approach—if we had designed according to structure, or
according to data transformation through sequential processes—our
brittle design would have been shattered by the change.

To prove this assertion, we’ll have to start all over again from
scratch.

Designing and Maintaining a Traditional
Application

Let’s pretend we haven’t studied the Tiny Editor problem yet, and
we’re back with a minimal set of specs. We’ll also start with our

Designing and Maintaining a Traditional Application 105

initial assumption, that we can refresh the display by retyping the
entire field after each keystroke.

According to the dictum of top-down design, let’s take the widest-
angle view possible and examine the problem. Figure 3.3 depicts the
program in its simplest terms. Here we’ve realized that the editor is
actually a loop which keeps getting keystrokes and performing some
editing function, until the user presses the return key.

Inside the loop we have three modules: getting a character from the
keyboard, editing the data, and finally refreshing the display to match
the data.

Clearly most of the work will go on inside “Process a Keystroke.”
Applying the notion of successive refinement, Figure 3.4 shows the

editor problem redrawn with “Process a Keystroke” expanded. We
find it takes several attempts before we arrive at this configuration.
Designing this level forces us to consider many things at once that we
had deferred till later in the previous try.

For instance, we must determine all the keys that might be pressed.
More significantly, we must consider the problem of “insert mode.”
This realization forces us to invent a flag called INSERT-MODE which

Figure 3.3: The traditional approach: view from the top.

Designing and Maintaining a Traditional Application 106

Figure 3.4: A structure for “Process a Keystroke.”

gets toggled by the “Ctrl I” key. It’s used within several of the structural
lines to determine how to process a type of key.

A second flag, called ESCAPE, seems to provide a nice structured
way of escaping the editor loop if the user presses the return key while
not in insert mode.

Having finished the diagram, we’re bothered by the multiple tests
for Insert Mode. Could we test for Insert Mode once, at the beginning?
Following this notion, we draw yet another chart (Figure 3.5).

As you can see, this turns out even more awkward than the first
figure. Now we’re testing for each key twice. It’s interesting though,

Designing and Maintaining a Traditional Application 107

Figure 3.5: Another structure for “Process a Keystroke.”

how the two structures are totally different, yet functionally equiva-
lent. It’s enough to make one wonder whether the control structure is
terribly relevant to the problem.

Having decided on the first structure, we’ve finally arrived at the
most important modules—the ones that do the work of overwriting,
inserting, and deleting. Take another look at our expansion of “Pro-
cess a Character” in Figure 3.4. Let’s consider just one of the seven
possible execution paths, the one that happens if a printable character
is pressed.

Designing and Maintaining a Traditional Application 108

In Figure 3.6(a) we see the original structural path for a printable
character.

Once we figure out the algorithms for overwriting and inserting char-
acters, we might refine it as shown in Figure 3.6(b). But look at that
embarrassing redundancy of code (circled portions). Most competent
structured programmers would recognize that this redundancy is un-
necessary, and change the structure as shown in Figure 3.6(c). Not
too bad so far, right?

Change in Plan

Okay, everyone, now act surprised. We’ve just been told that this
application won’t run on a memory-mapped display. What does this
change do to our design structure?

Well, for one thing it destroys “Refresh Display” as a separate mod-
ule. The function of “Refresh Display” is now scattered among the
various structural lines inside “Process a Keystroke.” The structure
of our entire application has changed. It’s easy to see how we might
have spent weeks doing top-down design only to find we’d been bark-
ing down the wrong tree.

What happens when we try to change the program? Let’s look
again at the path for any printable character.

Figure 3.7 (a) shows what happens to our first-pass design when we
add refresh. Part (b) shows our “optimized” design with the refresh
modules expanded. Notice that we’re now testing the Insert flag twice
within this single leg of the outer loop.

But worse, there’s a bug in this design. Can you find it?
In both cases, overwriting and inserting, the pointer is incremented

before the refresh. In the case of overwrite, we’re displaying the new
character in the wrong position. In the case of insert, we’re typing the
remainder of the line but not the new character.

Granted, this is an easy problem to fix. We need only move the
refresh modules up before “Increment Pointer.” The point here is: How

Change in Plan 109

Figure 3.6: The same section, “refined” and “optimized.”

did we miss it? By getting preoccupied with control flow structure, a
superficial element of program design.

In contrast, in our design by components the correct solution fell out
naturally because we “used” the refresh component inside the editing
component. Also we used OVERWRITE inside INSERT.

By decomposing our application into components which use one
another, we achieved not only elegance but a more direct path to
correctness.

Change in Plan 110

Figure 3.7: Adding refresh.

The Interface Component

In computer science terminology, interfacing between modules has two
aspects. First, there’s the way other modules invoke the module; this
is the control interface. Second, there’s the way other modules pass
and receive data to and from the module; this is the data interface.

Because of Forth’s dictionary structure, control is not an issue. Def-
initions are invoked by being named. In this section, when we use the
term “interface” we’re referring to data.

When it comes to data interfaces between modules, traditional wis-
dom says only that “interfaces should be carefully designed, with a

The Interface Component 111

minimum of complexity.” The reason for the care, of course, is that
each module must implement its own end of the interface (Figure 3.8).

This means the presence of redundant code. As we’ve seen, redun-
dant code brings at least two problems: bulky code and poor main-
tainability. A change to the interface of one module will affect the
interface of the opposite module.

Figure 3.8: Traditional view of the interface as a junction.

There’s more to good interface design than that. Allow me to in-
troduce a design element which I call the “interface component.” The
purpose of an interface component is to implement, and hide informa-
tion about, the data interface between two or more other components
(Figure 3.9).

3.4

Tip

Both data structures and the commands involved in the com-
munication of data between modules should be localized in an
interface component.

Let me give an example from my own recent experience. One of my
hobbies is writing text formatter/editors. (I’ve written two of them,
including the one on which I am writing this book.)

The Interface Component 112

Figure 3.9: Use of the interface component.

In my latest design the formatter portion contains two components.
The first component reads the source document and decides where
to make line and page breaks, etc. But instead of sending the text
directly to the terminal or printer, it saves up a line’s worth at a time
in a “line buffer.”

Similarly, instead of sending printer-control commands—for bold-
facing, underlining, etc.—as the text is being formatted, it defers
these commands until the text is actually sent. To defer the con-
trol commands, I have a second buffer called the “attribute buffer.”
It corresponds, byte-for-byte, with the line buffer, except that each
byte contains a set of flags that indicate whether the corresponding
character should be underlined, boldfaced, or whatever.

The second component displays or prints the contents of the line
buffer. The component knows whether it is transmitting to the termi-
nal or to the printer, and outputs the text according to the attributes
indicated by the attribute buffer.

The Interface Component 113

Here we have two well-defined components—the line-formatter and
the output component—each one shouldering part of the function of
the formatter as a whole.

The data interface between these two components is fairly complex.
The interface consists of two buffers, a variable that indicates the
current number of valid characters, and finally a “knowledge” of what
all those attribute patterns mean.

In Forth I’ve defined these elements together in a single screen. The
buffers are defined with CREATE, the count is an ordinary VARIABLE,
and the attribute patterns are defined as CONSTANTs, such as:

1 CONSTANT UNDERNESS (bit mask for underlining)

2 CONSTANT BOLDNESS (bit mask for boldface)

The formatting component uses phrases like UNDERNESS SET-FLAG to
set bits in the attribute buffer. The output component uses phrases
like UNDERNESS AND to read the attribute buffer.

A Design Mistake

In designing an interface component, you should ask yourself “What
is the set of structures and commands that must be shared by the
communicating components?” It’s important to determine what ele-
ments belong to the interface and what elements should remain within
a single component.

In writing my text formatter, I failed to answer this question fully
and found myself with a bug. The problem was this:

I allow different type widths to be used: condensed, double width,
etc. This means not only sending different signals to the printer, but
changing the number of characters allowed per line.

I keep a variable, called WALL, for the formatter. WALL indicates
the right margin: the point beyond which no more text can be set.
Changing to a different type width means changing the value of WALL
proportionately. (Actually, this turns out to be a mistake in itself. I

A Design Mistake 114

should be using a finer unit of measurement, the number of which
remains constant for the line. Changing type widths would mean
changing the number of units per character. But getting back to the
mistake at hand. . .)

Alas, I was also using WALL inside the output component to deter-
mine how many characters to display. My reasoning was that this
value would change depending on what type-width I was using.

I was right—99% of the time. But one day I discovered that, under
a certain condition, a line of condensed text was being somehow cut
short. The final couple of words were just missing. The reason turned
out to be that WALL was getting changed before the output component
had a chance to use it.

Originally I had seen nothing wrong with letting the output compo-
nent blithely use the formatter’s WALL as well. Now I realized that the
formatter had to leave a separate variable for the output component,
to indicate how many valid characters were in the buffers. This would
leave any subsequent font commands free to change WALL.

It was important that the two buffers, the attribute commands, and
the new variable were the only elements that could be shared between
the two modules. Reaching into either module from the other one
spells trouble.

The moral of this story is that we must distinguish between data
structures that are validly used only within a single component and
those that may be shared by more than one component.

A related point:

3.5

Tip

Express in objective units any data to be shared by components.

For example:

• Module A measures the temperature of the oven.

A Design Mistake 115

• Module B controls the burner.

• Module C makes sure the door is locked if the oven is too hot.

The information of global interest is the temperature of the oven,
expressed objectively in degrees. While Module A might receive a
value representing the voltage from a heat sensor, it should convert
this value to degrees before presenting it to the rest of the application.

Decomposition by Sequential Complexity

We’ve been discussing one way to do decomposition: according to
components. The second way is according to sequential complexity.

One of Forth’s rules is that a word must already have been defined
to be invoked or referred to. Usually the sequence in which words are
defined parallels the order of increasing capabilities which the words
must possess. This sequence leads to a natural organization of the
source listing. The powerful commands are simply added on top of
the elementary application (Figure 3.10a).

Like a textbook, the elementary stuff comes first. A newcomer to
the project would be able to read the elementary parts of the code
before moving on the advanced stuff.

But in many large applications, the extra capabilities are best im-
plemented as an enhancement to some private, root function in the
elementary part of the application (Figure 3.10b). By being able to
change the root’s capability, the user can change the capability of all
the commands that use the root.

Returning to the word processor for an example, a fairly primitive
routine is the one that starts a new page. It’s used by the word that
starts a new line; when we run out of lines we must start a new page.
The word that starts a new line, in turn, is used by the routine that
formats words on the line; when the next word won’t fit on the current

Decomposition by Sequential Complexity 116

Figure 3.10: Two ways to add advanced capabilities.

line, we invoke NEWLINE. This “uses” hierarchy demands that we define
NEWPAGE early in the application.

The problem? One of the advanced components includes a routine
that must be invoked by NEWPAGE. Specifically, if a figure or table
appears in the middle of text, but at format time won’t fit on what’s
left of the page, the formatter defers the figure to the next page while
continuing with the text. This feature requires somehow “getting inside

Decomposition by Sequential Complexity 117

of” NEWPAGE, so that when NEWPAGE is next executed, it will format
the deferred figure at the top of the new page:

: NEWPAGE ... (terminate page with footer)

(start new page with header) ... ?HOLDOVER ... ;

How can NEWPAGE invoke ?HOLDOVER, if ?HOLDOVER is not defined
until much later?

While it’s theoretically possible to organize the listing so that the
advanced capability is defined before the root function, that approach
is bad news for two reasons.

First, the natural organization (by degree of capability) is destroyed.
Second, the advanced routines often use code that is defined amid
the elementary capabilities. If you move the advanced routines to the
front of the application, you’ll also have to move any routines they
use, or duplicate the code. Very messy.

You can organize the listing by degree of complexity using a tech-
nique called “vectoring.” You can allow the root function to invoke
(point to) any of various routines that have been defined after the
root function itself. In our example, only the name of the routine
?HOLDOVER need be created early; its definition can be given later.

Chapter Seven treats the subject of vectoring in Forth.

The Limits of Level Thinking

Most of us are guilty of over-emphasizing the difference between “high-
level” and “low-level.” This notion is an arbitrary one. It limits our
ability to think clearly about software problems.

“Level” thinking, in the traditional sense, distorts our efforts in three
ways:

1. It implies that the order of development should follow a hierar-
chical structure

The Limits of Level Thinking 118

2. It implies that levels should be segregated from each other, pro-
hibiting the benefits of reusability

3. It fosters syntactical differences between levels (e.g., assembler
vs. “high-level” languages) and a belief that the nature of pro-
gramming somehow changes as we move further from machine
code.

Let’s examine each of these misconceptions one by one.

Where to Begin?

I asked Moore how he would go about developing a particular ap-
plication, a game for children. As the child presses the digits on the
numeric keypad, from zero to nine, that same number of large boxes
would appear on the screen.

Moore:

I don’t start at the top and work down. Given that exact problem,
I would write a word that draws a box. I’d start at the bottom, and
I’d end up with a word called GO, which monitored the keyboard.

How much of that is intuitive?

Perhaps some degree of it. I know where I’m going so I don’t have
to start there. But also it’s more fun to draw boxes than to program
a keyboard. I’ll do the thing that’s most fun in order to get into
the problem. If I have to clean up all those details later, that’s the
price I pay.

Are you advocating a “fun-down” approach?

Given that you’re doing it in a free-spirit fashion, yes. If we were
giving a demonstration to a customer in two days, I’d do it differently.
I would start with the most visible thing, not the most fun thing.

Where to Begin? 119

But still not in that hierarchical sequence, top down. I base my
approach on more immediate considerations such as impressing the
customer, getting something to work, or showing other people how
it’s going to work to get them interested.

If you define a level as “nesting,” then yes, it’s a good way to
decompose a problem. But I’ve never found the notion of “level”
useful. Another aspect of levels is languages, metalanguages, meta-
metalanguages. To try and split hairs as to which level you are on—
assembler level, first integration level, last integration level—it’s just
tedious and not helpful. My levels get all mixed up hopelessly.

Designing by components makes where you start less important. You
could start with the key interpreter, for instance. Its goal is to receive
keystrokes and convert them to numbers, passing these numbers to
an internally invoked word. If you substitute the Forth word . (“dot,”
which prints a number from the stack), then we can implement the
key interpreter, test it, and debug it without using routines that have
anything to do with drawing squares.

On the other hand, if the application required hardware support
(such as a graphics package) that we didn’t have on hand, we might
want to substitute something available, such as displaying an asterisk,
just to get into the problem. Thinking in terms of lexicons is like
painting a huge mural that spans several canvases. You work on all
the canvases at once, first sketching in the key design elements, then
adding splashes of color here and there. . . until the entire wall is
complete.

Where to Begin? 120

3.6

Tip

In deciding where to start designing, look for:

• areas where the most creativity is required (the areas
where change is most likely)

• areas that give the most satisfying feedback (get the juices
flowing)

• areas in which the approach decided upon will greatly
affect other areas, or which will determine whether the
stated problem can be solved at all

• things you should show the customer, for mutual under-
standing

• things you can show the investors, if necessary for the rent.

No Segregation Without Representation

The second way in which levels can interfere with optimal solutions is
by encouraging segregation of the levels. A popular design construct
called the “object” typifies this dangerous philosophy.∗

An object is a portion of code that can be invoked by a single name,
but that can perform more than one function. To select a particular
function you have to invoke the object and pass it a parameter or a

∗Editor’s note: But see the recant in the 1994 Preface on page ix, and the

clairification in the 2004 Preface on page iii. Think of something like Windows

COM “objects” or CORBA.

Real object oriented programming, as it originates in Smalltalk, does not hide

information from the programmer. Adding a “scrambled” method to the “egg

master object” is no problem. Smalltalk works by adding methods to known classes,

you don’t even need to subclass them. You can look inside an object and its

source code whenever you want. And table driven method dispatching can be

quite efficient. Bernd Paysan

No Segregation Without Representation 121

group of parameters. You can visualize the parameters as representing
a row of buttons you can push to make the object do what you want.

The benefit of designing an application in terms of objects is that,
like a component, the object hides information from the rest of the
application, making revision easier.

There are several problems, though. First, the object must contain
a complicated decision structure to determine which function it must
perform. This increases object size and decreases performance. A
lexicon, on the other hand, provides all usable functions by name for
you to invoke directly.

Second, the object is usually designed to stand alone. It can’t take
advantage of tools provided by supporting components. As a result,
it tends to duplicate code inside itself that will appear elsewhere in
the application. Some objects are even required to parse text in order
to interpret their parameters. Each may even use its own syntax. A
shameless waste of time and energy!

Finally, because the object is constructed to recognize a finite set
of possibilities, it’s difficult to make additions to the row of buttons
when a new function is needed. The tools inside the object have not
been designed for reuse.

The idea of levels pervades the design of the IBM Personal Com-
puter. Besides the processor itself (with its own machine instruction
set, of course), there are these software levels:

• the set of utilities written in assembler and burned into the sys-
tem’s ROM

• the disk operating system, which invokes the utilities

• the high-level language of choice, which invokes the operating
system and the utilities

• and finally, any application using the language.

The ROM utilities provide the hardware-dependent routines: those
that handle the video screen, disk drives, and keyboard. You invoke

No Segregation Without Representation 122

“No scrambled?”

them by placing a control code in a certain register and generating the
appropriate software interrupt.

For instance, software interrupt 10H causes entry to the video rou-
tines. There are 16 of these routines. You load register AH with the
number of the video routine you want.

Unfortunately, in all 16 routines there is not one that displays a text
string. To do that, you must repeat the process of loading registers and
generating a software interrupt, which in turn must make a decision
about which routine you want, and do a few other things you don’t
need—for every single character.

Try writing a text editor in which the entire screen may need to
be refreshed with each keystroke. Slow as mail! You can’t improve
the speed because you can’t reuse any of the information within the
video routines except for what’s provided on the outside. The stated
reason for this is to “insulate” the programmer from device addresses
and other details of the hardware. After all, these could change with
future upgrades.

The only way to efficiently implement video I/O on this machine
is to move strings directly into video memory. You can do this easily,
because the reference manual tells you the address at which video
memory starts. But this defeats the intent of the system’s designers.
Your code may no longer survive a hardware revision.

By supposedly “protecting” the programmer from details, segrega-
tion has defeated the purpose of information hiding. Components, in
contrast, are not segregated modules but rather cumulative additions
to the dictionary. A video lexicon would, at the very least, give a name
for the address of video memory.

It’s not that anything’s wrong with the concept of a bit-switch func-
tion interface between components, when it’s necessary. The problem
here is that this video component was incompletely designed. On the
other hand, if the system had been fully integrated—operating system
and drivers written in Forth—the video component would not have to

No Segregation Without Representation 124

be designed to suit all needs. An application programmer could either
rewrite the driver or write an extension to the driver using available
tools from the video lexicon.

3.7

Tip

Don’t bury your tools.

The Tower of Babble

The final deception perpetrated by level thinking is that programming
languages should become qualitatively different the “higher” you go.
We tend to speak of high-level code as something rarefied, and low-
level code as something grubby and profane.

To some degree these distinctions have validity, but this is only the
result of certain arbitrary architectural constraints that we all accept as
the norm. We’ve grown accustomed to assemblers with terse mnemon-
ics and unnatural syntactical rules, because they’re “low-level.”

The component concept rebels against the polarity of high-level vs.
low-level. All code should look and feel the same. A component is
simply a set of commands that together transform data structures and
algorithms into useful functions. These functions can be used without
knowledge of the structures and/or algorithms within.

The distance of these structures from actual machine code is irrel-
evant. The code written to toggle bits in an output port should, in
theory, look no more intimidating than the code to format a report.

Even machine code should be readable. A true Forth-based engine
would enjoy a syntax and dictionary identical and continuous with the
“high-level” dictionary we know today.

The Tower of Babble 125

Summary

In this chapter we’ve seen two ways that applications can be decom-
posed: into components, and according to sequential complexity.

Special attention should be paid to those components that serve as
interfaces between other components.

Now, if you’ve done preliminary design correctly, your problem is
lying at your feet in a heap of manageable pieces. Each piece repre-
sents a problem to solve. Grab your favorite piece and turn to the next
chapter.

For Further Thinking

(Answers appear in Appendix D.)

1. Below are two approaches to defining an editor’s keyboard inter-
preter. Which would you prefer? Why?

(a) (Define editor keys)

HEX

72 CONSTANT UPCURSOR

80 CONSTANT DOWNCURSOR

77 CONSTANT RIGHTCURSOR

75 CONSTANT LEFTCURSOR

82 CONSTANT INSERTKEY

83 CONSTANT DELETEKEY

DECIMAL

(Keystroke interpreter)

: EDITOR

BEGIN MORE WHILE KEY CASE

UPCURSOR OF CURSOR-UP ENDOF

DOWNCURSOR OF CURSOR-DOWN ENDOF

RIGHTCURSOR OF CURSOR> ENDOF

Summary 126

LEFTCURSOR OF CURSOR< ENDOF

INSERTKEY OF INSERTING ENDOF

DELETEKEY OF DELETE ENDOF

ENDCASE REPEAT ;

(b) (Keystroke interpreter)

: EDITOR

BEGIN MORE WHILE KEY CASE

72 OF CURSOR-UP ENDOF

80 OF CURSOR-DOWN ENDOF

77 OF CURSOR> ENDOF

75 OF CURSOR< ENDOF

82 OF INSERTING ENDOF

83 OF DELETE ENDOF

ENDCASE REPEAT ;

2. This problem is an exercise in information hiding.

Let’s suppose we have a region of memory outside of the Forth
dictionary which we want to allocate for data structures (for
whatever reason). The region of memory begins at HEX address
C000. We want to define a series of arrays which will reside in
that memory.

We might do something like this:

HEX

C000 CONSTANT FIRST-ARRAY (8 bytes)

C008 CONSTANT SECOND-ARRAY (6 bytes)

C00C CONSTANT THIRD ARRAY (100 bytes)

Each array-name defined above will return the starting address
of the appropriate array. But notice we had to compute the
correct starting address for each array, based on how many bytes
we had already allocated. Let’s try to automate this, by keeping
an “allocation pointer,” called >RAM, showing where the next free

For Further Thinking 127

byte is. We first set the pointer to the beginning of the RAM
space:

VARIABLE >RAM

C000 >RAM !

Now we can define each array like this:

>RAM @ CONSTANT FIRST-ARRAY 8 >RAM +!

>RAM @ CONSTANT SECOND-ARRAY 6 >RAM +!

>RAM @ CONSTANT THIRD-ARRAY 100 >RAM +!

Notice that after defining each array, we increment the pointer
by the size of the new array to show that we’ve allocated that
much additional RAM.

To make the above more readable, we might add these two
definitions:

: THERE (-- address of next free byte in RAM)

>RAM @ ;

: RAM-ALLOT (#bytes to allocate --) >RAM +! ;

We can now rewrite the above equivalently as:

THERE CONSTANT FIRST-ARRAY 8 RAM-ALLOT

THERE CONSTANT SECOND-ARRAY 6 RAM-ALLOT

THERE CONSTANT THIRD-ARRAY 100 RAM-ALLOT

(An advanced Forth programmer would probably combine these
operations into a single defining word, but that whole topic is
not germane to what I’m leading up to.)

Finally, suppose we have 20 such array definitions scattered
throughout our application.

Now, the problem: Somehow the architecture of our system
changes and we decide that we must allocate this memory such

For Further Thinking 128

that it ends at HEX address EFFF. In other words, we must start
at the end, allocating arrays backwards. We still want each array
name to return its starting address, however.

To do this, we must now write:

F000 >RAM ! (EFFF, last byte, plus one)

: THERE (-- address of next free byte in RAM)

>RAM @ ;

: RAM-ALLOT (#bytes to allocate) NEGATE >RAM +! ;

8 RAM-ALLOT THERE CONSTANT FIRST-ARRAY

6 RAM-ALLOT THERE CONSTANT SECOND-ARRAY

100 RAM-ALLOT THERE CONSTANT THIRD-ARRAY

This time RAM-ALLOT decrements the pointer. That’s okay, it’s
easy to add NEGATE to the definition of RAM-ALLOT. Our present
concern is that each time we define an array we must RAM-ALLOT
before defining it, not after. Twenty places in our code need
finding and correcting.

The words THERE and RAM-ALLOT are nice and friendly, but they
didn’t succeed at hiding how the region is allocated. If they had,
it wouldn’t matter which order we invoked them in.

At long last, our question: What could we have done to THERE

and RAM-ALLOT to minimize the impact of this design change?
(Again, the answer I’m looking for has nothing to do with defin-
ing words.)

For Further Thinking 129

FOUR

Detailed Design/
Problem Solving

Trivial: I can see how to do this. I just don’t know how long it will
take.
Non-trivial: I haven’t a clue how to do this!

—Operating philosophy developed at the Laboratory
Automation and Instrumentation Design Group,

Chemistry Dept., Virginia Polytechnic Institute and State
University

Once you’ve decided upon the components in your application, your
next step is to design those components. In this chapter we’ll apply
problem-solving techniques to the detailed design of a Forth applica-
tion. This is the time for pure invention, the part that many of us find
the most fun. There’s a special satisfaction in going to the mat with
a non-trivial problem and coming out the victor.

In English it’s difficult to separate an idea from the words used to
express the idea. In writing a Forth application it’s difficult to separate
the detailed design phase from implementation, because we tend to
design in Forth. For this reason, we’ll get a bit ahead of ourselves
in this chapter by not only presenting a problem but also designing a
solution to it, right on through to the coded implementation.

Detailed Design/Problem Solving 131

Problem-Solving Techniques

Even neophytes can solve programming problems without devoting any
conscious thought to problem solving techniques. So what’s the point
in studying techniques of problem solving? To quicken the process.
By thinking about the ways in which we solve problems, apart from
the problems themselves, we enrich our subconscious storehouse of
techniques.

G. Polya has written several books on problem solving, especially
of the mathematical problem. The most accessible of these is How
to Solve It [1]. Although solving a mathematical problem isn’t quite
the same as solving a software problem, you’ll find some valuable
suggestions there.

The following series of tips summarize several techniques recom-
mended by the science of problem solving:

4.1

Tip

Determine your goal.

Know what you’re trying to accomplish. As we saw in Chapter Two,
this step can be detailed further:

Determine the data interfaces: Know what data will be required to
accomplish the goal, and make sure those data are available (input).
Know what data the function is expected to produce (output). For a
single definition, this means writing the stack-effect comment.

Determine the rules; review all the facts that you know. In Chapter
Two we described the rates for computing the cost of a phone call
along with the rules for applying the rates.

4.2

Tip

Picture the problem as a whole.

Problem-Solving Techniques 132

In the analysis phase we separated the problem into its parts, to clarify
our understanding of each piece. We are now entering the synthesis
phase. We must visualize the problem as a whole.

Try to retain as much information about the problem in your mind
as possible. Use words, phrases, figures and tables, or any kind of
graphic representation of the data and/or rules to help you see the
maximum information at a glance. Fill your mind to bursting with the
requirements of the problem you need to solve, the way you might fill
your lungs with air.

Now hold that mental image, the way you might hold your breath.
One of two things will happen:
You may see the solution in a flash of insight. Great! Exhale a sigh

of relief and proceed directly to implementation. Or. . . , the problem
is too complex or too unfamiliar to be solved so easily. In this case,
you’ll have to turn your attention to analogies and partial solutions.
As you do so, it’s important that you have already concentrated on
the problem’s requirements all at once, engraving these requirements
on your mental retina.

4.3

Tip

Develop a plan.

If the solution didn’t come at a glance, the next step is to determine
the approach that you will take to solve it. Set a course for action and
avoid the trap of fumbling about aimlessly.

The following tips suggest several approaches you might consider.

4.4

Tip

Think of an analogous problem.

Problem-Solving Techniques 133

Does this problem sound familiar? Have you written a definition like
it before? Figure out what parts of the problem are familiar, and in
what ways this problem might differ. Try to remember how you solved
it before, or how you solved something like it.

4.5

Tip

Work forward.

The normal, obvious way to attack a problem is by beginning with the
known, and proceeding to the unknown. In deciding which horse to bet
on, you’d begin with their recent histories, their current health, and
so on, apply weights to these various factors and arrive at a favorite.

4.6

Tip

Work backward.

More complicated problems present many possible ways to go with
the incoming data. How do you know which route will take you closer
to the solution? You don’t. This class of problem is best solved by
working backward (Figure 4.1).

Figure 4.1: A problem that is easier to solve backward than forward.

Problem-Solving Techniques 134

Figure 4.2: Two containers.

4.7

Tip

Believe.

Belief is a necessary ingredient for successfully working backward. We’ll
illustrate with a famous mathematical problem. Suppose we have two
containers. The containers have no graduation marks, but one holds
nine gallons and the other holds four gallons. Our task is to measure
out exactly six gallons of water from the nearby stream in one of the
containers (Figure 4.2).

Try to solve this on your own before reading further.
How can we get a “six” out of a “nine” and a “four”? We can start

out working forward, by mentally transferring water from one container
to the other. For example, if we fill the large container twice from
the small container, we’ll get eight gallons. If we fill the nine-gallon
container to the brim, then empty enough water to fill the four-gallon
container, we’ll have exactly five gallons in the large container.

These ideas are interesting, but they haven’t gotten us six gallons.
And it’s not clear how they will get us six gallons.

Let’s try working backward. We assume we’ve measured six gallons
of water, and it’s sitting in the large container (it won’t fit in the

Problem-Solving Techniques 135

small one!). Now, how did we get it there? What was the state of our
containers one step previously?

There are only two possibilities (Figure 4.3):

1. The four-gallon container was full, and we just added it to the
large container. This implies that we already had two gallons in
the large container. Or. . .

2. The nine-gallon container was full, and we just poured off three
gallons into the small container.

Which choice? Let’s make a guess. The first choice requires a two-
gallon measurement, the second requires a three-gallon measurement.
In our initial playing around, we never saw a unit like two. But we
did see a difference of one, and one from four is three. Let’s go with
version b.

Now comes the real trick. We must make ourselves believe with-
out doubt that we have arrived at the situation described. We have
just poured off three gallons into the small container. Suspending all
disbelief, we concentrate on how we did it.

How can we pour off three gallons into the small container? If there
had already been one gallon in the small container! Suddenly we’re
over the hump. The simple question now is, how do we get one gallon
in the small container? We must have started with a full nine-gallon
container, poured off four gallons twice, leaving one gallon. Then we
transferred the one gallon to the small container.

Our final step should be to check our logic by running the problem
forwards again.

Here’s another benefit of working backward: If the problem is un-
solvable, working backward helps you quickly prove that it has no
solution.

4.8

Tip

Recognize the auxiliary problem.

Problem-Solving Techniques 136

Figure 4.3: Achieving the end result.

Before we’ve solved a problem, we have only a hazy notion of what
steps—or even how many steps—may be required. As we become
more familiar with the problem, we begin to recognize that our problem
includes one or more subproblems that somehow seem different from
the main outline of the proposed procedure.

In the problem we just solved, we recognized two subproblems: fill-
ing the small container with one gallon and then filling the large con-
tainer with six gallons.

Recognizing these smaller problems, sometimes called “auxiliary prob-
lems,” is an important problem-solving technique. By identifying the
subproblem, we can assume it has a straightforward solution. Without

Problem-Solving Techniques 137

Intent on a complicated problem.

stopping to determine what that solution might be, we forge ahead
with our main problem.

(Forth is ideally suited to this technique, as we’ll see.)

4.9

Tip

Step back from the problem.

It’s easy to get so emotionally attached to one particular solution that
we forget to keep an open mind.

The literature of problem solving often employs the example of the
nine dots. It stumped me, so I’ll pass it along. We have nine dots
arranged as shown in Figure 4.4. The object is to draw straight lines
that touch or pass through all nine dots, without lifting the pen off
the paper. The constraint is that you must touch all nine dots with
only four lines.

Figure 4.4: The nine dots problem.

You can sit a good while and do no better than the almost-right
Figure 4.5. If you concentrate really hard, you may eventually conclude
that the problem is a trick—there’s no solution.

But if you sit back and ask yourself,

“Am I cheating myself out a useful tack by being narrow-minded?
Am I assuming any constraints not specified in the problem? What
constraints might they be?”

Problem-Solving Techniques 139

Figure 4.5: Not quite right.

then you might think of extending some of the lines beyond the perime-
ter of the nine dots.

4.10

Tip

Use whole-brain thinking.

When a problem has you stumped and you seem to be getting nowhere,
relax, stop worrying about it, perhaps even forget about it for a while.

Creative people have always noted that their best ideas seem to
come out of the blue, in bed or in the shower. Many books on prob-
lem solving suggest relying on the subconscious for the really difficult
problems.

Contemporary theories on brain functions explore the differences
between rational, conscious thought (which relies on the manipulation
of symbols) and subconscious thought (which correlates perceptions
to previously stored information, recombining and relinking knowledge
in new and useful ways).

Leslie Hart [2] explains the difficulty of solving a large problem
by means of logic:

A huge load is placed on that one small function of the brain that
can be brought into the attention zone for a period. The feat is
possible, like the circus act, but it seems more sensible to. . . use the

Problem-Solving Techniques 140

full resources of our glorious neocortex. . . the multibillion-neuron
capacity of the brain.

. . . The work aspect lies in providing the brain with raw input, as in
observing, reading, collecting data, and reviewing what others have
achieved. Once in, [subconscious] procedures take over, simultane-
ously, automatically, outside of the attention zone.

. . . It seems apparent. . . that a search is going on during the
interval, though not necessarily continuously, much as in a large
computer. I would hazard the guess that the search ramifies, starts
and stops, reaches dead ends and begins afresh, and eventually as-
sembles an answer that is evaluated and then popped into conscious
attention—often in astonishingly full-blown detail.

4.11

Tip

Evaluate your solution. Look for other solutions.

You may have found one way of skinning the cat. There may be other
ways, and some of them may be better.

Don’t invest too much effort in your first solution without asking
yourself for a second opinion.

Interview with a Software Inventor

Donald A. Burgess, owner and president of Scientek Instrumenta-
tion, Inc.:

I have a few techniques I’ve found useful over the years in design-
ing anything, to keep myself flexible. My first rule is, “Nothing is
impossible.” My second rule is, “Don’t forget, the object is to make
a buck.”

Interview with a Software Inventor 141

“I’m not just sleeping. I’m using my neocortex.”

First examine the problem, laying out two or three approaches on
paper. Then try the most appealing one, to see if it works. Carry
it through. Then deliberately go all the way back to the beginning,
and start over.

Starting over has two values. First, it gives you a fresh approach.
You either gravitate back to the way you started, or the way you
started gravitates toward the new way.

Second, the new approach may show all kinds of powerful possibili-
ties. Now you have a benchmark. You can look at both approaches
and compare the advantages of both. You’re in a better position to
judge.

Getting stuck comes from trying too hard to follow a single approach.
Remember to say, “I want this kumquat crusher to be different. Let’s
reject the traditional design as not interesting. Let’s try some crazy
ideas.”

The best thing is to start drawing pictures. I draw little men. That
keeps it from looking like “data” and interfering with my thinking
process. The human mind works exceptionally well with analogies.
Putting things in context keeps you from getting stuck within the
confines of any language, even Forth.

When I want to focus my concentration, I draw on little pieces of
paper. When I want to think in broad strokes, to capture the overall
flow, I draw on great big pieces of paper. These are some of the
crazy tricks I use to keep from getting stagnant.

When I program in Forth, I spend a day just dreaming, kicking
around ideas. Usually before I start typing, I sketch it out in general
terms. No code, just talk. Notes to myself.

Then I start with the last line of code first. I describe what I would
like to do, as close to English as I can. Then I use the editor to
slide this definition towards the bottom of the screen, and begin

Interview with a Software Inventor 143

coding the internal words. Then I realize that’s a lousy way to do
it. Maybe I split my top word into two and transfer one of them to
an earlier block so I can use it earlier. I run the hardware if I have
it; otherwise I simulate it.

Forth requires self-discipline. You have to stop diddling with the
keyboard. Forth is so willing to do what I tell it to, I’ll tell it to do
all kinds of ridiculous things that have nothing to do with where I’m
trying to go. At those times I have to get away from the keyboard.

Forth lets you play. That’s fine, chances are you’ll get some ideas.
As long as you keep yourself from playing as a habit. Your head is
a whole lot better than the computer for inventing things.

Detailed Design

We’re now at the point in the development cycle at which we’ve de-
cided we need a component (or a particular word). The component
will consist of a number of words, some of which (those that comprise
the lexicon) will be used by other components and some of which (the
internal words) will be only used within this component.

Create as many words as necessary to obey the following tip:

4.12

Tip

Each definition should perform a simple, well-defined task.

Here are the steps generally involved in designing a component:

1. Based on the required functions, decide on the names and syntax
for the external definitions (define the interfaces).

2. Refine the conceptual model by describing the algorithm(s) and
data structure(s).

Detailed Design 144

3. Recognize auxiliary definitions.

4. Determine what auxiliary definitions and techniques are already
available.

5. Describe the algorithm with pseudocode.

6. Implement it by working backwards from existing definitions to
the inputs.

7. Implement any missing auxiliary definitions.

8. If the lexicon contains many names with strong elements in com-
mon, design and code the commonalities as internal definitions,
then implement the external definitions.

We’ll discuss the first two steps in depth. Then we’ll engage in an
extended example of designing a lexicon.

Forth Syntax

At this point in the development cycle you must decide how the words
in your new lexicon will be used in context. In doing so, keep in mind
how the lexicon will be used by subsequent components.

4.13

Tip

In designing a component, the goal is to create a lexicon that
will make your later code readable and easy to maintain.

Each component should be designed with components that use it in
mind. You must design the syntax of the lexicon so that the words
make sense when they appear in context. Hiding interrelated informa-
tion within the component will ensure maintainability, as we’ve seen.

At the same time, observe Forth’s own syntax. Rather than insisting
on a certain syntax because it seems familiar, you may save yourself

Forth Syntax 145

from writing a lot of unnecessary code by choosing a syntax that Forth
can support without any special effort on your part.

Here are some elementary rules of Forth’s natural syntax:

4.14

Tip

Let numbers precede names.

Words that require a numeric argument will naturally expect to find
that number on the stack. Syntactically speaking, then, the number
should precede the name. For instance, the syntax of the word SPACES,
which emits “n” number of spaces, is

20 SPACES

Sometimes this rule violates the order that our ear is accustomed to
hearing. For instance, the Forth word + expects to be preceded by
both arguments, as in

3 4 +

This ordering, in which values precede operators, is called “postfix.”
Forth, in its magnanimity, won’t insist upon postfix notation. You

could redefine + to expect one number in the input stream, like this:

3 + 4

by defining it so:

: + BL WORD NUMBER DROP + ;

(where WORD is 79/83 Standard, returning an address, and NUMBER
returns a double-length value as in the 83 Standard Uncontrolled Ref-
erence Words).

Forth Syntax 146

Fine. But you wouldn’t be able to use this definition inside other
colon definitions or pass it arguments, thereby defeating one of Forth’s
major advantages.

Frequently, “noun” type words pass their addresses (or any type of
pointer) as a stack argument to “verb” type words. The Forth-like
syntax of

“noun” “verb”

will generally prove easiest to implement because of the stack.

In some cases this word order sounds unnatural. For instance, sup-
pose we have a file named INVENTORY. One thing we can do with that
file is SHOW it; that is, format the information in pretty columns. If
INVENTORY passes a pointer to SHOW, which acts upon it, the syntax
becomes

INVENTORY SHOW

If your spec demands the English word-order, Forth offers ways to
achieve it. But most involve new levels of complexity. Sometimes the
best thing to do is to choose a better name. How about

INVENTORY REPORT

(We’ve made the “pointer” an adjective, and the “actor” a noun.)
If the requirements insist on the syntax

SHOW INVENTORY

we have several options. SHOW might set a flag and INVENTORY would
act according to the flag. Such an approach has certain disadvantages,
especially that INVENTORY must be “smart” enough to know all the
possible actions that might be taken on it. (We’ll treat these problems
in Chapters Seven and Eight.)

Forth Syntax 147

Or, SHOW might look ahead at the next word in the input stream.
We’ll discuss this approach in a tip, “Avoid expectations,” later in this
chapter.

Or, the recommended approach, SHOW might set an “execution vari-
able” that INVENTORY will then execute. (We’ll discuss vectored exe-
cution in Chapter Seven.)

4.15

Tip

Let text follow names.

If the Forth interpreter finds a string of text that is neither a number
nor a predefined word, it will abort with an error message. For this
reason, an undefined string must be preceded by a defined word.

An example is ." (dot-quote), which precedes the text it will later
print. Another example is CREATE (as well as all defining words), which
precedes the name that is, at the moment, still undefined.

The rule also applies to defined words that you want to refer to, but
not execute in the usual way. An example is FORGET, as in

FORGET TASK

Syntactically, FORGET must precede TASK so that TASK doesn’t exe-
cute.

4.16

Tip

Let definitions consume their arguments.

This syntax rule is more a convention of good Forth programming than
a preference of Forth.

Suppose you’re writing the word LAUNCH, which requires the num-
ber of a launch pad and fires the appropriate rocket. You want the
definition to look roughly like this:

Forth Syntax 149

: LAUNCH (pad#) LOAD AIM FIRE ;

Each of the three internal definitions will require the same argument,
the launch pad number. You’ll need two DUPs somewhere. The ques-
tion is where? If you put them inside LOAD and AIM, then you can keep
them out of LAUNCH, as in the definition above. If you leave them out
of LOAD and AIM, you’ll have to define:

: LAUNCH (pad#) DUP LOAD DUP AIM FIRE ;

By convention, the latter version is preferable, because LOAD and AIM

are cleaner. They do what you expect them to do. Should you have
to define READY, you can do it so:

: READY (pad#) DUP LOAD AIM ;

and not

: READY (pad#) LOAD AIM DROP ;

4.17

Tip

Use zero-relative numbering.

By habit we humans number things starting with one: “first, second,
third,” etc. Mathematical models, on the other hand, work more natu-
rally when starting with zero. Since computers are numeric processors,
software becomes easier to write when we use zero-relative numbering.

To illustrate, suppose we have a table of eight-byte records. The
first record occupies the first eight bytes of the table. To compute
its starting address, we add “0” to TABLE. To compute the starting
address of the “second” record, we add “8” to TABLE.

It’s easy to derive a formula to achieve these results:

Forth Syntax 150

Figure 4.6: A table of 8-byte records.

first record starts at: 0× 8 = 0
second record starts at: 1× 8 = 8
third record starts at: 2× 8 = 16

We can easily write a word which converts a record# into the address
where that record begins:

: RECORD (record# -- adr)

8 * TABLE + ;

Thus in computer terms it makes sense to call the “first record” the
0th record.

If your requirements demand that numbering start at one, that’s
fine. Use zero-relative numbering throughout your design and then,
only in the “user lexicons” (the set of words that the end-user will use)
include the conversion from zero-to one-relative numbering:

: ITEM (n -- adr) 1- RECORD ;

4.18

Tip

Let addresses precede counts.

Again, this is a convention, not a requirement of Forth, but such
conventions are essential for readable code. You’ll find examples of
this rule in the words TYPE, ERASE, and BLANK.

Forth Syntax 151

4.19

Tip

Let sources precede destinations.

Another convention for readability. For instance, in some systems, the
phrase

22 37 COPY

copies Screen 22 to Screen 37. The syntax of CMOVE incorporates both
this convention and the previous convention:

source destination count CMOVE
4.20

Tip

Avoid expectations (in the input stream).

Generally try to avoid creating words that presume there will be other
words in the input stream.

Suppose your color computer represents blue with the value 1, and
light-blue with 9. You want to define two words: BLUE will return 1;
LIGHT may precede BLUE to produce 9.

In Forth, it would be possible to define BLUE as a constant, so that
when executed it always returns 1.

1 CONSTANT BLUE

And then define LIGHT such that it looks for the next word in the input
stream, executes it, and “ors” it with 8 (the logic of this will become
apparent when we visit this example again, later in the book):

: LIGHT (precedes a color) (-- color value)

’ EXECUTE 8 OR ;

Forth Syntax 152

(in fig-Forth:

: LIGHT [COMPILE] ’ CFA EXECUTE 8 OR ;)

(For novices: The apostrophe in the definition of LIGHT is a Forth
word called “tick.” Tick is a dictionary-search word; it takes a name
and looks it up in the dictionary, returning the address where the
definition resides. Used in this definition, it will find the address of the
word following LIGHT—for instance, BLUE—and pass this address to
the word EXECUTE, which will execute BLUE, pushing a one onto the
stack. Having “sucked up” the operation of BLUE, LIGHT now “or”s an
8 into the 1, producing a 9.)

This definition will work when invoked in the input stream, but
special handling is required if we want to let LIGHT be invoked within
a colon definition, as in:

: EDITING LIGHT BLUE BORDER ;

Even in the input stream, the use of EXECUTE here will cause a crash
if LIGHT is accidentally followed by something other than a defined
word.

The preferred technique, if you’re forced to use this particular syntax,
is to have LIGHT set a flag, and have BLUE determine whether that
flag was set, as we’ll see later on.

There will be times when looking ahead in the input stream is desir-
able, even necessary. (The proposed TO solution is often implemented
this way [3].)

But generally, avoid expectations. You’re setting yourself up for
disappointment.

4.21

Tip

Let commands perform themselves.

Forth Syntax 153

Figure 4.7: The traditional compiler vs. the Forth compiler.

This rule is a corollary to “Avoid expectations.” It’s one of Forth’s
philosophical quirks to let words do their own work. Witness the Forth
compiler (the function that compiles colon definitions), caricatured in
Figure 4.7. It has very few rules:

• Scan for the next word in the input stream and look it up in the
dictionary.

Forth Syntax 154

• If it’s an ordinary word, compile its address.

• If it’s an “immediate” word, execute it.

• If it’s not a defined word, try to convert it to a number and
compile it as a literal.

• If it’s not a number, abort with an error message.

Nothing is mentioned about compiling-words such as IF, ELSE, THEN,
etc. The colon compiler doesn’t know about these words. It merely
recognizes certain words as “immediate” and executes them, letting
them do their own work. (See Starting Forth, Chapter Eleven, “How
to Control the Colon Compiler.”)

The compiler doesn’t even “look for” semicolon to know when to
stop compiling. Instead it executes semicolon, allowing it to do the
work of ending the definition and shutting off the compiler.

There are two tremendous advantages to this approach. First, the
compiler is so simple it can be written in a few lines of code. Second,
there’s no limit on the number of compiling words you can add at any
time, simply by making them immediate. Thus, even Forth’s colon
compiler is extensible!

Forth’s text interpreter and Forth’s address interpreter also adhere
to this same rule.

The following tip is perhaps the most important in this chapter:

4.22

Tip

Don’t write your own interpreter/compiler when you can use
Forth’s.

One class of applications answers a need for a special purpose language—
a self-contained set of commands for doing one particular thing. An
example is a machine-code assembler. Here you have a large group of

Forth Syntax 155

commands, the mnemonics, with which you can describe the instruc-
tions you want assembled. Here again, Forth takes a radical departure
from mainstream philosophy.

Traditional assemblers are special-purpose interpreters—that is, they
are complicated programs that scan the assembly-language listing look-
ing for recognized mnemonics such as ADD, SUB, JMP, etc., and as-
semble machine instructions correspondingly. The Forth assembler,
however, is merely a lexicon of Forth words that themselves assemble
machine instructions.

There are many more examples of the special purpose language,
each specific to individual applications. For instance:

1. If you’re building an Adventure-type game, you’d want to write a
language that lets you create and describe monsters and rooms,
etc. You might create a defining word called ROOM to be used
like this:

ROOM DUNGEON

Then create a set of words to describe the room’s attributes by
building unseen data structures associated with the room:

EAST-OF DRAGON-LAIR

WEST-OF BRIDGE

CONTAINING POT-O-GOLD

etc.

The commands of this game-building language can simply be
Forth words, with Forth as the interpreter.

2. If you’re working with Programmable Array Logic (PAL) devices,
you’d like a form of notation that lets you describe the behav-
ior of the output pins in logical terms, based on the states of
the input pins. A PAL programmer was written with wonderful
simplicity in Forth by Michael Stolowitz [4].

Forth Syntax 156

3. If you must create a series of user menus to drive your applica-
tion, you might want to first develop a menu-compiling language.
The words of this new language allow an application programmer
to quickly program the needed menus—while hiding information
about how to draw borders, move the cursor, etc.

All of these examples can be coded in Forth as lexicons, using the
normal Forth interpreter, without having to write a special-purpose
interpreter or compiler.

Moore:

A simple solution is one that does not obscure the problem with
irrelevancies. It’s conceivable that something about the problem
requires a unique interpreter. But every time you see a unique
interpreter, it implies that there is something particularly awkward
about the problem. And that is almost never the case.

If you write your own interpreter, the interpreter is almost certainly
the most complex, elaborate part of your entire application. You
have switched from solving a problem to writing an interpreter.

I think that programmers like to write interpreters. They like to do
these elaborate difficult things. But there comes a time when the
world is going to have to quit programming keypads and converting
numbers to binary, and start solving problems.

Algorithms and Data Structures

In Chapter Two we learned how to describe a problem’s requirements in
terms of interfaces and rules. In this section we’ll refine the conceptual
model for each component into clearly defined algorithms and data
structures.

Algorithms and Data Structures 157

An algorithm is a procedure, described as a finite number of rules,
for accomplishing a certain task. The rules must be unambiguous
and guaranteed to terminate after a finite number of applications.
(The word is named for the ninth century Persian mathematician al-

Khowarizmi.)
An algorithm lies halfway between the imprecise directives of human

speech, such as “Please sort these letters chronologically,” and the
precise directives of computer language, such as “BEGIN 2DUP < IF

. . . ” etc. The algorithm for sorting letters chronologically might be
this:

1. Take an unsorted letter and note its date.

2. Find the correspondence folder for that month and year.

3. Flip through the letters in the folder, starting from the front,
until you find the first letter dated later than your current letter.

4. Insert your current letter just in front of the letter dated later.
(If the folder is empty, just insert the letter.)

There may be several possible algorithms for the same job. The algo-
rithm given above would work fine for folders containing ten or fewer
letters, but for folders with a hundred letters, you’d probably resort to
a more efficient algorithm, such as this:

1. (same)

2. (same)

3. If the date falls within the first half of the month, open the folder
a third of the way in. If the letter you find there is dated later
than your current letter, search forward until you find a letter
dated the same or before your current letter. Insert your letter
at that point. If the letter you find is dated earlier than your
current letter, search backward. . .

Algorithms and Data Structures 158

. . . You get the point. This second algorithm is more complicated
than the first. But in execution it will require fewer steps on the
average (because you don’t have to search clear from the beginning
of the folder every time) and therefore can be performed faster.

A data structure is an arrangement of data or locations for data,
organized especially to match the problem. In the last example, the
file cabinet containing folders and the folders containing individual
letters can be thought of as data structures.

The new conceptual model includes the filing cabinets and folders
(data structures) plus the steps for doing the filing (algorithms).

Calculations vs. Data Structures vs. Logic

We’ve stated before that the best solution to a problem is the sim-
plest adequate one; for any problem we should strive for the simplest
approach.

Suppose we must write code to fulfill this specification:

if the input argument is 1, the output is 10
if the input argument is 2, the output is 12
if the input argument is 3, the output is 14

There are three approaches we could take:

Calculation

(n) 1- 2* 10 +

Data Structure

CREATE TABLE 10 C, 12 C, 14 C,

(n) 1- TABLE + C@

Calculations vs. Data Structures vs. Logic 159

Logic

(n) CASE

1 OF 10 ENDOF

2 OF 12 ENDOF

3 OF 14 ENDOF ENDCASE

In this problem, calculation is simplest. Assuming it is also adequate
(speed is not critical), calculation is best.

The problem of converting angles to sines and cosines can be imple-
mented more simply (at least in terms of lines of code and object size)
by calculating the answers than by using a data structure. But for
many applications requiring trig, it’s faster to look up the answer in a
table stored in memory. In this case, the simplest adequate solution
is using the data structure.

In Chapter Two we introduced the telephone rate problem. In that
problem the rates appeared to be arbitrary, so we designed a data
structure:

Full Rate Lower Rate Lowest Rate
First Min. .30 .22 .12
Add’1 Mins. .12 .10 .06

Using a data structure was simpler than trying to invent a formula by
which these values could be calculated. And the formula might prove
wrong later. In this case, table-driven code is easier to maintain.

In Chapter Three we designed a keystroke interpreter for our Tiny
Editor using a decision table:

Key Not-Inserting Inserting
Ctrl-D DELETE INSERT-OFF

Ctrl-I INSERT-ON INSERT-OFF

backspace BACKWARD INSERT<

etc.

Calculations vs. Data Structures vs. Logic 160

We could have achieved this same result with logic:

CASE

CTRL-D OF ’INSERTING @ IF

INSERT-OFF ELSE DELETE THEN ENDOF

CTRL-I OF ’INSERTING @ IF

INSERT-OFF ELSE INSERT-ON THEN ENDOF

BACKSPACE OF ’INSERTING @ IF

INSERT< ELSE BACKWARD THEN ENDOF

ENDCASE

but the logic is more confusing. And the use of logic to express such
a multi-condition algorithm gets even more convoluted when a table
was not used in the original design.

The use of logic becomes advisable when the result is not calculable,
or when the decision is not complicated enough to warrant a decision
table. Chapter Eight is devoted to the issue of minimizing the use of
logic in your programs.

4.23

Tip

In choosing which approach to apply towards solving a problem,
give preference in the following order:

1. calculation (except when speed counts)

2. data structures

3. logic

Of course, one nice feature of modular languages such as Forth is that
the actual implementation of a component—whether it uses calcula-
tion, data structures, or logic—doesn’t have to be visible to the rest
of the application.

Calculations vs. Data Structures vs. Logic 161

Solving a Problem: Computing Roman
Numerals

In this section we’ll attempt to demonstrate the process of designing
a lexicon. Rather than merely present the problem and its solution,
I’m hoping we can crack this problem together. (I kept a record of
my thought processes as I solved this problem originally.) You’ll see
elements of the problem-solving guidelines previously given, but you’ll
also see them being applied in a seemingly haphazard order—just as
they would be in reality.

Here goes: The problem is to write a definition that consumes a
number on the stack and displays it as a Roman numeral.

This problem most likely represents a component of a larger system.
We’ll probably end up defining several words in the course of solving
this problem, including data structures. But this particular lexicon will
include only one name, ROMAN, and it will take its argument from the
stack. (Other words will be internal to the component.)

Having thus decided on the external syntax, we can now proceed to
devise the algorithms and data structures.

We’ll follow the scientific method—we’ll observe reality, model a
solution, test it against reality, modify the solution, and so on. We’ll
begin by recalling what we know about Roman numerals.

Actually, we don’t remember any formal rules about Roman numer-
als. But if you give us a number, we can make a Roman numeral out
of it. We know how to do it—but we can’t yet state the procedure as
an algorithm.

So, let’s look at the first ten Roman numerals:

Solving a Problem: Computing Roman Numerals 162

I
II
III
IV
V
VI
VII
VIII
IX
X

We make a few observations. First, there’s the idea of a tally, where
we represent a number by making that many marks (3 = III). On the
other hand, special symbols are used to represent groups (5 = V). In
fact, it seems we can’t have more than three I’s in a row before we
use a larger symbol.

Second, there’s a symmetry around five. There’s a symbol for five
(V), and a symbol for ten (X). The pattern I, II, III repeats in the
second half, but with a preceding V.

One-less-than-five is written IV, and one-less-than-ten is written IX.
It seems that putting an “I” in front of a larger-value symbol is like
saying “one-less-than. . . ”

These are vague, hazy observations. But that’s alright. We don’t
have the whole picture yet.

Let’s study what happens above ten:

Solving a Problem: Computing Roman Numerals 163

XI
XII
XIII
XIV
XV
XVI
XVII
XVIII
XIX
XX

This is exactly the pattern as before, with an extra “X” in front. So
there’s a repeating cycle of ten, as well.

If we look at the twenties, they’re the same, with two “X”s; the
thirties with three “X”s. In fact, the number of “X” is the same as the
number in the tens column of the original decimal number.

This seems like an important observation: we can decompose our
decimal number into decimal digits, and treat each digit separately.
For instance, 37 can be written as

XXX (thirty)

followed by

VII (seven)

It may be premature, but we can already see a method by which Forth
will let us decompose a number into decimal digits—with modulo
division by ten. For instance, if we say

37 10 /MOD

we’ll get a 7 and a 3 on the stack (the three—being the quotient—is
on top.)

Solving a Problem: Computing Roman Numerals 164

But these observations raise a question: What about below ten,
where there is no ten’s place? Is this a special case? Well, if we
consider that each “X” represents ten, then the absence of “X” repre-
sents zero. So it’s not a special case. Our algorithm works, even for
numbers less than ten.

Let’s continue our observations, paying special attention to the cy-
cles of ten. We notice that forty is “XL.” This is analogous to 4 being
“IV,” only shifted by the value of ten. The “X” before the “L” says
“ten-less-than-fifty.” Similarly,

L (50) is analogous to V (5)
LX (60) " VI (6)

LXX (70) " VII (7)
LXXX (80) " VIII (8)

XC (90) " IX (9)
C (100) " X (10)

Apparently the same patterns apply for any decimal digit—only the
symbols themselves change. Anyway, it’s clear now that we’re dealing
with an essentially decimal system.

If pressed to do so, we could even build a model for a system to dis-
play Roman numerals from 1 to 99, using a combination of algorithm
and data structure.

Solving a Problem: Computing Roman Numerals 165

Data Structure

Ones’ Table Tens’ Table
0 0
1 I 1 X
2 II 2 XX
3 III 3 XXX
4 IV 4 XL
5 V 5 L
6 VI 6 LX
7 VII 7 LXX
8 VIII 8 LXXX
9 IX 9 XC

Algorithm

Divide n by 10. The quotient is the tens’ column digit; the remainder
is the ones’ column digit. Look up the ten’s digit in the tens’ table
and print the corresponding symbol pattern. Look up the ones’ digit
in the one’s table and print that corresponding symbol pattern.

For example, if the number is 72, the quotient is 7, the remainder
is 2. 7 in the tens’ table corresponds to “LXX,” so print that. 2 in the
ones’ column corresponds to “II,” so print that. The result:

LXXII

We’ve just constructed a model that works for numbers from one to
99. Any higher number would require a hundreds’ table as well, along
with an initial division by 100.

The logical model just described might be satisfactory, as long as
it does the job. But somehow it doesn’t seem we’ve fully solved the
problem. We avoided figuring out how to produce the basic pattern

Data Structure 166

by storing all possible combinations in a series of tables. Earlier in this
chapter we observed that calculating an answer, if it’s possible, can
be easier than using a data structure.

Since this section deals with devising algorithms, let’s go all the way.
Let’s look for a general algorithm for producing any digit, using only
the elementary set of symbols. Our data structure should contain only
this much information:

I V
X L
C D
M

In listing the symbols, we’ve also organized them in a way that seems
right. The symbols in the left column are all multiples of ten; the
symbols in the right column are multiples of five. Furthermore, the
symbols in each row have ten times the value of the symbols directly
above them.

Another difference, the symbols in the first column can all be com-
bined in multiples, as “XXXIII.” But you can’t have multiples of any
of the right-column symbols, such as VVV. Is this observation useful?
Who knows?

Let’s call the symbols in the left column ONERS and in the right
column FIVERS. The ONERS represent the values 1, 10, 100, and 1,000;
that is, the value of one in every possible decimal place. The FIVERS

represent 5, 50, and 500; that is, the value of five in every possible
decimal place.

Using these terms, instead of the symbols themselves, we should be
able to express the algorithm for producing any digit. (We’ve factored
out the actual symbols from the kind of symbols.) For instance, we
can state the following preliminary algorithm:

For any digit, print as many ONERS as necessary to add up to the
value.

Algorithm 167

Thus, for 300 we get “CCC,” for 20 we get “XX” for one we get “I.”
And for 321 we get “CCCXXI.”

This algorithm works until the digit is 4. Now we’ll have to expand
our algorithm to cover this exception:

Print as many ONERS as necessary to add up to the value, but if the
digit is 4, print a ONER then a FIVER. Hence, 40 is “XL”; 4 is “IV.”

This new rule works until the digit is 5. As we noticed before, digits
of five and above begin with a FIVER symbol. So we expand our rule
again:

If the digit is 5 or more, begin with a FIVER and subtract five from
the value; otherwise do nothing. Then print as many ONERS as
necessary to add up to the value. But if the digit is 4, print only a
ONER and a FIVER.

This rule works until the digit is 9. In this case, we must print a ONER

preceding a—what? A ONER from the next higher decimal place (the
next row below). Let’s call this a TENER. Our complete model, then
is:

If the digit is 5 or more, begin with a FIVER and subtract five from
the value; otherwise do nothing. Then, print as many ONERS as
necessary to add up to the value. But if the digit is 4, print only a
ONER and a FIVER, or if it’s 9, print only a ONER and a TENER.

We now have an English-language version of our algorithm. But we
still have some steps to go before we can run it on our computer.

In particular, we have to be more specific about the exceptions. We
can’t just say,

Do a, b, and c. But in such and such a case, do something different.

because the computer will do a, b, and c before it knows any better.

Algorithm 168

Instead, we have to check whether the exceptions apply before we
do anything else.

4.24

Tip

In devising an algorithm, consider exceptions last. In writing
code, handle exceptions first.

This tells us something about the general structure of our digit-producing
word. It will have to begin with a test for the 4/9 exceptions. In either
of those cases, it will respond accordingly. If neither exception applies,
it will follow the “normal” algorithm. Using pseudocode, then:

: DIGIT (n) 4-OR-9? IF special cases

ELSE normal case THEN ;

An experienced Forth programmer would not actually write out this
pseudocode, but would more likely form a mental image of the struc-
ture for eliminating the special cases. A less experienced programmer
might find it helpful to capture the structure in a diagram, or in code
as we’ve done here.

In Forth we try to minimize our dependence on logic. But in this
case we need the conditional IF because we have an exception we
need to eliminate. Still, we’ve minimized the complexity of the control
structure by limiting the number of IF THENs in this definition to one.

Yes, we still have to distinguish between the 4-case and the 9-case,
but we’ve deferred that structural dimension to lower-level definitions—
the test for 4-or-9 and the “special case” code.

What our structure really says is that either the 4-exception or the 9-
exception must prohibit execution of the normal case. It’s not enough
merely to test for each exception, as in this version:

: DIGIT (n) 4-CASE? IF ONER FIVER THEN

9-CASE? IF ONER TENER THEN

normal case... ;

Algorithm 169

because the normal case is never excluded. (There’s no way to put anELSE just before the normal case, because ELSE must appear betweenIF and THEN.)
If we insist on handling the 4-exception and the 9-exception sepa-

rately, we could arrange for each exception to pass an additional flag,
indicating that the exception occurred. If either of these flags is true,
then we can exclude the normal case:

: DIGIT (n) 4-CASE? DUP IF ONER FIVER THEN

9-CASE? DUP IF ONER TENER THEN

OR NOT IF normal case THEN ;

But this approach needlessly complicates the definition by adding new
control structures. We’ll leave it like it was.

Now we have a general idea of the structure of our main definition.
We stated, “If the digit is 5 or more, begin with a FIVER and subtract

five from the value; otherwise do nothing. Then, print as many ONERS

as necessary to add up to the value.”
A direct translation of these rules into Forth would look like this:

(n) DUP 4 > IF FIVER 5 - THEN ONERS

This is technically correct, but if we’re familiar with the technique of
modulo division, we’ll see this as a natural situation for modulo division
by 5. If we divide the number by five, the quotient will be zero (false)
when the number is less than five, and one (true) when it’s between 5
and 9. We can use it as the boolean flag to tell whether we want the
leading FIVER:

(n) 5 / IF FIVER THEN ...

The quotient/flag becomes the argument to IF.
Furthermore, the remainder of modulo 5 division is always a number

between 0 and 4, which means that (except for our exception) we can

Algorithm 170

use the remainder directly as the argument to ONERS. We revise our
phrase to

(n) 5 /MOD IF FIVER THEN ONERS
Getting back to that exception, we now see that we can test for both 4
and 9 with a single test—namely, if the remainder is 4. This suggests
that we can do our 5 /MOD first, then test for the exception. Something
like this:

: DIGIT (n)

5 /MOD OVER 4 = IF spe
ial
ase ELSE
IF FIVER THEN ONERS THEN ;

(Notice that we OVERed the remainder so that we could compare it
with 4 without consuming it.)

So it turns out we do have a doubly-nested IF THEN construct after
all. But it seems justified because the IF THEN is handling the special
case. The other is such a short phrase, “IF FIVER THEN,” it’s hardly
worth making into a separate definition. You could though. (But we
won’t.)

Let’s focus on the code for the special case. To state its algorithm:
“If the digit is four, print a ONER and a FIVER. If the digit is nine, print
a ONER and a TENER.”

We can assume that the digit will be one or the other, or else we’d
never be executing this definition. The question is, how do we tell
which one?

Again, we can use the quotient of division by five. If the quotient
is zero, the digit must have been four; otherwise it was nine. So we’ll
play the same trick and use the quotient as a boolean flag. We’ll write:

: ALMOST (quotient)

IF ONER TENER ELSE ONER FIVER THEN ;

Algorithm 171

In retrospect, we notice that we’re printing a ONER either way. We can
simplify the definition to:

: ALMOST (quotient)

ONER IF TENER ELSE FIVER THEN ;

We’ve assumed that we have a quotient on the stack to use. Let’s go
back to our definition of DIGIT and make sure that we do, in fact:

: DIGIT (n)

5 /MOD OVER 4 = IF ALMOST ELSE

IF FIVER THEN ONERS THEN ;

It turns out that we have not only a quotient, but a remainder un-
derneath as well. We’re keeping both on the stack in the event we
execute the ELSE clause. The word ALMOST, however, only needs the
quotient. So, for symmetry, we must DROP the remainder like this:

: DIGIT (n)

5 /MOD OVER 4 = IF ALMOST DROP ELSE

IF FIVER THEN ONERS THEN ;

There we have the complete, coded definition for producing a single
digit of a Roman numeral. If we were desperate to try it out before
writing the needed auxiliary definitions, we could very quickly define a
lexicon of words to print one group of symbols, say the ONES row:

: ONER ." I" ;

: FIVER ." V" ;

: TENER ." X" ;

: ONERS (# of oners --)

?DUP IF 0 DO ONER LOOP THEN ;

Algorithm 172

before loading our definitions of ALMOST and DIGIT.
But we’re not that desperate. No, we’re anxious to move on to the

problem of defining the words ONER, FIVER, and TENER so that their
symbols depend on which decimal digit we’re formatting.

Let’s go back to the symbol table we drew earlier:

ONERs FIVERs
ones I V
tens X L

hundreds C D
thousands M

We’ve observed that we also need a “TENER”—which is the ONER in
the next row below. It’s as if the table should really be written:

ONERs FIVERs TENERs
ones I V X
tens X L C

hundreds C D M
thousands M

But that seems redundant. Can we avoid it? Perhaps if we try a
different model, perhaps a linear table, like this:

ones I
V

tens X
L

hundreds C
D

thousands M

Now we can imagine that each column name (“ones,” “tens,” etc.)
points to the ONER of that column. From there we can also get each

Algorithm 173

Figure 4.8: A mechanical representation: accessing the data struc-
ture.

column’s FIVER by reaching down one slot below the current ONER,
and the TENER by reaching down two slots.

It’s like building an arm with three hands. We can attach it to
the ONES column, as in Figure 4.8a, or we can attach it to the tens’
column, as in Figure 4.8b, or to any power of ten.

An experienced Forth programmer is not likely to imagine arms,
hands, or things like that. But there must be a strong mental image—
the stuff of right-brain thinking—before there’s any attempt to con-
struct the model with code.

Beginners who are learning to think in this right-brain way might
find the following tip helpful:

Algorithm 174

4.25

Tip

If you have trouble thinking about a conceptual model, visualize
it—or draw it—as a mechanical device.

Our table is simply an array of characters. Since a character requires
only a byte, let’s make each “slot” one byte. We’ll call the table
ROMANS:

CREATE ROMANS (ones) ASCII I C, ASCII V C,

(tens) ASCII X C, ASCII L C,

(hundreds) ASCII C C, ASCII D C,

(thousands) ASCII M C,

Note: This use of ASCII requires that ASCII be “STATE-dependent”
(see Appendix C). If the word ASCII is not defined in your system, or
if it is not state-dependent, use:

CREATE ROMANS 73 C, 86 C, 88 C, 76 C,

67 C, 68 C, 77 C,

We can select a particular symbol from the table by applying two dif-
ferent offsets at the same time. One dimension represents the decimal
place: ones, tens, hundreds, etc. This dimension is made “current,”
that is, its state stays the same until we change it.

The other dimension represents the kind of symbol we want—ONER,
FIVER, TENER—within the current decimal column. This dimension is
incidental, that is, we’ll specify which symbol we want each time.

Let’s start by implementing the “current” dimension. We need some
way to point to the current decimal column. Let’s create a variable
called COLUMN# (pronounced “column-number”) and have it contain
an offset into the table:

Algorithm 175

VARIABLE COLUMN# (current offset)

: ONES 0 COLUMN# ! ;

: TENS 2 COLUMN# ! ;

: HUNDREDS 4 COLUMN# ! ;

: THOUSANDS 6 COLUMN# ! ;

Now we can find our way to any “arm position” by adding the contents
of COLUMN# to the beginning address of the table, given by ROMANS:

: COLUMN (-- adr-of-column) ROMANS COLUMN# @ + ;

Let’s see if we can implement one of the words to display a symbol.
We’ll start with ONER.

The thing we want to do in ONER is EMIT a character.

: ONER EMIT ;

Working backward, EMIT requires the ASCII character on the stack.
How do we get it there? With C�.
: ONER C@ EMIT ;C� requires the address of the slot that contains the symbol we want.

How do we get that address?
The ONER is the first “hand” on the movable arm—the position that

COLUMN is already pointing to. So, the address we want is simply the
address returned by COLUMN:

: ONER COLUMN C@ EMIT ;

Now let’s write FIVER. It computes the same slot address, then adds
one to get the next slot, before fetching the symbol and emitting it:

: FIVER COLUMN 1+ C@ EMIT ;

Algorithm 176

And TENER is:

: TENER COLUMN 2+ C@ EMIT ;

These three definitions are redundant. Since the only difference be-
tween them is the incidental offset, we can factor the incidental offset
out from the rest of the definitions:

: .SYMBOL (offset) COLUMN + C@ EMIT ;

Now we can define:

: ONER 0 .SYMBOL ;

: FIVER 1 .SYMBOL ;

: TENER 2 .SYMBOL ;

All that remains for us to do now is to decompose our complete decimal
number into a series of decimal digits. Based on the observations we’ve
already made, this should be easy. Figure 4.9 shows our completed
listing.

Voila! From problem, to conceptual model, to code.
Note: this solution is not optimal. The present volume does not

address the optimization phase.
One more thought: Depending on who uses this application, we

may want to add error-checking. Fact is, the highest symbol we know
is M; the highest value we can represent is 3,999, or MMMCMXCIX.

We might redefine ROMAN as follows:

: ROMAN (n)

DUP 3999 > ABORT" Too large" ROMAN ;

Moore:

Algorithm 177

There’s a definite sense of rightness when you’ve done it right. It
may be that feeling that distinguishes Forth from other languages,
where you never feel you’ve really done well. In Forth, it’s the “Aha!”
reaction. You want to run off and tell somebody.

Of course, nobody will appreciate it like you do.

Summary

In this chapter we’ve learned to develop a single component, starting
first with deciding on its syntax, then proceeding with determining its
algorithm(s) and data structure(s), and concluding with an implemen-
tation in Forth.

With this chapter we complete our discussion of design. The re-
mainder of the book will discuss style and programming techniques.

References

[1] G. Polya, How To Solve It: A New Aspect of Mathematical
Method, (Princeton, New Jersey, Princeton University Press).

[2] Leslie A. Hart, How the Brain Works, c© 1975 by Leslie A.

Hart, (New York, Basic Books, Inc., 1975).

[3] Evan Rosen, “High Speed, Low Memory Consumption Struc-
tures,” 1982 FORML Conference Proceedings, p. 191.

[4] Michael Stolowitz, “A Compiler for Programmable Logic in
FORTH,” 1982 FORML Conference Proceedings, p. 257.

Summary 178

For Further Thinking

Design the components and describe the algorithm(s) necessary to
simulate shuffling a deck of cards. Your algorithm will produce an
array of numbers, 0–51, arranged in random order.

The special constraint of this problem, of course, is that no one
card may appear twice in the array.

You may assume you have a random-number generator called CHOOSE.
It’s stack argument is “n”; it produces a random number between zero
and n − 1 inclusive. (See the Handy Hint, Chapter Ten, Starting
Forth.)

Can you design the card-shuffling algorithm so that it avoids the
time-consuming burden of checking some undetermined number of
slots on each pass of the loop? Can you do so using only the one
array?

For Further Thinking 179

Figure 4.9: Roman numerals, solved.

Screen # 20
0 \ Roman numerals 8/18/83
1 CREATE ROMANS (ones) ASCII I C, ASCII V C,
2 (tens) ASCII X C, ASCII L C,
3 (hundreds) ASCII C C, ASCII D C,
4 (thousands) ASCII M C,
5 VARIABLE COLUMN# (current_offset)
6 : ONES 0 COLUMN# ! ;
7 : TENS 2 COLUMN# ! ;
8 : HUNDREDS 4 COLUMN# ! ;
9 : THOUSANDS 6 COLUMN# ! ;

10

11 : COLUMN (-- address-of-column) ROMANS COLUMN# @ + ;
12

Screen # 21
0 \ Roman numerals cont’d 8/18/83
1 : .SYMBOL (offset --) COLUMN + C@ EMIT ;
2 : ONER 0 .SYMBOL ;
3 : FIVER 1 .SYMBOL ;
4 : TENER 2 .SYMBOL ;
5

6 : ONERS (#-of-oners --)
7 ?DUP IF 0 DO ONER LOOP THEN ;
8 : ALMOST (quotient-of-5/ --)
9 ONER IF TENER ELSE FIVER THEN ;

10 : DIGIT (digit --)
11 5 /MOD OVER 4 = IF ALMOST DROP ELSE IF FIVER THEN
12 ONERS THEN ;
13

Screen # 22
0 \ Roman numerals cont’d 8/18/83
1 : ROMAN (number --) 1000 /MOD THOUSANDS DIGIT
2 100 /MOD HUNDREDS DIGIT
3 10 /MOD TENS DIGIT
4 ONES DIGIT ;
5

FIVE

Implementation:
Elements of
Forth Style

Badly written Forth has been accused of looking like “code that went
through a trash compactor.” It’s true, Forth affords more freedom in
the way we write applications. But that freedom also gives us a chance
to write exquisitely readable and easily maintainable code, provided we
consciously employ the elements of good Forth style.

In this chapter we’ll delve into Forth coding convention including:

• listing organization

• screen layout, spacing and indentation

• commenting

• choosing names

I wish I could recommend a list of hard-and-fast conventions for every-
one. Unfortunately, such a list may be inappropriate in many situations.
This chapter merges many widely-adopted conventions with personal
preferences, commented with alternate ideas and the reasons for the
preferences. In other words:

: TIP VALUE JUDGEMENT ;

Implementation: Elements of Forth Style 182

I’d especially like to thank Kim Harris, who proposed many of the
conventions described in this chapter, for his continuing efforts at
unifying divergent views on good Forth style.

Listing Organization

A well-organized book has clearly defined chapters, with clearly defined
sections, and a table of contents to help you see the organization at a
glance. A well-organized book is easy to read. A badly organized book
makes comprehension more difficult, and makes finding information
later on nearly impossible.

The necessity for good organization applies to an application listing
as well. Good organization has three aspects:

1. Decomposition

2. Composition

3. Disk partitioning

Decomposition

As we’ve already seen, the organization of a listing should follow the
decomposition of the application into lexicons. Generally these lexi-
cons should be sequenced in “uses” order. Lexicons being used should
precede the lexicons which use them.

On a larger scale, elements in a listing should be organized by degree
of complexity, with the most complex variations appearing towards
the end. It’s best to arrange things so that you can leave off the
lattermost screens (i.e., not load them) and still have a self-sufficient,
running application, working properly except for the lack of the more
advanced features.

We discussed the art of decomposition extensively in Chapter Three.

Listing Organization 183

I still don’t see how these programming conventions enhance
readability.

Composition

Composition is the putting together of pieces to create a whole. Good
composition requires as much artistry as good decomposition.

One of Forth’s present conventions is that source code resides in
“screens,” which are 1K units of mass storage. (The term “screen”
refers to a block used specifically for source code.) It’s possible in
Forth to chain every screen of code to the next, linking the entire
listing together linearly like a lengthy parchment scroll. This is not a
useful approach. Instead:

5.1

Tip

Structure your application listing like a book: hierarchically.

An application may consist of:

Screens: the smallest unit of Forth source

Lexicons: one to three screens, enough to implement a component

Chapters: a series of related lexicons, and

Load screens: analogous to a table of contents, a screen that loads
the chapters in the proper sequence.

Application-load Screen

Figure 5.1 is an example of an application-load screen. Since it resides
in Screen 1, you can load this entire application by entering

1 LOAD

The individual load commands within this screen load the chapters
of the application. For instance, Screen 12 is the load screen for the
video primitives chapter.

Composition 185

Figure 5.1: Example of an application-load screen.

Screen # 1
0 \ QTF+ Load Screen 07/09/83
1 : RELEASE# ." 2.01" ;
2 9 LOAD \ compiler tools, language primitives
3 12 LOAD \ video primitives
4 21 LOAD \ editor
5 39 LOAD \ line display
6 48 LOAD \ formatter
7 69 LOAD \ boxes
8 81 LOAD \ deferring
9 90 LOAD \ framing

10 96 LOAD \ labels, figures, tables
11 102 LOAD \ table of contents generator
12

13

14

15

As a reference tool, the application-load screen tells you where to
find all of the chapters. For instance, if you want to look at the
routines that do framing, you can see that the section starts at Screen
90.

Each chapter-load screen in turn, loads all of the screens comprising
the chapter. We’ll study some formats for chapter-load screens shortly.

The primary benefit of this hierarchical scheme is that you can load
any section, or any screen by itself, without having to load the entire
application. Modularity of the source code is one of the reasons for
Forth’s quick turnaround time for editing, loading, and testing (neces-
sary for the iterative approach). Like pages of a book, each screen can
be accessed individually and quickly. It’s a “random access” approach
to source-code maintenance.

Application-load Screen 186

You can also replace any passage of code with a new, trial version
by simply changing the screen numbers in the load screen. You don’t
have to move large passages of source code around within a file.

In small applications, there may not be such things as chapters.
The application-load screen will directly load all the lexicons. In larger
applications, however, the extra level of hierarchy can improve main-
tainability.

A screen should either be a load-screen or a code-screen, not a
mixture. Avoid embedding a LOAD or THRU command in the middle of
a screen containing definitions just because you “need something” or
because you “ran out of room.”

Skip Commands

Two commands make it easy to control what gets loaded in each screen
and what gets ignored. They are:\\S also called EXIT
\ is pronounced “skip-line.” It causes the Forth interpreter to ignore
everything to the right of it on the same line. (Since \ is a Forth word,
it must be followed by a space.) It does not require a delimiter.

In Figure 5.1, you see \ used in two ways: to begin the screen-
comment line (Line 0), and to begin comments on individual lines
which have no more code to the right of the comment.

During testing, \ also serves to temporarily “paren out” lines that
already contain a right parenthesis in a name or comment. For in-
stance, these two “skip-line”s keep the definition of NUTATE from be-
ing compiled without causing problems in encountering either right
parenthesis:

\ : NUTATE (x y z)

\ SWAP ROT (NUTATE) ;

Skip Commands 187

\S is pronounced “skip-screen.” It causes the Forth interpreter to stop
interpreting the screen entirely, as though there were nothing else in
the screen beyond \S.

In many Forth systems, this function is the same as EXIT, which is
the run-time routine for semicolon. In these systems the use of EXIT is
acceptable. Some Forth systems, however, require for internal reasons
a different routine for the “skip-screen” function.

Definitions for \ and \S can be found in Appendix C.

Chapter-load Screens

Figure 5.2 illustrates a typical chapter-load screen. The screens loaded
by this screen are referred to relatively, not absolutely as they were in
the application-load screen.

This is because the chapter-load screen is the first screen of the
contiguous range of screens in the chapter. You can move an entire
chapter forward or backward within the listing; the relative pointers
in the chapter-load screen are position-independent. All you have to
change is the single number in the application-load screen that points
to the beginning of the chapter.

5.2

Tip

Use absolute screen numbers in the application-load screen. Use
relative screen numbers in the chapter- or section-load screens.

There are two ways to implement relative loading. The most common
is to define:

: +LOAD (offset --) BLK @ + LOAD ;

and

: +THRU (lo-offset hi-offset --)

1+ SWAP DO I +LOAD LOOP ;

Chapter-load Screens 188

Figure 5.2: Example of a chapter-load screen.

Screen # 100
0 \ GRAPHICS Chapter load 07/11/83
1

2 1 FH LOAD \ dot-drawing primitive
3 2 FH 3 FH THRU \ line-drawing primitives
4 4 FH 7 FH THRU \ scaling, rotation
5 8 FH LOAD \ box
6 9 FH 11 FH THRU \ circle
7

8

9

10 CORNER \ initialize relative position to low-left corner
11

12

13

14

15

My own way, which I submit as a more useful factoring, requires a
single word, FH (see Appendix C for its definition).

The phrase

1 FH LOAD

is read “1 from here LOAD,” and is equivalent to 1 +LOAD.
Similarly,

2 FH 5 FH THRU

is read “2 from here, 5 from here THRU.”
Some programmers begin each chapter with a dummy word; e.g.,

: VIDEO-IO ;

and list its name in the comment on the line where the chapter is
loaded in the application-load screen. This permits selectively FORGETting
any chapter and reloading from that point on without having to look
at the chapter itself.

Within a chapter the first group of screens will usually define those
variables, constants, and other data structures needed globally within
the chapter. Following that will come the lexicons, loaded in “uses”
order. The final lines of the chapter-load screen normally invoke any
needed initialization commands.

Some of the more style-conscious Forthwrights begin each chapter
with a “preamble” that discusses in general terms the theory of oper-
ation for the components described in the chapter. Figure 5.3 is a
sample preamble screen which demonstrates the format required at
Moore Products Co.

Charles Moore (no relation to Moore Products Co.) places less im-
portance on the well-organized hierarchical listing than I do. Moore:

Chapter-load Screens 190

Figure 5.3: Moore Products Co.’s format for chapter preambles.

Screen # 101
0 CHAPTER 5 - ORIGIN/DESTINATION - MULTILOOP BIT ROUTINES
1

2 DOCUMENTS - CONSOLE STRUCTURE CONFIGURATION
3 DESIGN SPECIFICATION
4 SECTIONS - 3.2.7.5.4.1.2.8
5 3.2.7.5.4.1.2.10
6

7 ABSTRACT - File control types E M T Q and R can all
8 originate from a Regional Satellite or a
9 Data Survey Satellite. These routines allow

10 the operator to determine whether the control
11 originated from a Regional Satellite or not.
12

13

14

15

Screen # 102
0 CHAPTER NOTES - Whether or not a point originates from
1 a Regional Satellite is determined by
2 the Regional bit in BITS, as follows:
3

4 1 = Regional Satellite
5 2 = Data Survey Satellite
6

7 For the location of the Regional bit
8 in BITS, see the Design Specification
9 Section - 3.2.7.5.4.1.2.10

10

11 HISTORY -
12

13

14

15

Chapter-load Screens 191

I structure applications hierarchically, but not necessarily listings.
My listings are organized in a fairly sloppy way, not at all hierarchi-
cally in the sense of primitives first.

I use LOCATE [also known as VIEW; see the Handy Hint in Starting
Forth, Chapter Nine]. As a result, the listing is much less carefully
organized because I have LOCATE to find things for me. I never look
at listings.

– –> vs. THRU

On the subject of relative loading, one popular way to load a series
of adjacent screens is with the word --> (pronounced “next block”).
This word causes the interpreter to immediately cease interpreting
the current screen and begin interpreting the next (higher-numbered)
screen.

If your system provides -->, you must choose between using theTHRU command in your chapter-load screen to load each series of
screens, or linking each series together with the arrows and LOADing
only the first in the series. (You can’t do both; you’d end up loading
most of the screens more than once.)

The nice thing about the arrows is this: suppose you change a screen
in the middle of a series, then reload the screen. The rest of the series
will automatically get loaded. You don’t have to know what the last
screen is.

That’s also the nasty thing about the arrows: There’s no way to
stop the loading process once it starts. You may compile a lot more
screens than you need to test this one screen.

To get analytical about it, there are three things you might want to
do after making the change just described:

1. load the one screen only, to test the change,

2. load the entire section in which the screen appears,

– –> vs. THRU 192

or

3. load the entire remainder of the application.

The use of THRU seems to give you the greatest control.
Some people consider the arrow to be useful for letting definitions

cross screen boundaries. In fact --> is the only way to compile a high-
level (colon) definition that occupies more than one screen, because
--> is “immediate.” But it’s never good style to let a colon definition
cross screen boundaries. (They should never be that long!)

On the other hand, an extremely complicated and time-critical piece
of assembler coding might occupy several sequential screens. In this
case, though, normal LOADing will do just as well, since the assem-
bler does not use compilation mode, and therefore does not require
immediacy.

Finally, the arrow wastes an extra line of each source screen. We
don’t recommend it.

An Alternative to Screens: Source in Named Files

Some Forth practitioners advocate storing source code in variable-
length, named text files, deliberately emulating the approach used
by traditional compilers and editors. This approach may become more
and more common, but its usefulness is still controversial.

Sure, it’s nice not to have to worry about running out of room in
a screen, but the hassle of writing in a restricted area is compensated
for by retaining control of discrete chunks of code. In developing an
application, you spend a lot more time loading and reloading screens
than you do rearranging their contents.

“Infinite-length” files allow sloppy, disorganized thinking and bad
factoring. Definitions become longer without the discipline imposed
by the 1K block boundaries. The tendency becomes to write a 20K
file, or worse: a 20K definition.

An Alternative to Screens: Source in Named Files 193

Perhaps a nice compromise would be a file-based system that allows
nested loading, and encourages the use of very small named files. Most
likely, though, the more experienced Forth programmers would not use
named files longer than 5K to 10K. So what’s the benefit?

Some might answer that rhetorical question: “It’s easier to remem-
ber names than numbers.” If that’s so, then predefine those block
numbers as constants, e.g.:

90 CONSTANT FRAMING

Then to load the “framing” section, enter

FRAMING LOAD

Or, to list the section’s load block, enter

FRAMING LIST

(It’s a convention that names of sections end in “ING.”)
Of course, to minimize the hassle of the screen-based approach you

need good tools, including editor commands that move lines of source
from one screen to another, and words that slide a series of screens
forward or back within the listing.

Disk Partitioning

The final aspect of the well-organized listing involves standardizing
an arrangement for what goes where on the disk. These standards
must be set by each shop, or department, or individual programmer,
depending on the nature of the work.

Figure 5.4 shows a typical department’s partitioning scheme.
In many Forth shops it’s considered desirable to begin sections of

code on screen numbers that are evenly divisible by three. Major
divisions on a disk should be made on boundaries evenly divisible by
thirty.

Disk Partitioning 194

Figure 5.4: Example of a disk-partitioning scheme within one depart-
ment.

Screen 0 is the title screen, showing the name of the application,
the current release number, and primary author.

Screen 1 is the application-load block.

Screen 2 is reserved for possible continuation from Screen 1

Screen 4 and 5 contain system messages.

Screens 9 thru 29 incorporate general utilities needed in, but not
restricted to, this application.

Screen 30 begins the application screens.

The reason? By convention, Forth screens are printed three to a
page, with the top screen always evenly divisible by three. Such a
page is called a “triad;” most Forth systems include the word TRIAD

to produce it, given as an argument the number of any of the three
screens in the triad. For instance, if you type

77 TRIAD

you’ll get a page that includes 75, 76, and 77.
The main benefit of this convention is that if you change a single

screen, you can slip the new triad right into your binder containing the
current listing, replacing exactly one page with no overlapping screens.

Similarly, the word INDEX lists the first line of each screen, 60 per
page, on boundaries evenly divisible by 60.

5.3

Tip

Begin sections or lexicons on screen numbers evenly divisible by
three. Begin applications or chapters on screen numbers evenly
divisible by thirty.

Electives

Vendors of Forth systems have a problem. If they want to include every
command that the customer might expect—words to control graph-
ics, printers, and other niceties—they often find that the system has
swollen to more than half the memory capacity of the computer, leav-
ing less room for serious programmers to compile their applications.

The solution is for the vendor to provide the bare bones as a precom-
piled nucleus, with the extra goodies provided in source form. This
approach allows the programmer to pick and choose the special rou-
tines actually needed.

Electives 196

These user-loadable routines are called “electives.” Double-length
arithmetic, date and time support, CASE statements and the DOER/
MAKE construct (described later) are some of the features that Forth
systems should offer as electives.

Screen Layout

In this section we’ll discuss the layout of each source screen.

5.4

Tip

Reserve Line 0 as a “comment line.”

The comment line serves both as a heading for the screen, and also as
a line in the disk INDEX. It should describe the purpose of the screen
(not list the words defined therein).

The comment line minimally contains the name of the screen. In
larger applications, you may also include both the chapter name and
screen name. If the screen is one of a series of screens implementing
a lexicon, you should include a “page number” as well.

The upper right hand corner is reserved for the “stamp.” The stamp
includes the date of latest revision and, when authorship is important,
the programmer’s initials (three characters to the left of the date);
e.g.:

(Chapter name Screen Name -- pg # JPJ 06/10/83)

Some Forth editors will enter the stamp for you at the press of a key.
A common form for representing dates is

mm-dd-yy

that is, February 6, 1984 would be expressed

02-06-84

Screen Layout 197

An increasingly popular alternative uses

ddMmmyy

where “Mmm” is a three-letter abbreviation of the month. For in-
stance:

22Oct84

This form requires fewer characters than

10-22-84

and eliminates possible confusion between dates and months.
If your system has \ (“skip-line”—see Appendix C), you can write

the comment line like this:

\ Chapter name Screen Name -- pg.# JPJ 06/10/83

As with all comments, use lower-case or a mixture of lower- and upper-
case text in the comment line.

One way to make the index of an application reveal more about
the organization of the screens is to indent the comment line by three
spaces in screens that continue a lexicon. Figure 5.5 shows a portion of
a list produced by INDEX in which the comment lines for the continuing
screens are indented.

5.5

Tip

Begin all definitions at the left edge of the screen, and define
only one word per line.

Bad:

: ARRIVING ." HELLO" ; : DEPARTING ." GOODBYE" ;

Good:

Screen Layout 198

: ARRIVING ." HELLO" ;

: DEPARTING ." GOODBYE" ;

This rule makes it easier to find a definition in the listing. (When
definitions continue for more than one line, the subsequent lines should
always be indented.)VARIABLEs and CONSTANTs should also be defined one per line. (See
“Samples of Good Commenting Style” in Appendix E.) This leaves
room for an explanatory comment on the same line. The exception is
a large “family” of words (defined by a common defining-word) which
do not need unique comments:

0 HUE BLACK 1 HUE BLUE 2 HUE GREEN

3 HUE CYAN 4 HUE RED 5 HUE MAGENTA

Figure 5.5: The output of INDEX showing indented comment lines.

90 \ Graphics Chapter load JPJ 06/10/83

91 \ Dot-drawing primitives JPJ 06/10/83

92 \ Line-drawing primitives JPJ 06/11/83

93 \ Line-drawing primitives JPJ 06/10/83

94 \ Line-drawing primitives JPJ 09/02/83

95 \ Scaling, rotation JPJ 06/10/83

96 \ Scaling, rotation JPJ 02/19/84

97 \ Scaling, rotation JPJ 02/19/84

98 \ Scaling, rotation JPJ 02/19/84

99 \ Boxes JPJ 06/10/83

100 \ Circles JPJ 06/10/83

101 \ Circles JPJ 06/10/83

102 \ Circles JPJ 06/10/83

Screen Layout 199

5.6

Tip

Leave lots of room at the bottom of the screen for later addi-
tions.

On your first pass, fill each screen no more than half with code. The
iterative approach demands that you sketch out the components of
your application first, then iteratively flesh them out until all the re-
quirements are satisfied. Usually this means adding new commands, or
adding special-case handling, to existing screens. (Not always, though.
A new iteration may see a simplification of the code. Or a new com-
plexity may really belong in another component and should be factored
out, into another screen.)

Leaving plenty of room at the outset makes later additions more
pleasant. One writer recommends that on the initial pass, the screen
should contain about 20–40 percent code and 80–60 percent whites-
pace [1].

Don’t skip a line between each definition. You may, however, skip
a line between groups of definitions.

5.7

Tip

All screens must leave BASE set to DECIMAL.
Even if you have three screens in a row in which the code is written
in HEX (three screens of assembler code, for instance), each screen
must set BASE to HEX at the top, and restore base to DECIMAL at the
bottom. This rule ensures that each screen could be loaded separately,
for purposes of testing, without mucking up the state of affairs. Also,
in reading the listing you know that values are in decimal unless the
screen explicitly says HEX.

Some shops take this rule even further. Rather than brashly reset-
ting base to DECIMAL at the end, they reset base to whatever it was

Screen Layout 200

at the beginning. This extra bit of insurance can be accomplished in
this fashion:

BASE @ HEX \ save original BASE on stack

0A2 CONSTANT BELLS

0A4 CONSTANT WHISTLES

... etc. ...

BASE ! \ restore it

Sometimes an argument is passed on the stack from screen to screen,
such as the value returned by BEGIN or IF in a multiscreen assem-
bler definition, or the base address passed from one defining word to
another—see “Compile-Time Factoring” in Chapter Six. In these cases,
it’s best to save the value of BASE on the return stack like this:

BASE @ >R HEX

... etc. ...

R> BASE !

Some folks make it a policy to use this approach on any screen that
changes BASE, so they don’t have to worry about it.

Moore prefers to define LOAD to invoke DECIMAL after loading.
This approach simplifies the screen’s contents because you don’t have
to worry about resetting.

Spacing and Indentation

5.8

Tip

Spacing and indentation are essential for readability.

The examples in this book use widely accepted conventions of spacing
and indenting style. Whitespace, appropriately used, lends readability.
There’s no penalty for leaving space in source screens except disk
memory, which is cheap.

Spacing and Indentation 201

For those who like their conventions in black and white, Table 5.1 is
a list of guidelines. (But remember, Forth’s interpreter couldn’t care
less about spacing or indentation.)

The last position of each line should be blank except for:

1. quoted strings that continue onto the next line, or

2. the end of a comment.

A comment that begins with \ may continue right to the end of the
line. Also, a comment that begins with (may have its delimiting right
parenthesis in the last column.

Here are some common errors of spacing and indentation:

Bad (name not separated from the body of the definition):

: PUSH HEAVE HO ;

Good:

: PUSH HEAVE HO ;

Bad (subsequent lines not indented three spaces):

: RIDDANCE (thing-never-to-darken-again --)

DARKEN NEVER AGAIN ;

Good:

: RIDDANCE (thing-never-to-darken-again --)

DARKEN NEVER AGAIN ;

Bad (lack of phrasing):

: GETTYSBURG 4 SCORE 7 YEARS + AGO ;

Spacing and Indentation 202

Good:

: GETTYSBURG 4 SCORE 7 YEARS + AGO ;

Phrasing is a subjective art; I’ve yet to see a useful set of formal rules.
Simply strive for readability.

Comment Conventions

Appropriate commenting is essential. There are five types of com-
ments: stack-effect comments, data-structure comments, input-stream
comments, purpose comments and narrative comments.

A stack-effect comment shows the arguments that the definition
consumes from the stack, and the arguments it returns to the
stack, if any.

A data-structure comment indicates the position and meaning of
elements in a data structure. For instance, a text buffer might
contain a count in the first byte, and 63 free bytes for text.

An input-stream comment indicates what strings the word expects
to see in the input stream. For example, the Forth word FORGET

scans for the name of a dictionary entry in the input stream.

A purpose comment describes, in as few words possible, what the
definition does. How the definition works is not the concern of
the purpose comment.

A narrative comment appears amidst a definition to explain what is
going on, usually line-by-line. Narrative comments are used only
in the “vertical format,” which we’ll describe in a later section.

Comments are usually typed in lower-case letters to distinguish them
from source code. (Most Forth words are spelled with upper-case
letters, but lower-case spellings are sometimes used in special cases.)

In the following sections we’ll summarize the standardized formats
for these types of comments and give examples for each type.

Comment Conventions 203

Stack Notation

5.9

Tip

Every colon or code definition that consumes and/or returns any
arguments on the stack must include a stack-effect comment.

“Stack notation” refers to conventions for representing what’s on the
stack. Forms of stack notation include “stack pictures,” “stack effects,”
and “stack-effect comments.”

Stack Picture

A stack picture depicts items understood to be on the stack at a given
time. Items are listed from left to right, with the leftmost item repre-
senting the bottom of the stack and the rightmost item representing
the top.

For instance, the stack picture

nl n2

indicates two numbers on the stack, with n2 on the top (the most
accessible position).

This is the same order that you would use to type these values in;
i.e., if n1 is 100 and n2 is 5000, then you would type

100 5000

to place these values correctly on the stack.
A stack picture can include either abbreviations, such as “n1,” or

fully spelled-out words. Usually abbreviations are used. Some stan-
dard abbreviations appear in Table 5.2. Whether abbreviations or fully
spelled-out words are used, each stack item should be separated by a
space.

Stack Notation 204

If a stack item is described with a phrase (such as “address-of-latest-
link”), the words in the phrase should be joined by hyphens. For
example, the stack picture:

address current-count max-count

shows three elements on the stack.

Stack Effect

A “stack effect” shows two stack pictures: one picture of any items
that may be consumed by a definition, and another picture of any
items returned by the definition. The “before” picture comes first,
followed by two hyphens, then the “after” picture.

For instance, the stack effect for Forth’s addition operator, + is

n n -- sum

where + consumes two numbers and returns their sum.
Remember that the stack effect describes only the net result of

the operation on the stack. Other values that happen to reside on
the stack beneath the arguments of interest don’t need to be shown.
Nor do values that may appear or disappear while the operation is
executing.

If the word returns any input arguments unchanged, they should be
repeated in the output picture; e.g.,

3rd 2nd top-input -- 3rd 2nd top-output

Conversely, if the word changes any arguments, the stack comment
must use a different descriptor:

nl -- n2

n -- n’

A stack effect might appear in a formatted glossary.

Stack Effect 205

Stack Effect Comment

A “stack-effect comment” is a stack effect that appears in source code
surrounded by parentheses. Here’s the stack-effect comment for the
word COUNT:

(address-of-counted-string -- address-of-text count)

or:

(’counted-string -- ’text count)

(The “count” is on top of the stack after the word has executed.)
If a definition has no effect on the stack (that is, no effect the user is

aware of, despite what gyrations occur within the definition), it needs
no stack-effect comment:

: BAKE COOKIES OVEN ! ;

On the other hand, you may want to use an empty stack comment—
i.e.,

: BAKE (--) COOKIES OVEN ! ;

to emphasize that the word has no effect on the stack.
If a definition consumes arguments but returns none, the double-

hyphen is optional. For instance,

(address count --)

can be shortened to

(address count)

The assumption behind this convention is this: There are many more
colon definitions that consume arguments and return nothing than
definitions that consume nothing and return arguments.

Stack Effect Comment 206

Stack Abbreviation Standards

Abbreviations used in stack notation should be consistent. Table 5.2
lists most of the commonly used abbreviations. (This table reappears
in Appendix E.) The terms “single-length,” “double-length,” etc. refer
to the size of a “cell” in the particular Forth system. (If the system
uses a 16-bit cell, “n” represents a 16-bit number; if the system uses
a 32-bit cell, “n” represents a 32-bit number.)

Notation of Flags

Table 5.2 shows three ways to represent a boolean flag. To illustrate,
here are three versions of the same stack comment for the word -TEXT:

(at u a2 -- ?)

(at u a2 -- t=no-match)

(at u a2 -- f=match)

The equal sign after the symbols “t” and “f” equates the flag outcome
with its meaning. The result-side of the second version would be read
“true means no match.”

Notation of Variable Possibilities

Some definitions yield a different stack effect under different circum-
stances.

If the number of items on the stack remains the same under all
conditions, but the items themselves change, you can use the vertical
bar (|) to mean “or.” The following stack-effect comment describes
a word that returns either the address of a file or, if the requested file
is not found, zero:

(-- address|0=undefined-file)

If the number of items in a stack picture can vary—in either the
“before” or “after” picture—you must write out both versions of the

Stack Abbreviation Standards 207

entire stack picture, along with the double-hyphen, separated by the
“or” symbol. For instance:

-FIND (-- apf len t=found | -- f=not-found)

This comment indicates that if the word is found, three arguments are
returned (with the flag on top); otherwise only a false flag is returned.

Note the importance of the second “- -”. Its omission would indicate
that the definition always returned three arguments, the top one being
a flag.

If you prefer, you can write the entire stack effect twice, either on
the same line, separated by three spaces:

?DUP \ if zero: (n -- n) if non-zero:(n -- n n)

or listed vertically:

-FIND \ found:(-- apf len t)

\ not-found:(-- f)

Data-Structure Comments

A “data-structure comment” depicts the elements in a data structure.
For example, here’s the definition of an insert buffer called |INSERT :

CREATE |INSERT 64 ALLOT \ { 1# | 63text }

The “faces” (curly-brackets) begin and end the structure comment;
the bars separate the various elements in the structure; the numbers
represent bytes per element. In the comment above, the first byte
contains the count, and the remaining 63 bytes contain the text.

A “bit comment” uses the same format as a data-structure comment
to depict the meaning of bits in a byte or cell. For instance, the bit
comment

Data-Structure Comments 208

{ 1busy? | 1acknowledge? | 2x | 6input-device |

6output-device }

describes the format of a 16-bit status register of a communications
channel. The first two bits are flags, the second two bits are unused,
and the final pair of six-bit fields indicate the input and output devices
which this channel is connected to.

If more than one data structure employs the same pattern of ele-
ments, write out the comment only once (possibly in the preamble),
and give a name to the pattern for reference in subsequent screens.
For instance, if the preamble gives the above bit-pattern the name “sta-
tus,” then “status” can be used in stack comments to indicate values
with that pattern:

: STATUS? (-- status) ... ;

If a 2VARIABLE contains one double-length value, the comment should
be a stack picture that indicates the contents:

2VARIABLE PRICE \ price in cents

If a 2VARIABLE contains two single-length data elements, it’s given a
stack picture showing what would be on the stack after a 2@. Thus:

2VARIABLE MEASUREMENTS (height weight)

This is different from the comment that would be used if MEASUREMENTS
were defined by CREATE.
CREATE MEASUREMENTS 4 ALLOT \ { 2weight | 2height }

(While both statements produce the same result in the dictionary, the
use of 2VARIABLE implies that the values will normally be “2-fetched”
and “2-stored” together-thus we use a stack comment. The high-order
part, appearing on top of the stack, is listed to the right. The use ofCREATE implies that the values will normally be fetched and stored
separately–thus we use a data structure comment. The item in the
0th position is listed to the left.)

Data-Structure Comments 209

Input-stream Comments

The input-stream comment indicates what words and/or strings are
presumed to be in the input stream. Table 5.3 lists the designations
used for input stream arguments.

The input-stream comment appears before the stack comment, and
is not encapsulated between its own pair of parentheses, but simply
surrounded by three spaces on each side. For instance, here’s one way
to comment the definition of ’ (tick) showing first the input-stream
comment, then the stack comment:

: ’ \ name (-- a)

If you prefer to use (, the comment would look like this:

: ’ (name (-- a)

Incidentally, there are three distinct ways to receive string input. To
avoid confusion, here are the terms:

Scanning-for means looking ahead in the input stream, either for a
word or number as in the case of tick, or for a delimiter as in
the case of ." and (.

Expecting means waiting for. EXPECT and KEY, and definitions that
invoke them, are ones that “expect” input.

Presuming indicates that in normal usage something will follow.
The word: “scans-for” the name to be defined, and “presumes”
that a definition will follow.

The input-stream comment is only appropriate for input being scanned-
for.

Input-stream Comments 210

Purpose Comments

5.10

Tip

Every definition should bear a purpose comment unless:

1. its purpose is clear from its name or its stack-effect com-
ment, or

2. if it consists of three or fewer words.

The purpose comment should be kept to a minimum-never more than
a full line. For example:

: COLD \ restore system to start condition

... ;

Use the imperative mood: “set Foreground color,” not “sets Foreground
color.”

On the other hand, a word’s purpose can often be described in terms
of its stack-effect comment. You rarely need both a stack comment
and a purpose comment. For instance:

: SPACES (#) ... ;

or

: SPACES (#spaces-to-type --) ... ;

This definition takes as its incoming argument a number that repre-
sents the number of spaces to type.

: ELEMENT (element# -- ’element) 2* TABLE + ;

This definition converts an index, which it consumes, into an address
within a table of 2-byte elements corresponding to the indexed element.

: PAD (-- ’scratch-pad) HERE 80 + ;

Purpose Comments 211

This definition returns an address of a scratch region of memory.
Occasionally, readability is best served by including both types of

comment. In this case, the purpose comment should appear last. For
instance:

: BLOCK (n -- a) \ ensure block n in buffer at a

5.11

Tip

Indicate the type of comment by ordering: input-stream com-
ments first, stack-effect comments second, purpose comments
last.

For example:

: GET \ name (-- a) get first match

If you prefer to use (, then write:

: GET (name (-- a) (get first match)

If necessary, you can put the purpose comment on a second line:

: WORD \ name (c -- a)

\ scan for string delimt’d by "c"; leave at a

... ;

Comments for Defining Words

The definition of a defining word involves two behaviors:

• that of the defining word as it defines its “child” (compile-time
behavior), and

• that of the child itself (run-time behavior).

Comments for Defining Words 212

These two behaviors must be commented separately.

5.12

Tip

Comment a defining word’s compile-time behavior in the usual
way; comment its run-time behavior separately, following the
word DOES> (or ;CODE).

For instance,

: CONSTANT (n) CREATE ,

DOES> (-- n) @ ;

The stack-effect comment for the run-time (child’s) behavior repre-
sents the net stack effect for the child word. Therefore it does not
include the address returned by DOES>, even though this address is
on the stack when the run-time code begins.

Bad (run-time comment includes apf):

: ARRAY \ name (#cells)

CREATE 2* ALLOT

DOES> (i apf -- ’cell) SWAP 2* + ;

Good:

: ARRAY \ name (#cells)

CREATE 2* ALLOT

DOES> (i -- ’cell) SWAP 2* + ;

Words defined by this word ARRAY will exhibit the stack effect:

(i -- ’cell)

If the defining word does not specify the run-time behavior, there still
exists a run-time behavior, and it may be commented:

: VARIABLE (name (--) CREATE 2 ALLOT ;

\ does> (-- adr)

Comments for Defining Words 213

Comments for Compiling Words

As with defining words, most compiling words involve two behaviors:

1. That of the compiling word as the definition in which it appears
is compiled

2. That of the run-time routine which will execute when we invoke
the word being defined. Again we must comment each behavior
separately.

5.13

Tip

Comment a compiling word’s run-time behavior in the usual
way; comment its compile-time behavior separately, beginning
with the label “Compile:”.

For instance:

: IF (? --) ...

\ Compile: (-- address-of-unresolved-branch)

... ; IMMEDIATE

In the case of compiling words, the first comment describes the run-
time behavior, which is usually the syntax for using the word. The
second comment describes what the word actually does in compiling
(which is of less importance to the user).

Other examples:

: ABORT" (? --)

\ Compile: text" (--)

Occasionally a compiling word may exhibit a different behavior when
it is invoked outside a colon definition. Such words (to be fastidious
about it) require three comments. For instance:

Comments for Compiling Words 214

: ASCII (-- c)

\ Compile: c (--)

\ Interpret: c (-- c)

... ; IMMEDIATE

Appendix E includes two screens showing good commenting style.

Vertical Format vs. Horizontal Format

The purpose of commenting is to allow a reader of your code to easily
determine what’s going on. But how much commenting is necessary?
To determine the level of commenting appropriate for your circum-
stances, you must ask yourself two questions:

• Who will be reading my code?

• How readable are my definitions?

There are two basic styles of commenting to choose from. The first
style, often called the “vertical format,” includes a step-by-step de-
scription of the process, in the manner of a well-commented assembly
language listing. These line-by-line comments are called “narrative
comments.”

\ CRC Checksum 07/15/83

: ACCUMULATE (oldcrc char -- newcrc)

256 * \ shift char to hi-order byte

XOR \ & xor into previous crc

8 0 DO \ Then for eight repetitions,

DUP 0< IF \ if hi-order bit is "1"

16386 XOR \ xor it with mask and

DUP + \ shift it left one place

1+ \ set lo-order bit to "1"

ELSE \ otherwise, i.e. hi-order bit is "0"

Vertical Format vs. Horizontal Format 215

DUP + \ shift it left one place

THEN

LOOP ; \ complete the loop

The other approach does not intersperse narrative comments between
code phrases. This is called the “horizontal format.”

: ACCUMULATE (oldcrc char -- newcrc)

256 * XOR 8 0 DO DUP 0< IF

16386 XOR DUP + 1+ ELSE DUP + THEN LOOP ;

The vertical format is preferred when a large team of programmers are
coding and maintaining the application. Typically, such a team will
include several junior-level programmers responsible for minor correc-
tions. In such an environment, diligent commenting can save a lot of
time and upset. As Johnson of Moore Products Co. says: “When
maintaining code you are usually interested in just one small section,
and the more information written there the better your chances for a
speedy fix.”

Here are several pertinent rules required of the Forth programmers
at Moore Products Co. (I’m paraphrasing):

1. A vertical format will be used. Comments will appear to the
right of the source code, but may continue to engulf the next
line totally if needed.

2. There should be more comment characters than source charac-
ters. (The company encourages long descriptive names, greater
than ten characters, and allows the names to be counted as
comment characters.)

3. Any conditional structure or application word should appear on
a separate line. “Noise words” can be grouped together. Inden-
tation is used to show nested conditionals.

Vertical Format vs. Horizontal Format 216

There are some difficulties with this format, however. For one thing,
line-by-line commenting is time-consuming, even with a good screen
editor. Productivity can be stifled, especially when stopping to write
the comments breaks your chain of thought.

Also, you must also carefully ensure that the comments are up-to-
date. Very often code is corrected, the revision is tested, the change
works—and the programmer forgets to change the comments. The
more comments there are, the more likely they are to be wrong. If
they’re wrong, they’re worse than useless.

This problem can be alleviated if the project supervisor carefully
reviews code and ensures the accuracy of comments.

Finally, line-by-line commenting can allow a false sense of security.
Don’t assume that because each line has a comment, the application
is well-commented. Line-by-line commenting doesn’t address the sig-
nificant aspects of a definition’s operation. What, for instance, is the
thinking behind the checksum algorithm used? Who knows, from the
narrative comments?

To properly describe, in prose, the implications of a given procedure
usually requires many paragraphs, not a single phrase. Such descrip-
tions properly belong in auxiliary documentation or in the chapter
preamble.

Despite these cautions, many companies find the vertical format
necessary. Certainly a team that is newly exposed to Forth should
adopt it, as should any very large team.

What about the horizontal format? Perhaps it’s an issue of art vs.
practicality, but I feel compelled to defend the horizontal format as
equally valid and in some ways superior.

If Forth code is really well-written, there should be nothing ambigu-
ous about it. This means that:

• supporting lexicons have a well-designed syntax

• stack inputs and outputs are commented

Vertical Format vs. Horizontal Format 217

• the purpose is commented (if it’s not clear from the name or
stack comment)

• definitions are not too long

• not too many arguments are passed to a single definition via the
stack (see “The Stylish Stack” in Chapter Seven).

Forth is simply not like other languages, in which line-by-line com-
menting is one of the few things you can do to make programs more
readable.

Skillfully written Forth code is like poetry, containing precise mean-
ing that both programmer and machine can easily read. Your goal
should be to write code that does not need commenting, even if you
choose to comment it. Design your application so that the code, not
the comments, conveys the meaning.

If you succeed, then you can eliminate the clutter of excessive com-
menting, achieving a purity of expression without redundant explana-
tions.

5.14

Tip

The most-accurate, least-expensive documentation is self-
documenting code.

Unfortunately, even the best programmers, given the pressure of a
deadline, may write working code that is not easily readable without
comments. If you are writing for yourself, or for a small group with
whom you can verbally communicate, the horizontal format is ideal.
Otherwise, consider the vertical format.

Vertical Format vs. Horizontal Format 218

Wiggins, proud of his commenting technique.

Choosing Names: The Art

Besides a mathematical inclination, an exceptionally good mastery
of one’s native tongue is the most vital asset of a competent pro-
grammer (Prof. Edsger W. Dijkstra [3]).

We’ve talked about the significance of using names to symbolize ideas
and objects in the application. The choosing of names turns out to
be an important part of the design process.

Newcomers tend to overlook the importance of names. “After all,”
they think, “the computer doesn’t care what names I choose.”

But good names are essential for readability. Moreover, the mental
exercise of summoning a one-word description bears a synergistic effect
on your perceptions of what the entity should or should not do.

Here are some rules for choosing good names:

5.15

Tip

Choose names according to “what,” not “how.”

A definition should hide the complexities of implementation from other
definitions which invoke it. The name, too, should hide the details of
the procedure, and instead should describe the outward appearance or
net effect.

For instance, the Forth word ALLOT simply increments the dictionary
pointer (called DP or H in most systems). But the name ALLOT is
better than DP+! because the user is thinking of reserving space, not
incrementing a pointer.

The ’83 Standard adopted the name CMOVE> instead of the pre-
vious name for the same function, <CMOVE. The operation makes it
possible to copy a region of memory forward into overlapping memory.
It accomplishes this by starting with the last byte and working back-
ward. In the new name, the forwardness of the “what” supersedes the
backwardness of the “how.”

Choosing Names: The Art 220

5.16

Tip

Find the most expressive word.

A powerful agent is the right word. Whenever we come upon one of
those intensely right words in a book or a newspaper the resulting
effect is physical as well as spiritual, and electrically prompt (Mark

Twain).

The difference between the right word and the almost-right word is
like the difference between lightning and the lightning bug (Mark

Twain).

Suit the action to the word, the word to the action (Shakespeare,
Hamlet, Act III).

Henry Laxen, a Forth consultant and author, suggests that the
most important Forth development tool is a good thesaurus [4].

Sometimes you’ll think of an adequate word for a definition, but it
doesn’t feel quite right. It may be months later before you realize that
you fell short of the mark. In the Roman numeral example in Chapter
Four, there’s a word that handles the exception case: numbers that
are one-less-than the next symbol’s value. My first choice was 4-0R-9.
That’s awkward, but it was much later that I thought of ALMOST.

Most fig-Forth systems include the word VLIST, which lists the
names of all the words in the current vocabulary. After many years
someone realized that a nicer name is WORDS. Not only does WORDS

sound more pleasant by itself, it also works nicely with vocabulary
names. For instance:

EDITOR WORDS

or

ASSEMBLER WORDS

Choosing Names: The Art 221

On the other hand, Moore points out that inappropriate names can
become a simple technique for encryption. If you need to provide
security when you’re forced to distribute source, you can make your
code very unreadable by deliberately choosing misleading names. Of
course, maintenance becomes impossible.

5.17

Tip

Choose names that work in phrases.

Faced with a definition you don’t know what to call, think about how
the word will be used in context. For instance:

SHUTTER OPEN

OPEN is the appropriate name for a word that sets a bit in an
I/O address identified with the name SHUTTER.

3 BUTTON DOES IGNITION

DOES is a good choice for a word that vectors the address of the
function IGNITION into a table of functions, so that IGNITION
will be executed when Button 3 is pushed.

SAY HELLO

SAY is the perfect choice for vectoring HELLO into an execution
variable. (When I first wrote this example for Starting Forth,
I called it VERSION. Moore reviewed the manuscript and sug-
gested SAY, which is clearly much better.)

I’M HARRY

The word I’M seems more natural than LOGON HARRY, LOGIN
HARRY or SESSION HARRY, as often seen.

Choosing Names: The Art 222

The choice of I’M is another invention of Moore, who says:

I detest the word LOGON. There is no such word in English. I was
looking for a word that said, “I’m . . . ” It was a natural. I just
stumbled across it. Even though it’s clumsy with that apostrophe,
it has that sense of rightness.

All these little words are the nicest way of getting the “Aha!” reac-
tion. If you think of the right word, it is obviously the right word.

If you have a wide recall vocabulary, you’re in a better position to
come up with the right word.

Another of Moore’s favorite words is TH, which he uses as an array
indexing word. For instance, the phrase

5 TH

returns the address of the “fifth” element of the array.

5.18

Tip

Spell names in full.

I once saw some Forth code published in a magazine in which the au-
thor seemed hell-bent on purging all vowels from his names, inventing
such eyesores as DSPL-BFR for “display buffer.” Other writers seem
to think that three characters magically says it all, coining LEN for
“length.” Such practices reflect thinking from a bygone age.

Forth words should be fully spelled out. Feel proud to type every
letter of INITIALIZE or TERMINAL or BUFFER. These are the words
you mean.

The worst problem with abbreviating a word is that you forget just
how you abbreviated it. Was that DSPL or DSPLY?

Choosing Names: The Art 223

Another problem is that abbreviations hinder readability. Any pro-
gramming language is hard enough to read without compounding the
difficulty.

Still, there are exceptions. Here are a few:

1. Words that you use extremely frequently in code. Forth employs
a handful of commands that get used over and over, but have
little or no intrinsic meaning:

: ; @ ! . ,

But there are so few of them, and they’re used so often, they
become old friends. I would never want to type, on a regular
basis,

DEFINE END-DEFINITION FETCH STORE

PRINT COMPILE#

(Interestingly, most of these symbols don’t have English coun-
terparts. We use the phrase “colon definition” because there’s
no other term; we say “comma a number into the dictionary”
because it’s not exactly compiling, and there’s no other term.)

2. Words that a terminal operator might use frequently to control
an operation. These words should be spelled as single letters, as
are line editor commands.

3. Words in which familiar usage implies that they be abbreviated.
Forth assembler mnemonics are typically patterned after the
manufacturer’s suggested mnemonics, which are abbreviations
(such as JMP and MOV).

Your names should be pronounceable; otherwise you may regret it
when you try to discuss the program with other people. If the name is
symbolic, invent a pronunciation (e.g., >R is called “to-r”; R> is called
“r-from”).

Choosing Names: The Art 224

5.19

Tip

Favor short words.

Given the choice between a three-syllable word and a one-syllable word
that means the same thing, choose the shorter. BRIGHT is a better
name than INTENSE. ENABLE is a better name than ACTIVATE; GO,
RUN, or ON may be better still.

Shorter names are easier to type. They save space in the source
screen. Most important, they make your code crisp and clean.

5.20

Tip

Hyphenated names may be a sign of bad factoring.

Moore:

There are diverging programming styles in the Forth community.
One uses hyphenated words that express in English what the word
is doing. You string these big long words together and you get
something that is quite readable.

But I immediately suspect that the programmer didn’t think out
the words carefully enough, that the hyphen should be broken and
the words defined separately. That isn’t always possible, and it isn’t
always advantageous. But I suspect a hyphenated word of mixing
two concepts.

Choosing Names: The Art 225

Compare the following two strategies for saying the same thing:

ENABLE-LEFT-MOTOR LEFT MOTOR ON

ENABLE-RIGHT-MOTOR RIGHT MOTOR ON

DISABLE-LEFT-MOTOR LEFT MOTOR OFF

DISABLE-RIGHT-MOTOR RIGHT MOTOR OFF

ENABLE-LEFT-SOLENOID LEFT SOLENOID ON

ENABLE-RIGHT-SOLENOID RIGHT SOLENOID ON

DISABLE-LEFT-SOLENOID LEFT SOLENOID OFF

DISABLE-RIGHT-SOLENOID RIGHT SOLENOID OFF

The syntax on the left requires eight dictionary entries; the syntax
on the right requires only six-and some of the words are likely to be
reused in other parts of the application. If you had a MIDDLE motor
and solenoid as well, you’d need only seven words to describe sixteen
combinations.

5.21

Tip

Don’t bundle numbers into names.

Watch out for a series of names beginning or ending with numbers,
such as 1CHANNEL, 2CHANNEL, 3CHANNEL, etc.

This bundling of names and numbers may be an indication of bad
factoring. The crime is similar to hyphenation, except that what should
be factored out is a number, not a word. A better factoring of the
above would be

1 CHANNEL

2 CHANNEL

3 CHANNEL

In this case, the three words were reduced to one.
Often the bundling of names and numbers indicates fuzzy naming.

In the above case, more descriptive names might indicate the purpose
of the channels, as in

Choosing Names: The Art 226

VOICE , TELEMETRY , GUITAR

We’ll amplify on these ideas in the next chapter on “Factoring.”

Naming Standards: The Science

5.22

Tip

Learn and adopt Forth’s naming conventions.

In the quest for short, yet meaningful names, Forth programmers have
adopted certain naming conventions. Appendix E includes a list of the
most useful conventions developed over the years.

An example of the power of naming conventions is the use of “dot”
to mean “print” or “display.” Forth itself uses

. D. U.R

for displaying various types of numbers in various formats. The con-
vention extends to application words as well. If you have a variable
called DATE, and you want a word that displays the date, use the
name

.DATE

A caution: The overuse of prefixes and suffixes makes words uglier and
ultimately less readable. Don’t try to describe everything a word does
by its name alone. After all, a name is a symbol, not a shorthand for
code. Which is more readable and natural sounding?:

Oedipus complex

(which bears no intrinsic meaning), or

subconscious-attachment-to-parent-of-opposite-sex complex

Naming Standards: The Science 227

Probably the former, even though it assumes you know the play.

5.23

Tip

Use prefixes and suffices to differentiate between like words
rather than to cram details of meaning into the name itself.

For instance, the phrase

... DONE IF CLOSE THEN ...

is just as readable as

... DONE? IF CLOSE THEN ...

and cleaner as well. It is therefore preferable, unless we need an addi-
tional word called DONE (as a flag, for instance).

A final tip on naming:

5.24

Tip

Begin all hex numbers with “0” (zero) to avoid potential colli-
sions with names.

For example, write 0ADD, not ADD.
By the way, don’t expect your Forth system to necessarily conform

to the above conventions. The conventions are meant to be used in
new applications.

Forth was created and refined over many years by people who used
it as a means to an end. At that time, it was neither reasonable nor
possible to impose naming standards on a tool that was still growing
and evolving.

Had Forth been designed by committee, we would not love it so.

Naming Standards: The Science 228

More Tips for Readability

Here are some final suggestions to make your code more readable.
(Definitions appear in Appendix C.)

One constant that pays for itself in most applications is BL (the
ASCII value for “blank-space”).

The word ASCII is used primarily within colon definitions to free
you from having to know the literal value of an ASCII character. For
instance, instead of writing:

: (41 WORD DROP ; IMMEDIATE

where 41 is the ASCII representation for right-parenthesis, you can
write

: (ASCII) WORD DROP ; IMMEDIATE

A pair of words that can make dealing with booleans more readable
are TRUE and FALSE. With these additions you can write phrases such
as

TRUE ’STAMP? !

to set a flag or

FALSE ’STAMP? !

to clear it.
(I once used T and F, but the words are needed so rarely I now heed

the injunction against abbreviations.)
As part of your application (not necessarily part of your Forth sys-

tem), you can take this idea a step further and define:

: ON (a) TRUE SWAP ! ;

: OFF (a) FALSE SWAP ! ;

More Tips for Readability 229

These words allow you to write:

’STAMP? ON

or

’STAMP? OFF

Other names for these definitions include SET and RESET, although
SET and RESET most commonly use bit masks to manipulate individual
bits.

An often-used word is WITHIN, which determines whether a given
value lies within two other values. The syntax is:

n lo hi WITHIN

where “n” is the value to be tested and “lo” and “hi” represent the
range. WITHIN returns true if “n” is greater-than or equal-to “lo” and
less-than “hi.” This use of the non-inclusive upper limit parallels the
syntax of DO LOOPs.

Moore recommends the word UNDER+. It’s useful for adding a
value to the number just under the top stack item, instead of to the
top stack item. It could be implemented in high level as:

: UNDER+ (a b c -- a+c b) ROT + SWAP ;

Summary

Maintainability requires readability. In this chapter we’ve enumerated
various ways to make a source listing more readable. We’ve assumed a
policy of making our code as self-documenting as possible. Techniques
include listing organization, spacing and indenting, commenting, name
choices, and special words that enhance clarity.

We’ve mentioned only briefly auxiliary documentation, which in-
cludes all documentation apart from the listing itself. We won’t dis-
cuss auxiliary documentation further in this volume, but it remains an
integral part of the software development process.

Summary 230

References

[1] Gregory Stevenson, “Documentation Priorities,” 1981
FORML Conference Proceedings, p. 401.

[2] Joanne Lee, “Quality Assurance in a Forth Environment,” (Ap-
pendix A), 1981 FORML Proceedings, p. 363.

[3] Edsger W. Dijkstra, Selected Writings on Computing: A Per-
sonal Perspective, New York, Springer Verlag, Inc., 1982.

[4] Henry Laxen, “Choosing Names,” Forth Dimensions, vol. 4, no.
4, Forth Interest Group.

References 231

Table 5.1: Indentation and spacing guidelines

1 space between the colon and the name
2 spaces between the name and the comment*

2 spaces, or a carriage return, after the comment and
before the definition∗

3 spaces between the name and definition if no comment
is used
3 spaces indentation on each subsequent line (or multiples
of 3 for nested indentation)
1 space between words/numbers within a phrase
2 or 3 spaces between phrases
1 space between the last word and the semicolon
1 space between semicolon and IMMEDIATE (if invoked)

No blank lines between definitions, except to separate distinct groups
of definitions

*An often-seen alternative calls for 1 space between the name and comment

and 3 between the comment and the definition. A more liberal technique uses 3

spaces before and after the comment. Whatever you choose, be consistent.

Table 5.2: Stack-comment abbreviations.

n single-length signed number
d double-length signed number
u single-length unsigned number
ud double-length unsigned number
t triple-length
q quadruple-length
c 7-bit character value
b 8-bit byte
? boolean flag; or;

t= true
f= false

a or adr address
acf address of code field
apf address of parameter field
’ (as prefix) address of
s d (as a pair) source destination
lo hi lower-limit upper-limit (inclusive)
count
o offset
i index
m mask
x don’t care (data structure notation)

An “offset” is a difference expressed in absolute units, such as bytes.
An “index” is a difference expressed in logical units, such as elements
or records.

Table 5.3: Input-stream comment designations.

c single character, blank-delimited
name sequence of characters, blank delimited
text sequence of characters, delimited by non-blank

Follow “text” with the actual delimiter required; e.g.: text" or text)

SIX

Factoring

In this chapter we’ll continue our study of the implementations phase,
this time focusing on factoring.

Decomposition and factoring are chips off the same block. Both
involve dividing and organizing. Decomposition occurs during prelim-
inary design; factoring occurs during detailed design and implementa-
tion.

Since every colon definition reflects decisions of factoring, an under-
standing of good factoring technique is perhaps the most important
skill for a Forth programmer.

What is factoring? Factoring means organizing code into useful frag-
ments. To make a fragment useful, you often must separate reusable
parts from non-reusable parts. The reusable parts become new defi-
nitions. The non-reusable parts become arguments or parameters to
the definitions.

Making this separation is usually referred to as “factoring out.” The
first part of this chapter will discuss various “factoring-out” techniques.

Deciding how much should go into, or stay out of, a definition is
another aspect of factoring. The second section will outline the criteria
for useful factoring.

Factoring 236

Factoring Techniques

If a module seems almost, but not quite, useful from a second place
in the system, try to identify and isolate the useful subfunction. The
remainder of the module might be incorporated in its original caller
(from “Structured Design” [1]).

The “useful subfunction” of course becomes the newly factored defini-
tion.What about the part that “isn’t quite useful”? That depends on
what it is.

Factoring Out Data

The simplest thing to factor out is data, thanks to Forth’s data stack.
For instance, to compute two-thirds of 1,000, we write

1000 2 3 */

To define a word that computes two-thirds of any number, we factor
out the argument from the definition:

: TWO-THIRDS (n1 -- n2) 2 3 */ ;

When the datum comes in the middle of the useful phrase, we have
to use stack manipulation. For instance, to center a piece of text ten
characters long on an 80-column screen, we would write:

80 10 - 2/ SPACES

But text isn’t always 10 characters long. To make the phrase useful
for any string, you’d factor out the length by writing:

: CENTER (length --) 80 SWAP - 2/ SPACES ;

Factoring Techniques 237

The data stack can also be used to pass addresses. Therefore what’s
factored out may be a pointer to data rather than the data themselves.
The data can be numbers or even strings, and still be factored out
through use of the stack.

Sometimes the difference appears to be a function, but you can
factor it out simply as a number on the stack. For instance:

Segment 1: WILLY NILLY PUDDIN’ PIE AND

Segment 2: WILLY NILLY 8 * PUDDIN’ PIE AND

How can you factor out the “8 *” operation? By including “*” in the
factoring and passing it a one or eight:

: NEW (n) WILLY NILLY * PUDDIN’ PIE AND ;

Segment 1: 1 NEW

Segment 2: 8 NEW

(Of course if WILLY NILLY changes the stack, you’ll need to add
appropriate stack-manipulation operators.)

If the operation involves addition, you can nullify it by passing a
zero.

6.1

Tip

For simplicity, try to express the difference between similar frag-
ments as a numeric difference (values or addresses), rather than
as a procedural difference.

Factoring Out Data 238

Factoring Out Functions

On the other hand, the difference sometimes is a function. Witness:

Segment 1: BLETCH-A BLETCH-B BLETCH-C
BLETCH-D BLETCH-E BLETCH-F

Segment 2: BLETCH-A BLETCH-B PERVERSITY
BLETCH-D BLETCH-E BLETCH-F

Wrong approach:

: BLETCHES (t=do-BLETCH-C | f=do-PERVERSITY --)

BLETCH-A BLETCH-B IF BLETCH-C ELSE PERVERSITY
THEN BLETCH-D BLETCH-E BLETCH-F ;

Segment 1: TRUE BLETCHES

Segment 2: FALSE BLETCHES

A better approach:

: BLETCH-AB BLETCH-A BLETCH-B ;

: BLETCH-DEF BLETCH-D BLETCH-E BLETCH-F ;

Segment 1: BLETCH-AB BLETCH-C BLETCH-DEF

Segment 2: BLETCH-AB PERVERSITY BLETCH-DEF

6.2

Tip

Don’t pass control flags downward.

Why not? First, you are asking your running application to make a
pointless decision—one you knew the answer to while programming—
thereby reducing efficiency. Second, the terminology doesn’t match
the conceptual model. What are TRUE BLETCHES as opposed to FALSE
BLETCHES?

Factoring Out Functions 239

Factoring Out Code from Within Control
Structures

Be alert to repetitions on either side of an IF ELSE THEN statement.
For instance:

... (c) DUP BL 127 WITHIN

IF EMIT ELSE

DROP ASCII . EMIT THEN ...

This fragment normally emits an ASCII character, but if the character
is a control code, it emits a dot. Either way, an EMIT is performed.
Factor EMIT out of the conditional structure, like this:

... (c) DUP BL 127 WITHIN NOT

IF DROP ASCII . THEN EMIT ...

The messiest situation occurs when the difference between two defini-
tions is a function within a structure that makes it impossible to factor
out the half-fragments. In this case, use stack arguments, variables,
or even vectoring. We’ll see how vectoring can be used in a section of
Chapter Seven called “Using DOER/MAKE.”

Here’s a reminder about factoring code from out of a DO LOOP:
6.3

Tip

In factoring out the contents of a DO LOOP into a new definition,
rework the code so that I (the index) is not referenced within
the new definition, but rather passed as a stack argument to it.

Factoring Out Control Structures Themselves

Here are two definitions whose differences lies within a IF THEN con-
struct:

Factoring Out Code from Within Control Structures 240

: ACTIVE A B OR C AND IF TUMBLE JUGGLE JUMP THEN ;

: LAZY A B OR C AND IF SIT EAT SLEEP THEN ;

The condition and control structure remain the same; only the event
changes. Since you can’t factor the IF into one word and the THEN
into another, the simplest thing is to factor the condition:

: CONDITIONS? (-- ?) A B OR C AND ;

: ACTIVE CONDITIONS? IF TUMBLE JUGGLE JUMP THEN ;

: LAZY CONDITIONS? IF SIT EAT SLEEP THEN ;

Depending on the number of repetitions of the same condition and
control structure, you may even want to factor out both. Watch this:

: CONDITIONALLY A B OR C AND NOT IF R> DROP THEN ;

: ACTIVE CONDITIONALLY TUMBLE JUGGLE JUMP ;

: LAZY CONDITIONALLY SIT EAT SLEEP ;

The word CONDITIONALLY may—depending on the condition—alter
the control flow so that the remaining words in each definition will
be skipped. This approach has certain disadvantages as well. We’ll
discuss this technique—pros and cons—in Chapter Eight.

More benign examples of factoring-out control structures include
case statements, which eliminate nested IF ELSE THENs, and multiple
exit loops (the BEGIN WHILE WHILE WHILE ... REPEAT construct).
We’ll also discuss these topics in Chapter Eight.

Factoring Out Names

It’s even good to factor out names, when the names seem almost, but
not quite, the same. Examine the following terrible example of code,
which is meant to initialize three variables associated with each of
eight channels:

Factoring Out Names 241

VARIABLE 0STS VARIABLE 1STS VARIABLE 2STS

VARIABLE 3STS VARIABLE 4STS VARIABLE 5STS

VARIABLE 6STS VARIABLE 7STS VARIABLE 0TNR

VARIABLE 1TNR VARIABLE 2TNR VARIABLE 3TNR

VARIABLE 4TNR VARIABLE 5TNR VARIABLE 6TNR

VARIABLE 7TNR VARIABLE 0UPS VARIABLE 1UPS

VARIABLE 2UPS VARIABLE 3UPS VARIABLE 4UPS

VARIABLE 5UPS VARIABLE 6UPS VARIABLE 7UPS

: INIT-CHO 0 0STS ! 1000 0TNR ! -1 0UPS ! ;

: INIT-CH1 0 1STS ! 1000 1TNR ! -1 1UPS ! ;

: INIT-CH2 0 2STS ! 1000 2TNR ! -1 2UPS ! ;

: INIT-CH3 0 3STS ! 1000 3TNR ! -1 3UPS ! ;

: INIT-CH4 0 4STS ! 1000 4TNR ! -1 4UPS ! ;

: INIT-CH5 0 5STS ! 1000 5TNR ! -1 5UPS ! ;

: INIT-CH6 0 6STS ! 1000 6TNR ! -1 6UPS ! ;

: INIT-CH7 0 7STS ! 1000 7TNR ! -1 7UPS ! ;

: INIT-ALL-CHS INIT-CHO INIT-CH1 INIT-CH2 INIT-CH3

INIT-CH4 INIT-CH5 INIT-CH6 INIT-CH7 ;

First there’s a similarity among the names of the variables; then there’s
a similarity in the code used in all the INIT-CH words.

Here’s an improved rendition. The similar variable names have been
factored into three data structures, and the lengthy recital of INIT-CH
words has been factored into a DO LOOP:
: ARRAY (#cells --) CREATE 2* ALLOT

DOES> (i -- ’cell) SWAP 2* + ;

8 ARRAY STATUS (channel# -- adr)

8 ARRAY TENOR (")

8 ARRAY UPSHOT (")

: STABLE 8 0 DO 0 I STATUS ! 1000 I TENOR !

-1 I UPSHOT ! LOOP ;

Factoring Out Names 242

That’s all the code we need.
Even in the most innocent cases, a little data structure can eliminate

extra names. By convention Forth handles text in “counted strings”
(i.e., with the count in the first byte). Any word that returns the
“address of a string” actually returns this beginning address, where
the count is. Not only does use of this two-element data structure
eliminate the need for separate names for string and count, it also
makes it easier to move a string in memory, because you can copy the
string and the count with a single CMOVE.

When you start finding the same awkwardness here and there, you
can combine things and make the awkwardness go away.

Factoring Out Functions into Defining Words

6.4

Tip

If a series of definitions contains identical functions, with varia-
tion only in data, use a defining word.

Examine the structure of this code (without worrying about its purpose—
you’ll see the same example later on):

: HUE (color -- color’)

’LIGHT? @ OR 0 ’LIGHT? ! ;

: BLACK 0 HUE ;

: BLUE 1 HUE ;

: GREEN 2 HUE ;

: CYAN 3 HUE ;

: RED 4 HUE ;

: MAGENTA 5 HUE ;

: BROWN 6 HUE ;

: GRAY 7 HUE ;

Factoring Out Functions into Defining Words 243

The above approach is technically correct, but less memory-efficient
than the following approach using defining words:

: HUE (color --) CREATE ,

DOES> (-- color) @ ’LIGHT? @ OR 0 ’LIGHT? ! ;

0 HUE BLACK 1 HUE BLUE 2 HUE GREEN

3 HUE CYAN 4 HUE RED 5 HUE MAGENTA

6 HUE BROWN 7 HUE GRAY

(Defining words are explained in Starting Forth, Chapter Eleven).
By using a defining word, we save memory because each compiled

colon definition needs the address of EXIT to conclude the definition.
(In defining eight words, the use of a defining word saves 14 bytes on
a 16-bit Forth.) Also, in a colon definition each reference to a numeric
literal requires the compilation of LIT (or literal), another 2 bytes
per definition. (If 1 and 2 are predefined constants, this costs another
10 bytes—24 total.)

In terms of readability, the defining word makes it absolutely clear
that all the colors it defines belong to the same family of words.

The greatest strength of defining words, however, arises when a
series of definitions share the same compile-time behavior. This topic
is the subject of a later section, “Compile-Time Factoring.”

Factoring Criteria

Armed with an understanding of factoring techniques, let’s now discuss
several of the criteria for factoring Forth definitions. They include:

1. Limiting the size of definitions

2. Limiting repetition of code

3. Nameability

4. Information hiding

Factoring Criteria 244

5. Simplifying the command interface

6.5

Tip

Keep definitions short.

We asked Moore, “How long should a Forth definition be?”

A word should be a line long. That’s the target.

When you have a whole lot of words that are all useful in their own
right—perhaps in debugging or exploring, but inevitably there’s a
reason for their existence—you feel you’ve extracted the essence of
the problem and that those words have expressed it.

Short words give you a good feeling.

An informal examination of one of Moore’s applications shows that
he averages seven references, including both words and numbers, per
definition. These are remarkably short definitions. (Actually, his code
was divided about 50–50 between one-line and two-line definitions.)

Psychological tests have shown that the human mind can only focus
its conscious attention on seven things, plus or minus two, at a time
[2]. Yet all the while, day and night, the vast resources of the mind are
subconsciously storing immense amounts of data, making connections
and associations and solving problems.

Even if our subconscious mind knows each part of an application
inside out, our narrow-viewed conscious mind can only correlate seven
elements of it at once. Beyond that, our grasp wavers. Short defini-
tions match our mental capabilities.

Something that tempts many Forth programmers to write overly
long definitions is the knowledge that headers take space in the dic-
tionary. The coarser the factoring, the fewer the names, and the less
memory that will be wasted.

Factoring Criteria 245

It’s true that more memory will be used, but it’s hard to say that
anything that helps you test, debug and interact with your code is a
“waste.” If your application is large, try using a default width of three,
with the ability to switch to a full-length name to avoid a specific
collision. (“Width” refers to a limit on the number of characters stored
in the name field of each dictionary header.)

If the application is still too big, switch to a Forth with multiple
dictionaries on a machine with extended memory, or better yet, a 32-
bit Forth on a machine with 32-bit addressing.

A related fear is that over-factoring will decrease performance due
to the overhead of Forth’s inner interpreter. Again, it’s true that there
is some penalty for each level of nesting. But ordinarily the penalty
for extra nesting due to proper factoring will not be noticeable. If you
timings are that tight, the real solution is to translate something into
assembler.

6.6

Tip

Factor at the point where you feel unsure about your code (where
complexity approaches the conscious limit).

Don’t let your ego take over with an “I can lick this!” attitude. Forth
code should never feel uncomfortably complex. Factor!

Moore:

Feeling like you might have introduced a bug is one reason for fac-
toring. Any time you see a doubly-nested DO LOOP, that’s a sign
that something’s wrong because it will be hard to debug. Almost
always take the inner DO LOOP and make a word.

And having factored out a word for testing, there’s no reason for
putting it back. You found it useful in the first place. There’s no
guarantee you won’t need it again.

Factoring Criteria 246

Here’s another facet of the same principle:

6.7

Tip

Factor at the point where a comment seems necessary

Particularly if you feel a need to remind yourself what’s on the stack,
this may be a good time to “make a break.”

Suppose you have

... BALANCE DUP xxx xxx xxx xxx xxx xxx xxx xxx xxx

xxx xxx xxx xxx xxx xxx (balance) SHOW ...

which begins by computing the balance and ends by displaying it. In
the meantime, several lines of code use the balance for purposes of
their own. Since it’s difficult to see that the balance is still on the
stack when SHOW executes, the programmer has interjected a stack
picture.

This solution is generally a sign of bad factoring. Better to write:

: REVISE (balance --) xxx xxx xxx xxx xxx xxx xxx

xxx xxx xxx xxx xxx xxx xxx ;

... BALANCE DUP REVISE SHOW ...

No narrative stack pictures are needed. Furthermore, the programmer
now has a reusable, testable subset of the definition.

6.8

Tip

Limit repetition of code.

The second reason for factoring, to eliminate repeated fragments of
code, is even more important than reducing the size of definitions.

Factoring Criteria 247

Moore:

When a word is just a piece of something, it’s useful for clarity or
debugging, but not nearly as good as a word that is used multiple
times. Any time a word is used only once you want to question its
value.

Many times when a program has gotten too big I will go back
through it looking for phrases that strike my eye as candidates for
factoring. The computer can’t do this; there are too many variables.

In looking over your work, you often find identical phrases or short
passages duplicated several times. In writing an editor I found this
phrase repeated several times:

FRAME CURSOR @ +

Because it appeared several times I factored it into a new word called
AT.

It’s up to you to recognize fragments that are coded differently but
functionally equivalent, such as:

FRAME CURSOR @ 1- +

The 1- appears to make this phrase different from the one defined as
AT. But in fact, it can be written

AT 1-

On the other hand:

6.9

Tip

When factoring out duplicate code, make sure the factored code
serves a single purpose.

Factoring Criteria 248

Don’t blindly seize upon duplications that may not be useful. For
instance, in several places in one application I used this phrase:

BLK @ BLOCK >IN @ + C@

I turned it into a new word and called it LETTER, since it returned the
letter being pointed to by the interpreter.

In a later revision, I unexpectedly had to write:

BLK @ BLOCK >IN @ + C!

I could have used the existing LETTER were it not for its C@ at the
end. Rather than duplicate the bulk of the phrase in the new section,
I chose to refactor LETTER to a finer resolution, taking out the C@.
The usage was then either LETTER C@ or LETTER C!. This change
required me to search through the listing changing all instances of
LETTER to LETTER C@. But I should have done that in the first place,
separating the computation of the letter’s address from the operation
to be performed on the address.

Similar to our injunction against repetition of code:

6.10

Tip

Look for repetition of patterns.

If you find yourself referring back in the program to copy the pattern
of previously-used words, then you may have mixed in a general idea
with a specific application. The part of the pattern you are copying
perhaps can be factored out as an independent definition that can be
used in all the similar cases.

6.11

Tip

Be sure you can name what you factor.

Factoring Criteria 249

Moore:

If you have a concept that you can’t assign a single name to, not
a hyphenated name, but a name, it’s not a well-formed concept.
The ability to assign a name is a necessary part of decomposition.
Certainly you get more confidence in the idea.

Compare this view with the criteria for decomposing a module es-
poused by structured design in Chapter One. According to that method,
a module should exhibit “functional binding,” which can be verified by
describing its function in a single, non-compound, sentence. Forth’s
“atom,” a name, is an order of magnitude more refined.

6.12

Tip

Factor definitions to hide details that may change.

We’ve seen the value of information hiding in earlier chapters, espe-
cially with regard to preliminary design. It’s useful to remember this
criterion during the implementation stage as well.

Here’s a very short definition that does little except hide information:

: >BODY (acf -- apf) 2+ ;

This definition allows you to convert an acf (address of code field) to
an apf (address of parameter field) without depending on the actual
structure of a dictionary definition. If you were to use 2+ instead of
the word >BODY, you would lose transportability if you ever converted
to a Forth system in which the heads were separated from the bodies.
(This is one of a set of words suggested by Kim Harris, and included
as an Experimental Proposal in the Forth-83 Standard [3].)

Here’s a group of definitions that might be used in writing an editor:

Factoring Criteria 250

: FRAME (-- a) SCR @ BLOCK ;

: CURSOR (-- a) R# ;

: AT (-- a) FRAME CURSOR @ + ;

These three definitions can form the basis for all calculations of ad-
dresses necessary for moving text around. Use of these three defini-
tions completely separates your editing algorithms from a reliance on
Forth blocks.

What good is that? If you should decide, during development, to
create an editing buffer to protect the user from making errors that de-
stroy a block, you merely have to redefine two of these words, perhaps
like this:

CREATE FRAME 1024 ALLOT

VARIABLE CURSOR

The rest of your code can remain intact.

6.13

Tip

Factor functions out of definitions that display results.

This is really a question of decomposition.
Here’s an example. The word defined below, pronounced “people-

to-paths,” computes how many paths of communication there are be-
tween a given number of people in a group. (This is a good thing for
managers of programmer teams to know—the number of communica-
tion paths increases drastically with each new addition to the team.)

: PEOPLE>PATHS (#people -- #paths) DUP 1- * 2/ ;

This definition does the calculation only. Here’s the “user definition”
that invokes PEOPLE>PATHS to perform the calculation, and then dis-
plays the result:

Factoring Criteria 251

: PEOPLE (#people)

." = " PEOPLE>PATHS . ." PATHS " ;

This produces:

2 PEOPLE = 1 PATHS

3 PEOPLE = 3 PATHS

5 PEOPLE = 10 PATHS

10 PEOPLE = 45 PATHS

Even if you think you’re going to perform a particular calculation only
once, to display it in a certain way, believe me, you’re wrong. You will
have to come back later and factor out the calculation part. Perhaps
you’ll need to display the information in a right-justified column, or
perhaps you’ll want to record the results in a data base—you never
know. But you’ll always have to factor it, so you might as well do it
right the first time. (The few times you might get away with it aren’t
worth the trouble.)

The word . (dot) is a prime example. Dot is great 99% of the time,
but occasionally it does too much. Here’s what it does, in fact (in
Forth–83):

: . (n) DUP ABS 0 <# #S ROT SIGN #> TYPE SPACE ;

But suppose you want to convert a number on the stack into an ASCII
string and store it in a buffer for typing later. Dot converts it, but
also types it. Or suppose you want to format playing cards in the form
10C (for “ten of clubs”). You can’t use dot to display the 10 because
it prints a final space.

Here’s a better factoring found in some Forth systems:

: (.) (n -- a #) DUP ABS 0 <# #S ROT SIGN #> ;

: . (n) (.) TYPE SPACE ;

Factoring Criteria 252

We find another example of failing to factor the output function from
the calculation function in our own Roman numeral example in Chapter
Four. Given our solution, we can’t store a Roman numeral in a buffer
or even center it in a field. (A better approach would have been to
use HOLD instead of EMIT.)

Information hiding can also be a reason not to factor. For instance,
if you factor the phrase

SCR @ BLOCK

into the definition

: FRAME SCR @ BLOCK ;

remember you are doing so only because you may want to change the
location of the editing frame. Don’t blindly replace all occurrences of
the phrase with the new word FRAME, because you may change the
definition of FRAME and there will certainly be times when you really
want SCR � BLOCK.

6.14

Tip

If a repeated code fragment is likely to change in some cases but
not others, factor out only those instances that might change.
If the fragment is likely to change in more than one way, factor
it into more than one definition.

Knowing when to hide information requires intuition and experience.
Having made many design changes in your career, you’ll learn the hard
way which things will be most likely to change in the future.

You can never predict everything, though. It would be useless to try,
as we’ll see in the upcoming section called “The Iterative Approach in
Implementation.”

Factoring Criteria 253

6.15

Tip

Simplify the command interface by reducing the number of com-
mands.

It may seem paradoxical, but good factoring can often yield fewer
names. In Chapter Five we saw how six simple names (LEFT, RIGHT,
MOTOR, SOLENOID, ON, and OFF) could do the work of eight badly-
factored, hyphenated names.

As another example, I found two definitions circulating in one de-
partment in which Forth had recently introduced. Their purpose was
purely instructional, to remind the programmer which vocabulary was
CURRENT, and which was CONTEXT:

: .CONTEXT CONTEXT @ 8 - NFA ID. ;

: .CURRENT CURRENT @ 8 - NFA ID. ;

If you typed

.CONTEXT

the system would respond

.CONTEXT FORTH

(They worked—at least on the system used there—by backing up to
the name field of the vocabulary definition, and displaying it.)

The obvious repetition of code struck my eye as a sign of bad factor-
ing. It would have been possible to consolidate the repeated passage
into a third definition:

: .VOCABULARY (pointer) @ 8 - NFA ID. ;

shortening the original definitions to:

Factoring Criteria 254

: .CONTEXT CONTEXT .VOCABULARY ;

: .CURRENT CURRENT .VOCABULARY ;

But in this approach, the only difference between the two definitions
was the pointer to be displayed. Since part of good factoring is to
make fewer, not more definitions, it seemed logical to have only one
definition, and let it take as an argument either the word CONTEXT or
the word CURRENT.

Applying the principles of good naming, I suggested:

: IS (adr) @ 8 - NFA ID. ;

allowing the syntax

CONTEXT IS ASSEMBLER ok

or

CURRENT IS FORTH ok

The initial clue was repetition of code, but the final result came from
attempting to simplify the command interface.

Here’s another example. The IBM PC has four modes four display-
ing text only:

40 column monochrome

40 column color

80 column monochrome

80 column color

The word MODE is available in the Forth system I use. MODE takes
an argument between 0 and 3 and changes the mode accordingly. Of
course, the phrase 0 MODE or 1 MODE doesn’t help me remember which
mode is which.

Factoring Criteria 255

Since I need to switch between these modes in doing presentations,
I need to have a convenient set of words to effect the change. These
words must also set a variable that contains the current number of
columns—40 or 80.

Here’s the most straightforward way to fulfill the requirements:

: 40-B&W 40 #COLUMNS ! 0 MODE ;

: 40-COLOR 40 #COLUMNS ! 1 MODE ;

: 80-B&W 80 #COLUMNS ! 2 MODE ;

: 80-COLOR 80 #COLUMNS ! 3 MODE ;

By factoring to eliminate the repetition, we come up with this version:

: COL-MODE! (#columns mode) MODE #COLUMNS ! ;

: 40-B&W 40 0 COL-MODE! ;

: 40-COLOR 40 1 COL-MODE! ;

: 80-B&W 80 2 COL-MODE! ;

: 80-COLOR 80 3 COL-MODE! ;

But by attempting to reduce the number of commands, and also by
following the injunctions against numerically-prefixed and hyphenated
names, we realize that we can use the number of columns as a stack
argument, and calculate the mode:

: B&W (#cols --) DUP #COLUMNS ! 20 / 2- MODE ;

: COLOR (#cols --) DUP #COLUMNS ! 20 / 2- 1+ MODE ;

This gives us this syntax:

40 B&W

80 B&W

40 COLOR

80 COLOR

Factoring Criteria 256

We’ve reduced the number of commands from four to two.
Once again, though, we have some duplicate code. If we factor out

this code we get:

: COL-MODE! (#columns chroma?)

SWAP DUP #COLUMNS ! 20 / 2- + MODE ;

: B&W (#columns --) 0 COL-MODE! ;

: COLOR (#columns --) 1 COL-MODE! ;

Now we’ve achieved a nicer syntax, and at the same time greatly
reduced the size of the object code. With only two commands, as in
this example, the benefits may be marginal. But with larger sets of
commands the benefits increase geometrically.

Our final example is a set of words to represent colors on a particular
system. Names like BLUE and RED are nicer than numbers. One
solution might be to define:

0 CONSTANT BLACK 1 CONSTANT BLUE

2 CONSTANT GREEN 3 CONSTANT CYAN

4 CONSTANT RED 5 CONSTANT MAGENTA

6 CONSTANT BROWN 7 CONSTANT GRAY

8 CONSTANT DARK-GRAY 9 CONSTANT LIGHT-BLUE

10 CONSTANT LIGHT-GREEN 11 CONSTANT LIGHT-CYAN

12 CONSTANT LIGHT-RED 13 CONSTANT LIGHT-MAGENTA

14 CONSTANT YELLOW 15 CONSTANT WHITE

These colors can be used with words such as BACKGROUND, FOREGROUND,
and BORDER:

WHITE BACKGROUND RED FOREGROUND BLUE BORDER

But this solution requires 16 names, and many of them are hyphenated.
Is there a way to simplify this?

Factoring Criteria 257

We notice that the colors between 8 and 15 are all “lighter” versions
of the colors between 0 and 7. (In the hardware, the only difference
between these two sets is the setting of the “intensity bit.”) If we
factor out the “lightness,” we might come up with this solution:

VARIABLE ’LIGHT? (intensity bit?)

: HUE (color) CREATE ,

DOES> (-- color) @ ’LIGHT? @ OR 0 ’LIGHT? ! ;

0 HUE BLACK 1 HUE BLUE 2 HUE GREEN

3 HUE CYAN 4 HUE RED 5 HUE MAGENTA

6 HUE BROWN 7 HUE GRAY

: LIGHT 8 ’LIGHT? ! ;

With this syntax, the word

BLUE

by itself will return a “1” on the stack, but the phrase

LIGHT BLUE

will return a “9.” (The adjective LIGHT sets flag which is used by the
hues, then cleared.)

If necessary for readability, we still might want to define:

8 HUE DARK-GRAY

14 HUE YELLOW

Again, through this approach we’ve achieved a more pleasant syntax
and shorter object code.

6.16

Tip

Don’t factor for the sake of factoring. Use clichés.

Factoring Criteria 258

The phrase

OVER + SWAP

may be seen commonly in certain applications. (It converts an address
and count into an ending address and starting address appropriate for
a DO LOOP.)

Another commonly seen phrase is

1+ SWAP

(It rearranges a first-number and last-number into the last-number-
plus-one and first-number order required by DO.)

It’s a little tempting to seize upon these phrases and turn them into
words, such as (for the first phrase) RANGE.

Moore:

That particular phrase [OVER + SWAP] is one that’s right on the
margin of being a useful word. Often, though, if you define some-
thing as a word, it turns out you use it only once. If you name such
a phrase, you have trouble knowing exactly what RANGE does. You
can’t see the manipulation in your mind. OVER + SWAP has greater
mnemonic value than RANGE.

I call these phrases “clichés.” They stick together as meaningful func-
tions. You don’t have to remember how the phrase works, just what
it does. And you don’t have to remember an extra name.

Compile-Time Factoring

In the last section we looked at many techniques for organizing code
and data to reduce redundancy.

We can also apply limited redundancy during compilation, by letting
Forth do some of our dirty work.

Compile-Time Factoring 259

6.17

Tip

For maximum maintainability, limit redundancy even at compile
time.

Suppose in our application we must draw nine boxes as shown in
Figure 6.1.

Figure 6.1: What we’re supposed to display

******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********

******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********

******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********
******** ******** ********

In our design we need to have constants that represent values such
as the size of each box, the size of the gap between boxes, and the
left-most and top-most coordinates of the first box.

Naturally we can define:

8 CONSTANT WIDE

5 CONSTANT HIGH

4 CONSTANT AVE

2 CONSTANT STREET

Compile-Time Factoring 260

(Streets run east and west; avenues run north and south.)
Now, to define the left margin, we might compute it manually. We

want to center all these boxes on a screen 80 columns wide. To
center something, we subtract its width from 80 and divide by two to
determine the left margin. To figure the total width of all the boxes,
we add

8 + 4 + 8 + 4 + 8 = 32

(three widths and two avenues). (80− 32)/2 = 24.
So we could, crudely, define:

24 CONSTANT LEFTMARGIN

and use the same approach for TOPMARGIN.
But what if we should later redesign the pattern, so that the width

changed, or perhaps the gap between the boxes? We’d have to recom-
pute the left margin ourselves.

In the Forth environment, we can use the full power of Forth even
when we’re compiling. Why not let Forth do the figuring?

WIDE 3 * AVE 2 * + 80 SWAP - 2/ CONSTANT LEFTMARGIN

HIGH 3 * STREET 2 * + 24 SWAP - 2/ CONSTANT TOPMARGIN

6.18

Tip

If a constant’s value depends on the value of an earlier constant,
use Forth to calculate the value of the second.

None of these computations are performed when the application is
running, so run-time speed is not affected.

Here’s another example. Figure 6.2 shows the code for a word that
draws shapes. The word DRAW emits a star at every x–y coordinate

Compile-Time Factoring 261

listed in the table called POINTS. (Note: the word XY positions the
cursor to the (x y) coordinate on the stack.)

Notice the line immediately following the list of points:

HERE POINTS - (/table) 2/ CONSTANT #POINTS

The phrase “HERE POINTS -” computes the number of x–y coordi-
nates in the table: this value becomes the constant #POINTS, used as
the limit in DRAW’s DO LOOP.

This construct lets you add or subtract points from the table without
worrying about the number of points there are. Forth computes this
for you.

Compile-Time Factoring through Defining Words

Let’s examine a series of approaches to the same problem—defining a
group of related addresses. Here’s the first try:

HEX 01A0 CONSTANT BASE.PORT.ADDRESS

BASE.PORT.ADDRESS CONSTANT SPEAKER

BASE.PORT.ADDRESS 2+ CONSTANT FLIPPER-A

Figure 6.2: Another example of limiting compile-time redundancy.

: P (x y --) C, C, ;

CREATE POINTS

10 10 P 10 11 P 10 12 P 10 13 P 10 14 P

11 10 P 12 10 P 13 10 P 14 10 P

11 12 P 12 12 P 13 12 P 14 12 P

HERE POINTS - (/table) 2/ CONSTANT #POINTS

: @POINTS (i -- x y) 2* POINTS + DUP 1+ C@ SWAP C@ ;

: DRAW #POINTS 0 DO I @POINTS XY ASCII * EMIT LOOP ;

Compile-Time Factoring through Defining Words 262

BASE.PORT.ADDRESS 4 + CONSTANT FLIPPER-B

BASE.PORT.ADDRESS 6 + CONSTANT WIN-LIGHT

DECIMAL

The idea is right, but the implementation is ugly. The only elements
that change from port to port are the numeric offset and the name
of the port being defined; everything else repeats. This repetition
suggests the use of a defining word.

The following approach, which is more readable, combines all the
repeated code into the “does” part of a defining word:

: PORT (offset --) CREATE ,

DOES> (-- ’port) @ BASE.PORT.ADDRESS + ;

0 PORT SPEAKER

2 PORT FLIPPER-A

4 PORT FLIPPER-B

6 PORT WIN-LIGHT

In this solution we’re performing the offset calculation at run-time,
every time we invoke one of these names. It would be more efficient
to perform the calculation at compile time, like this:

: PORT (offset --) BASE.PORT.ADDRESS + CONSTANT ;

\ does> (-- ’port)

0 PORT SPEAKER

2 PORT FLIPPER-A

4 PORT FLIPPER-B

6 PORT WIN-LIGHT

Here we’ve created a defining word, PORT, that has a unique compile-
time behavior, namely adding the offset to BASE.PORT.ADDRESS and
defining a CONSTANT.

We might even go one step further. Suppose that all port addresses
are two bytes apart. In this case there’s no reason we should have to
specify these offsets. The numeric sequence

Compile-Time Factoring through Defining Words 263

0 2 4 6

is itself redundant.
In the following version, we begin with the BASE.PORT.ADDRESS on

the stack. The defining word PORT duplicates this address, makes a
constant out of it, then adds 2 to the address still on the stack, for
the next invocation of PORT.

: PORT (’port -- ’next-port) DUP CONSTANT 2+ ;

\ does> (-- ’port)

BASE.PORT.ADDRESS

PORT SPEAKER

PORT FLIPPER-A

PORT FLIPPER-B

PORT WIN-LIGHT

DROP (port.address)

Notice we must supply the initial port address on the stack before
defining the first port, then invoke DROP when we’ve finished defining
all the ports to get rid of the port address that’s still on the stack.

One final comment. The base-port address is very likely to change,
and therefore should be defined in only one place. This does not mean
it has to be defined as a constant. Provided that the base-port address
won’t be used outside of this lexicon of port names, it’s just as well to
refer to it by number here.

HEX 01A0 (base port adr)

PORT SPEAKER

PORT FLIPPER-A

PORT FLIPPER-B

PORT WIN-LIGHT

DROP

Compile-Time Factoring through Defining Words 264

The Iterative Approach in Implementation

Earlier in the book we discussed the iterative approach, paying par-
ticular attention to its impact on the design phase. Now that we’re
talking about implementation, let’s see how the approach is actually
used in writing code.

6.19

Tip

Work on only one aspect of a problem at a time.

Suppose we’re entrusted with the job of coding a word to draw or
erase a box at a given x–y coordinate. (This is the same problem we
introduced in the section called “Compile-Time Factoring.”)

At first we focus our attention on the problem of drawing a box—
never mind erasing it. We might come up with this:

: LAYER WIDE 0 DO ASCII * EMIT LOOP ;

: BOX (upper-left-x upper-left-y --)

HIGH 0 DO 2DUP I + XY LAYER LOOP 2DROP ;

Having tested this to make sure it works correctly, we turn now to
the problem of using the same code to undraw a box. The solution
is simple: instead of hard-coding the ASCII * we’d like to change
the emitted character from an asterisk to a blank. This requires the
addition of a variable, and some readable words for setting the contents
of the variable. So:

VARIABLE INK

: DRAW ASCII * INK ! ;

: UNDRAW BL INK ! ;

: LAYER WIDTH 0 DO INK @ EMIT LOOP ;

The Iterative Approach in Implementation 265

The definition of BOX, along with the remainder of the application,
remains the same.

This approach allows the syntax

(x y) DRAW BOX

or

(x y) UNDRAW BOX

By switching from an explicit value to a variable that contains a value,
we’ve added a level of indirection. In this case, we’ve added indirection
“backwards,” adding a new level of complexity to the definition of
LAYER without substantially lengthening the definition.

By concentrating on one dimension of the problem at a time, you
can solve each dimension more efficiently. If there’s an error in your
thinking, the problem will be easier to see if it’s not obscured by yet
another untried, untested aspect of your code.

6.20

Tip

Don’t change too much at once.

While you’re editing your application—adding a new feature or fixing
something—it’s often tempting to go and fix several other things at
the same time. Our advice: Don’t.

Make as few changes as you can each time you edit-compile. Be
sure to test the results of each revision before going on. You’d be
amazed how often you can make three innocent modifications, only to
recompile and have nothing work!

Making changes one at a time ensures that when it stops working,
you know why.

The Iterative Approach in Implementation 266

6.21

Tip

Don’t try to anticipate ways to factor too early.

Some people wonder why most Forth systems don’t include the defini-
tion word ARRAY. This rule is the reason.

Moore:

I often have a class of things called arrays. The simplest array merely
adds a subscript to an address and gives you back an address. You
can define an array by saying

CREATE X 100 ALLOT

then saying

X +

Or you can say

: X X + ;

One of the problems that’s most frustrating for me is knowing
whether it’s worth creating a defining word for a particular data
structure. Will I have enough instances to justify it?

I rarely know in advance if I’m going to have more than one array.
So I don’t define the word ARRAY.

After I discover I need two arrays, the question is marginal.

If I need three then it’s clear. Unless they’re different. And odds
are they will be different. You may want it to fetch it for you. You
may want a byte array, or a bit array. You may want to do bounds
checking, or store its current length so you can add things to the
end.

The Iterative Approach in Implementation 267

I grit my teeth and say, “Should I make the byte array into a cell
array, just to fit the data structure into the word I already have
available?”

The more complex the problem, the less likely it will be that you’ll
find a universally applicable data structure. The number of instances
in which a truly complex data structure has found universal use is
very small. One example of a successful complex data structure is
the Forth dictionary. Very firm structure, great versatility. It’s used
everywhere in Forth. But that’s rare.

If you choose to define the word ARRAY, you’ve done a decomposition
step. You’ve factored out the concept of an array from all the words
you’ll later back in. And you’ve gone to another level of abstraction.

Building levels of abstraction is a dynamic process, not one you can
predict.

6.22

Tip

Today, make it work. Tomorrow, optimize it.

Again Moore. On the day of this interview, Moore had been com-
pleting work on the design of a board-level Forth computer, using
commercially available ICs. As part of his toolkit for designing the
board, he created a simulator in Forth, to test the board’s logic:

This morning I realized I’ve been mixing the descriptions of the chips
with the placement of the chips on the board. This is perfectly
convenient for my purposes at the moment, but when I come up
with another board that I want to use the same chips for, I have
arranged things very badly.

The Iterative Approach in Implementation 268

I should have factored it with the descriptions here and the uses
there. I would then have had a chip description language. Okay.
At the time I was doing this I was not interested in that level of
optimization.

Even if the thought had occurred to me then, I probably would have
said, “All right, I’ll do that later,” then gone right ahead with what
I was doing. Optimization wasn’t the most important thing to me
at the time.

Of course I try to factor things well. But if there doesn’t seem to
be a good way to do something, I say, “Let’s just make it work.”

My motivation isn’t laziness, it’s knowing that there are other things
coming down the pike that are going to affect this decision in ways
I can’t predict. Trying to optimize this now is foolish. Until I get
the whole picture in front of me, I can’t know what the optimum
is.

The observations in this section shouldn’t contradict what’s been said
before about information hiding and about anticipating elements that
may change. A good programmer continually tries to balance the
expense of building-in changeability against the expense of changing
things later if necessary.

These decisions take experience. But as a general rule:

6.23

Tip

Anticipate things-that-may-change by organizing information,
not by adding complexity. Add complexity only as necessary
to make the current iteration work.

The Iterative Approach in Implementation 269

Summary

In this chapter we’ve discussed various techniques and criteria for fac-
toring. We also examined how the iterative approach applies to the
implementation phase.

References

[1] W.P. Stevens, G.J. Myers, and L.L. Constantine, IBM
Systems Journal, vol. 13, no. 2, 1974, Copyright 1974 by Interna-
tional Business Machines Corporation.

[2] G.A. Miller, “The Magical Number Seven, Plus or Minus Two:
Some Limits on our Capacity for Processing Information,” Psychol.
Rev., vol. 63, pp. 81-97, Mar. 1956.

[3] Kim R. Harris, “Definition Field Address Conversion Operators,”
Forth–83 Standard, Forth Standards Team.

Summary 270

SEVEN

Handling Data:
Stacks and States

Forth handles data in one of two ways: either on the stack or in data
structures. When to use which approach and how to manage both the
stack and data structures are the topics of this chapter.

The Stylish Stack

The simplest way for Forth words to pass arguments to each other is
via the stack. The process is “simple” because all the work of pushing
and popping values to and from the stack is implicit.

Moore:

The data stack uses this idea of “hidden information.” The argu-
ments being passed between subroutines are not explicit in the call-
ing sequence. The same argument might ripple through a whole
lot of words quite invisibly, even below the level of awareness of
the programmer, simply because it doesn’t have to be referred to
explicitly.

The Stylish Stack 272

One important result of this approach: Arguments are unnamed. They
reside on the stack, not in named variables. This effect is one of the
reasons for Forth’s elegance. At the same time it’s one of the reasons
badly written Forth code can be unreadable. Let’s explore this paradox.

The invention of the stack is analogous to that of pronouns in En-
glish. Consider the passage:

Take this gift, wrap it in tissue paper and put it in a box.

Notice the word “gift” is mentioned only once. The gift is referred to
henceforth as “it.”

The informality of the “it” construct makes English more readable
(provided the reference is unambiguous). So with the stack, the im-
plicit passing of arguments makes code more readable. We emphasize
the processes, not the passing of arguments to the processes.

Our analogy to pronouns suggests why bad Forth can be so unread-
able. The spoken language gets confusing when too many things are
referred to with pronouns.

Take off the wrapping and open the box. Remove the gift and throw
it away.

The problem with this passage is that we’re using “it” to refer to too
many things at once. There are two solutions to this error. The easiest
solution is to supply a real name instead of “it”:

Remove the wrapping and open the box. Take out the gift and
throw the box away.

Or we can introduce the words “former” and “latter.” But the best
solution is to redesign the passage:

Remove the wrapping and open the present. Throw away the box.

So in Forth we have analogous observations:

The Stylish Stack 273

7.1

Tip

Simplify code by using the stack. But don’t stack too deeply
within any single definition. Redesign, or, as a last resort, use a
named variable.

Some newcomers to Forth view the stack the way a gymnast views
a trampoline: as a fun place to bounce around on. But the stack is
meant for data-passing, not acrobatics.

So how deep is “too deep?” Generally, three elements on the stack is
the most you can manage within a single definition. (In double-length
arithmetic, each “element” occupies two stack positions but is logically
treated as a single element by operators such as 2DUP, 2OVER, etc.)

In your ordinary lexicon of stack operators, ROT is the only one that
gives you access to the third stack item. Aside from PICK and ROLL
(which we’ll comment on soon), there’s no easy way to get at anything
below that.

To stretch our analogy to the limit, perhaps three elements on the
stack corresponds to the three English pronouns “this,” “that,” and
“t’other.”

Redesign

Let’s witness a case where a wrong-headed approach leads to a messy
stack problem. Suppose we’re trying to write the definition of +THRU
(see Chapter Five, “Listing Organization” section, “Relative Loading”
subsection). We’ve decided that our loop body will be

... DO I LOAD LOOP ;

that is, we’ll put LOAD in a loop, then arrange for the index and limit
to correspond to the absolute screens being loaded.

On the stack initially we have:

Redesign 274

lo hi

where “lo” and “hi” are the offsets from BLK.
We need to permute them for DO, like this:

hi+1+blk lo+blk

Our biggest problem is adding the value of BLK to both offsets.
We’ve already taken a wrong turn but we don’t know it yet. So

let’s proceed. We try:

lo hi

BLK @

lo hi blk

SWAP

lo blk hi

OVER

lo blk hi blk

+

lo blk hi+blk

1+

lo blk hi+blk+1

ROT ROT

hi+blk+1 lo blk

+

hi+blk+1 lo+blk

We made it, but what a mess!
If we’re gluttons for punishment, we might make two more stabs at

it arriving at:

BLK @ DUP ROT + 1+ ROT ROT +

and

Redesign 275

BLK @ ROT OVER + ROT ROT + 1+ SWAP

All three sequences do the same thing, but the code seems to be
getting blurrier, not better.

With experience we learn to recognize the combination ROT ROT as
a danger sign: the stack is too crowded. Without having to work out
the alternates, we recognize the problem: once we make two copies of
“blk,” we have four elements on the stack.

At this point, the first resort is usually the return stack:

BLK @ DUP >R + 1+ SWAP R> +

(See “The Stylish Return Stack,” coming up next.) Here we’ve DUPed
“blk,” saving one copy on the return stack and adding the other copy
to “hi.”

Admittedly an improvement. But readable?
Next we think, “Maybe we need a named variable.” Of course, we

have one already: BLK. So we try:

BLK @ + 1+ SWAP BLK @ +

Now it’s more readable, but it’s still rather long, and redundant too.BLK � + appears twice.
“BLK � +”? That sounds familiar. Finally our neurons connect.
We look back at the source for +LOAD just defined:

: +LOAD (offset --) BLK @ + LOAD ;

This word, +LOAD, should be doing the work. All we have to write is:

: +THRU (lo hi) 1+ SWAP DO I +LOAD LOOP ;

Redesign 276

We haven’t created a more efficient version here, because the work ofBLK � + will be done on every pass of the loop. But we have created
a cleaner, conceptually simpler, and more readable piece of code. In
this case, the inefficiency is unnoticeable because it only occurs as
each block is loaded.

Redesigning, or rethinking the problem, was the path we should
have taken as soon as things got ugly.

Local Variables

Most of the time problems can be arranged so that only a few argu-
ments are needed on the stack at any one time. Occasionally, however,
there’s nothing you can do.

Here’s an example of a worst case. Assume you have a word called
LINE which draws a line between any two points, specified as coordi-
nates in this order:

(x1 y1 x2 y2)

where x1, y1 represent the x, y coordinates for the one end-point, and
x2, y2 represent the opposite end-point.

Now you have to write a box-drawing word called [BOX] which takes
four arguments in this order:

(x1 y1 x2 y2)

where x1 y1 represent the x, y coordinates for the upper left-hand
corner of the box, and x2 y2 represent the lower right-hand corner
coordinates. Not only do you have four elements on the stack, they
each have to be referred to more than once as you draw lines from
point to point.

Although we’re using the stack to get the four arguments, the algo-
rithm for drawing a box doesn’t lend itself to the nature of the stack.
If you’re in a hurry, it would probably be best to take the easy way
out:

Local Variables 277

VARIABLE TOP (y coordinates top of box)

VARIABLE LEFT (x " left side)

VARIABLE BOTTOM (y " bottom)

VARIABLE RIGHT (x " right side)

: [BOX] (x1 y1 x2 y2) BOTTOM ! RIGHT ! TOP ! LEFT

LEFT @ TOP @ RIGHT @ TOP @ LINE

RIGHT @ TOP @ RIGHT @ BOTTOM @ LINE

RIGHT @ BOTTOM @ LEFT @ BOTTOM @ LINE

LEFT @ BOTTOM @ LEFT @ TOP @ LINE ;

What we’ve done is create four named variables, one for each coordi-
nate. The first thing [BOX] does is fill these variables with the argu-
ments from the stack. Then the four lines are drawn, referencing the
variables. Variables such as these that are used only within a definition
(or in some cases, within a lexicon) are called “local variables.”

I’ve been guilty many times of playing hotshot, trying to do as much
as possible on the stack rather than define a local variable. There are
three reasons to avoid this cockiness.

First, it’s a pain to code that way. Second, the result is unreadable.
Third, all your work becomes useless when a design change becomes
necessary, and the order of two arguments changes on the stack. TheDUPs, OVERs and ROTs weren’t really solving the problem, just jockeying
things into position.

With this third reason in mind, I recommend the following:

7.2

Tip

Especially in the design phase, keep on the stack only the argu-
ments you’re using immediately. Create local variables for any
others. (If necessary, eliminate the variables during the optimiza-
tion phase.)

Local Variables 278

Fourth, if the definition is extremely time-critical, those tricky stack
manipulators, (e.g., ROT ROT) can really eat up clock cycles. Direct
access to variables is faster.

If it’s really time-critical, you may need to convert to assembler
anyway. In this case, all your stack problems fly out the door, because
all your data will be referenced either in registers or indirectly through
registers. Luckily, the definitions with the messiest stack arguments
are often the ones written in code. Our [BOX] primitive is a case in
point. CMOVE> is another.

The approach we took with [BOX] certainly beats spending half
an hour juggling items on the stack, but it is by no means the best
solution. What’s nasty about it is the expense of creating four named
variables, headers and all, solely for use within this one routine.

(If you’re target compiling an application that will not require head-
ers in the dictionary, the only loss will be the 8 bytes in RAM for
the variables. In Forth systems of the future, headers may be sep-
arated into other pages of memory anyway; again the loss will be
only 8 bytes.) Let me repeat: This example represents a worst-case
situation, and occurs rarely in most Forth applications. If words are
well-factored, then each word is designed to do very little. Words that
do little generally require few arguments.

In this case, though, we are dealing with two points each represented
by two coordinates.

Can we change the design? First, LINE may be too primitive a
primitive. It requires four arguments because it can draw lines between
any two points, diagonally, if necessary.

In drawing our box, we may only need perfectly vertical and horizon-
tal lines. In this case we can write the more powerful, but less specific,
words VERTICAL and HORIZONTAL to draw these lines. Each requires
only three arguments: the starting position’s x and y, and the length.
This factoring of function simplifies the definition of [BOX].

Or we might discover that this syntax feels more natural to the user:

Local Variables 279

10 10 ORIGIN! 30 30 BOX

where ORIGIN! sets a two-element pointer to the “origin,” the place
where the box will start (the upper left-hand corner). Then “30 30

BOX” draws a box 30 units high and 30 units wide, relative to the
origin.

This approach reduces the number of stack arguments to BOX as
part of the design.

7.3

Tip

When determining which arguments to handle via data struc-
tures rather than via the stack, choose the arguments that are
the more permanent or that represent a current state.

On PICK and ROLL

Some folks like the words PICK and ROLL. They use these words to
access elements from any level on the stack. We don’t recommend
them. For one thing, PICK and ROLL encourage the programmer to
think of the stack as an array, which it is not. If you have so many
elements on the stack that you need PICK and ROLL, those elements
should be in an array instead.

Second, they encourage the programmer to refer to arguments that
have been left on the stack by higher-level, calling definitions with-
out being explicitly passed as arguments. This makes the definition
dependent on other definitions. That’s unstructured—and dangerous.

Finally, the position of an element on the stack depends on what’s
above it, and the number of things above it can change constantly.
For instance, if you have an address at the fourth stack position down,
you can write

4 PICK @

On PICK and ROLL 280

to fetch its contents. But you must write

(n) 5 PICK !

because with “n” on the stack, the address is now in the fifth position.
Code like this is hard to read and harder to modify.

Make Stack Drawings

When you do have a cumbersome stack situation to solve, it’s best
to work it out with paper and pencil. Some people even make up
forms, such as the one in Figure 7.1. Done formally like this (instead
of on the back of your phone bill), stack commentaries serve as nice
auxiliary documentation.

Stack Tips

7.4

Tip

Make sure that stack effects balance out under all possible con-
trol flows.

In the stack commentary for CMOVE> in Figure 7.1, the inner brace
represents the contents of the DO LOOP. The stack depth upon exiting
the loop is the same as upon entering it: one element. Within the
outer braces, the stack result of the IF clause is the same as that of
the ELSE clause: one element left over. (What that leftover element
represents doesn’t matter, as symbolized by the “x” next to THEN.)

7.5

Tip

When doing two things with the same number, perform the
function that will go underneath first.

Make Stack Drawings 281

Figure 7.1: Example of a stack commentary.

For example:

: COUNT (a -- a+1 #) DUP C@ SWAP 1+ SWAP ;

(where you first get the count) is more efficiently written:

: COUNT (a -- a+1 #) DUP 1+ SWAP C@ ;

(where you first compute the address).

Stack Tips 282

7.6

Tip

Where possible, keep the number of return arguments the same
in all possible cases.

You’ll often find a definition which does some job and, if something
goes wrong, returns an error-code identifying the problem. Here’s one
way the stack interface might be designed:

(-- error-code f | -- t)

If the flag is true, the operation was successful. If the flag is false, it
was unsuccessful and there’s another value on the stack to indicate
the nature of the error.

You’ll find stack manipulation easier, though, if you redesign the
interface to look like this:

(-- error-code | 0=no-error)

One value serves both as a flag and (in case of an error) the error code.
Note that reverse-logic is used; non-zero indicates an error. You can
use any values for the error codes except zero.

The Stylish Return Stack

What about this use of the return stack to hold temporary arguments?
Is it good style or what?

Some people take great offense to its use. But the return stack
offers the simplest solution to certain gnarly stack jams. Witness the
definition of CMOVE> in the previous section.

If you decide to use the return stack for this purpose, remember
that you are using a component of Forth for a purpose other than that

The Stylish Return Stack 283

intended. (See the section called “Sharing Components,” later in this
chapter.)

Here’s some suggestions to keep you from shooting yourself in the
foot:

7.7

Tip

1. Keep return stack operators symmetrical.

2. Keep return stack operators symmetrical under all control
flow conditions.

3. In factoring definitions, watch out that one part doesn’t
contain one return stack operator, and the other its coun-
terpart.

4. If used inside a DO LOOP, return stack operators must be
symmetrical within the loop, and I is no longer valid in
code bounded by >R and R>.

For every >R there must be a R> in the same definition. Sometimes
the operators will appear to be symmetrical, but due to the control
structure they aren’t. For instance:

... BEGIN ... >R ... WHILE ... R> ... REPEAT

If this construction is used in the outer loop of your application, ev-
erything will run fine until you exit (perhaps hours later) when you’ll
suddenly blow up. The problem? The last time through the loop, the
resolving R> has been skipped.

The Problem With Variables

Although we handle data of immediate interest on the stack, we de-
pend on much information tucked away in variables, ready for recurring

The Problem With Variables 284

access. A piece of code can change the contents of a variable without
necessarily having to know anything about how that data will be used,
who will use it, or when and if it will be used. Another piece of code
can fetch the contents of a variable and use it without knowing where
that value came from.

For every word that pushes a value onto the stack, another word
must consume that value. The stack gives us point-to-point commu-
nication, like the post office.

Variables, on the other hand, can be set by any command and
accessed any number of times—or not at all—by any command. Vari-
ables are available for anyone who cares to look—like graffiti.

Thus variables can be used to reflect the current state of affairs.
Using currentness can simplify problems. In the Roman numeral ex-

ample of Chapter Four, we used the variable COLUMN# to represent the
current decimal-place; the words ONER, FIVER, and TENER depended
on this information to determine which type of symbol to display. We
didn’t have to specify both descriptions every time, as in TENS ONER,
TENS FIVER, etc.

On the other hand, currentness adds a new level of complexity. To
make something current we must first define a variable or some type
of data structure. We also must remember to initialize it, if there’s
any chance that part of our code will refer to it before another part
has had a chance to set it.

A more serious problem with variables is that they are not “reen-
trant.” On a multi-tasked Forth system, each task which requires
local variables must have its own copies. Forth’s USER variables serve
this purpose. (See Starting Forth, Chapter Nine, “Forth Geography.”)

Even within a single task, a definition that refers to a variable is
harder to test, verify, and reuse in a different situation than one in
which arguments are passed via the stack.

Suppose we are implementing a word-processor editor. We need a
routine that calculates the number of characters between the current

The Problem With Variables 285

cursor position and the previous carriage-return/line-feed sequence. So
we write a word that employs a DO LOOP starting at the current posi-
tion (CURSOR @) and ending at the zeroth position, searching for the
line feed character.

Once the loop has found the character sequence, we subtract its
relative address from our current cursor position

its-position CURSOR @ SWAP -

to determine the distance between them.
Our word’s stack effect is:

(-- distance-to-previous-cr/lf)

But in later coding we find we need a similar word to compute the
distance from an arbitrary character—not the current cursor position—
to the first previous line-feed character. We end up factoring out
the “CURSOR @” and allowing the starting address to be passed as an
argument on the stack, resulting in:

(starting-position -- distance-to-previous-cr/lf)

By factoring-out the reference to the variable, we made the definition
more useful.

7.8

Tip

Unless it involves cluttering up the stack to the point of unread-
ability, try to pass arguments via the stack rather than pulling
them out of variables.

Kogge:

The Problem With Variables 286

Most of the modularity of Forth comes from designing and treating
Forth words as “functions” in the mathematical sense. In my experi-
ence a Forth programmer usually tries quite hard to avoid defining
any but the most essential global variables (I have a friend who has
the sign “Help stamp out variables” above his desk), and tries to
write words with what is called “referential transparency,” i.e., given
the same stack inputs a word will always give the same stack outputs
regardless of the more global context in which it is executed.

In fact this property is exactly what we use when we test words
in isolation. Words that do not have this property are significantly
harder to test. In a sense a “named variable” whose value changes
frequently is the next worst thing to the now “forbidden” GOTO.

Earlier we suggested the use of local variables especially during the
design phase, to eliminate stack traffic. It’s important to note that in
doing so, the variables were referred to only within the one definition.
In our example, [BOX] receives four arguments from the stack and
immediately loads them into local variables for its own use. The four
variables are not referred to outside of this definition, and the word
behaves safely as a function.

Programmers unaccustomed to a language in which data can be
passed implicitly don’t always utilize the stack as fully as they should.
Michael Ham suggests the reason may be that beginning Forth
users don’t trust the stack [1]. He admits to initially feeling safer
about storing values into variables than leaving them on the stack.
“No telling what might happen with all that thrashing about on the
stack,” he felt.

It took some time for him to appreciate that “if words keep properly
to themselves, using the stack only for their expected input and output
and cleaning up after themselves, they can be looked upon as sealed
systems . . . I could put the count on the stack at the beginning of
the loop, go through the complete routine for each group, and at the

The Problem With Variables 287

“Shot from a cannon on a fast-moving train, hurtling between the
blades of a windmill, and expecting to grab a trapeze dangling from
a hot-air balloon. . . I told you Ace, there were too many variables!”

end the count would emerge, back on top of the stack, not a hair out
of place.”

Local and Global Variables/Initialization

As we saw earlier, a variable that is used exclusively within a single
definition (or single lexicon), hidden from other code, is called a local
variable. A variable used by more than one lexicon is called a global
variable. As we’ve seen in an earlier chapter, a set of global variables
that collectively describe a common interface between several lexicons
is called an “interface lexicon.”

Forth makes no distinction between local and global variables. But
Forth programmers do.

Moore:

We should be writing for the reader. If something is referred to only
locally, a temporary variable just for accumulating a sum in, we
should define it locally. It’s handier to define it in the block where
it’s used, where you can see its comment.

If it’s used globally, we should collect things according to their logical
function, and define them together on a separate screen. One per
line with a comment.

The question is, where do you initialize them? Some say on the
same line, immediately following its definition. But that messes up
the comments, and there isn’t room for any decent comment. And
it scatters the initialization all over the application.

I tend to do all my initialization in the load screen. After I’ve loaded
all my blocks, I initialize the things that have to be initialized. It
might also set up color lookup tables or execute some initialization
code.

Local and Global Variables/Initialization 289

If your program is destined to be target compiled, then it’s easy to
write a word at the point that encompasses all the initialization.

It can get much more elaborate. I’ve defined variables in ROM where
the variables were all off in an array in high memory, and the initial
values are in ROM, and I copy up the initial values at initialization
time. But usually you’re only initializing a few variables to anything
other than zero.

Saving and Restoring a State

Variables have the characteristic that when you change their contents,
you clobber the value that was there before. Let’s look at some of
the problems this can create, and some of the things we can do about
them.BASE is a variable that indicates the current number radix for all
numeric input and output. The following words are commonly found
in Forth systems:

: DECIMAL 10 BASE ! ;

: HEX 16 BASE ! ;

Suppose we’ve written a word that displays a “dump” of memory. Ordi-
narily, we work in decimal mode, but we want the dump in hexadecimal.
So we write:

: DUMP (a #)

HEX ... (code for the dump) ... DECIMAL ;

This works—most of the time. But there’s a presumption that we
want to come back to decimal mode. What if it had been working
in hexadecimal, and wants to come back to hexadecimal? Before we
change the base to HEX, we have to save its current value. When we’re
done dumping, we restore it.

Saving and Restoring a State 290

This means we have to tuck away the saved value temporarily, while
we format the dump. The return stack is one place to do this:

: DUMP (a #)

BASE @ >R HEX (code for dump) R> BASE ! ;

If things get too messy, we may have to define a temporary variable:

VARIABLE OLD-BASE

: DUMP (a #)

BASE @ OLD-BASE ! HEX (code for dump)

OLD-BASE @ BASE ! ;

How quickly things get complicated.
In this situation, if both the current and the old version of a variable

belong only to your application (and not part of your system), and if
this same situation comes up more than once, apply a technique of
factoring:

: BURY (a) DUP 2+ 2 CMOVE ;

: EXHUME (a) DUP 2+ SWAP 2 CMOVE ;

Then instead of defining two variables, such as CONDITION and OLD-CONDITION
define one double-length variable:

2VARIABLE CONDITION

Use BURY and EXHUME to save and restore the original value:

: DIDDLE CONDITION BURY 17 CONDITION ! (diddle)

CONDITION EXHUME ;

BURY saves the “old” version of condition at CONDITION 2+.
You still have to be careful. Going back to our DUMP example,

suppose you decided to add the friendly feature of letting the user exit

Saving and Restoring a State 291

the dump at any time by pressing the “escape” key. So inside the loop
you build the test for a key being pressed, and if so execute QUIT. But
what happens?

The user starts in decimal, then types DUMP. He exits DUMP midway
through and finds himself, strangely, in hexadecimal.

In the simple case at hand, the best solution is to not use QUIT, but
rather a controlled exit from the loop (via LEAVE, etc.) to the end of
the definition where BASE is reset.

In very complex applications a controlled exit is often impractical,
yet many variables must somehow be restored to a natural condition.

Moore responds to this example:

You really get tied up in a knot. You’re creating problems for your-
self. If I want a hex dump I say HEX DUMP. If I want a decimal
dump I say DECIMAL DUMP. I don’t give DUMP the privilege of mess-
ing around with my environment.

There’s a philosophical choice between restoring a situation when
you finish and establishing the situation when you start. For a long
time I felt you should restore the situation when you’re finished.
And I would try to do that consistently everywhere. But it’s hard
to define “everywhere.” So now I tend to establish the state before
I start.

If I have a word which cares where things are, it had better set
them. If somebody else changes them, they don’t have to worry
about resetting them.

There are more exits than there are entrances.

In cases in which I need to do the resetting before I’m done, I’ve
found it useful to have a single word (which I call PRISTINE) to per-
form this resetting. I invoke PRISTINE:

Saving and Restoring a State 292

• at the normal exit point of the application

• at the point where the user may deliberately exit (just beforeQUIT)
• at any point where a fatal error may occur, causing an abort.

Finally, when you encounter this situation of having to save/restore
a value, make sure it’s not just a case of bad factoring. For example,
suppose we have written:

: LONG 18 #HOLES ! ;

: SHORT 9 #HOLES ! ;

: GAME #HOLES @ 0 DO I HOLE PLAY LOOP ;

The current GAME is either LONG or SHORT.
Later we decide we need a word to play any number of holes. So we

invoke GAME making sure not to clobber the current value of #HOLES:

: HOLES (n) #HOLES @ SWAP #HOLES ! GAME #HOLES ! ;

Because we needed HOLES after we’d defined GAME, it seemed to be of
greater complexity; we built HOLES around GAME. But in fact—perhaps
you see it already—rethinking is in order:

: HOLES (n) 0 DO I HOLE PLAY LOOP ;

: GAME #HOLES @ HOLES ;

We can build GAME around HOLES and avoid all this saving/restoring
nonsense.

Application Stacks

In the last section we examined some ways to save and restore a single
previous value. Some applications require several values to be saved

Application Stacks 293

and restored. You may often find the best solution to this problem in
defining your own stack.

Here is the code for a user stack including very simple error checking
(an error clears the stack):

CREATE STACK 12 ALLOT \ { 2tos-pointer | 10stack [5 cells]

HERE CONSTANT STACK>

: INIT-STACK STACK STACK ! ; INIT-STACK

: ?BAD (?) IF ." STACK ERROR " INIT-STACK ABORT THEN

: PUSH (n) 2 STACK +! STACK @ DUP STACK> = ?BAD !

: POP (-- n) STACK @ @ -2 STACK +! STACK @ STACK < ?BAD

The word PUSH takes a value from off of your data stack and “pushes”
it onto this new stack. POP is the opposite, “popping” a value from
off the new stack, and onto Forth’s data stack.

In a real application you might want to change the names PUSH and
POP to better match their conceptual purposes.

Sharing Components

7.9

Tip

It’s legal to use a component for an additional purpose besides
its intended one, provided:

1. All uses of the component are mutually exclusive

2. Each interrupting use of the component restores the com-
ponent to its previous state when finished.

Otherwise you need an additional component or level of com-
plexity.

Sharing Components 294

We’ve seen a simple example of this principle with the return stack.
The return stack is a component of the Forth system designed to hold
return addresses, and thereby serve as an indication of where you’ve
been and where you’re going. To use the return stack as a holder for
temporary values is possible, and in many cases desirable. Problems
occur when one of the above restrictions is ignored.

In my text formatter the output can go invisible. This feature has
two purposes:

1. for looking ahead to see whether something will fit, and

2. for formatting the table of contents (the entire document is
formatted and page numbers are calculated without anything
actually being displayed).

It was tempting to think that once having added the ability to make
the output invisible, I could use this feature to serve both purposes.
Unfortunately, the two purposes are not mutually exclusive.

Let’s see what would happen if I tried to violate this rule. Imagine
that the word DISPLAY does the output, and it’s smart enough to know
whether to be visible or invisible. The words VISIBLE and INVISIBLE

set the state respectively.
My code for looking ahead will first execute INVISIBLE, then test-

format the upcoming text to determine its length, and finally execute
VISIBLE to restore things to the normal state.

This works fine.
Later I add the table-of-contents feature. First the code executes

INVISIBLE, then runs through the document determining page num-
bers etc.; then finally executes VISIBLE to restore things to normal.

The catch? Suppose I’m running a table of contents and I hit one
of those places where I look ahead. When I finish looking ahead, I
execute VISIBLE. Suddenly I start printing the document when I was
supposed to be running the table of contents.

The solution? There are several.

Sharing Components 295

One solution views the problem as being that the lookahead code
is clobbering the visible/invisible flag, which may have been preset by
table-of-contents. Therefore, the lookahead code should be responsi-
ble for saving, and later restoring, the flag.

Another solution involves keeping two separate variables—one to
indicate we’re looking ahead, the other to indicate we’re printing the
table of contents. The word DISPLAY requires that both flags be false
in order to actually display anything.

There are two ways to accomplish the latter approach, depending
on how you want to decompose the problem. First, we could nest one
condition within the other:

: [DISPLAY] ...

(the original definition, always does the output) ...

VARIABLE ’LOOKAHEAD? (t=looking-ahead)

: <DISPLAY> ’LOOKAHEAD? @ NOT IF [DISPLAY] THEN ;

VARIABLE ’TOC? (t=setting-table-of-contents)

: DISPLAY ’TOC? @ NOT IF <DISPLAY> THEN ;

DISPLAY checks that we’re not setting the table of contents and in-
vokes <DISPLAY>, which in turn checks that we’re not looking ahead
and invokes [DISPLAY].

In the development cycle, the word [DISPLAY] that always does
the output was originally called DISPLAY. Then a new DISPLAY was
defined to include the lookahead check, and the original definition
was renamed [DISPLAY], thus adding a level of complexity backward
without changing any of the code that used DISPLAY.

Finally, when the table-of-contents feature was added, a new DISPLAY

was defined to include the table-of-contents check, and the previous
DISPLAY was renamed <DISPLAY>.

That’s one approach to the use of two variables. Another is to
include both tests within a single word:

: DISPLAY ’LOOKAHEAD? @ ’TOC @ OR NOT IF [DISPLAY] THEN

Sharing Components 296

But in this particular case, yet another approach can simplify the whole
mess. We can use a single variable not as a flag, but as a counter.

We define:

VARIABLE ’INVISIBLE? (t=invisible)

: DISPLAY ’INVISIBLE? @ 0= IF [DISPLAY] THEN ;

: INVISIBLE 1 ’INVISIBLE? +! ;

: VISIBLE -1 ’INVISIBLE? +! ;

The lookahead code begins by invoking INVISIBLE which bumps the
counter up one. Non-zero is “true,” so DISPLAY will not do the output.
After the lookahead, the code invokes VISIBLE which decrements the
counter back to zero (“false”).

The table-of-contents code also begins with VISIBLE and ends with
INVISIBLE. If we’re running the table of contents while we come upon
a lookahead, the second invocation of VISIBLE raises the counter to
two.

The subsequent invocation of INVISIBLE decrements the counter
to one, so we’re still invisible, and will remain invisible until the table
of contents has been run.

(Note that we must substitute 0= for NOT. The ’83 Standard has
changed NOT to mean one’s complement, so that 1 NOT yields true.
By the way, I think this was a mistake.)

This use of a counter may be dangerous, however. It requires parity
of command usage: two VISIBLEs yields invisible. That is, unless
VISIBLE clips the counter:

: VISIBLE ’INVISIBLE? @ 1- 0 MAX ’INVISIBLE? ! ;

The State Table

A single variable can express a single condition, either a flag, a value,
or the address of a function.

The State Table 297

A collection of conditions together represent the state of the appli-
cation or of a particular component [2]. Some applications require the
ability to save a current state, then later restore it, or perhaps to have
a number of alternating states.

7.10

Tip

When the application requires handling a group of conditions
simultaneously, use a state table, not separate variables.

The simple case requires saving and restoring a state. Suppose we
initially have six variables representing the state of a particular com-
ponent, as shown in Figure 7.2.

Figure 7.2: A collection of related variables.

VARIABLE TOP

VARIABLE BOTTOM

VARIABLE LEFT

VARIABLE RIGHT

VARIABLE INSIDE

VARIABLE OUT

Now suppose that we need to save all of them, so that further process-
ing can take place, and later restore all of them. We could define:

: @STATE (-- top bottom left right inside out)

TOP @ BOTTOM @ LEFT @ RIGHT @ INSIDE @ OUT @ ;

: !STATE (top bottom left right inside out --)

OUT ! INSIDE ! RIGHT ! LEFT ! BOTTOM ! TOP ! ;

thereby saving all the values on the stack until it’s time to restore
them. Or, we might define alternate variables for each of the variables
above, in which to save each value separately.

The State Table 298

But a preferred technique involves creating a table, with each ele-
ment of the table referred to by name. Then creating a second table
of the same length. As you can see in Figure 7.3, we can save the
state by copying the table, called POINTERS, into the second table,
called SAVED.

Figure 7.3: Conceptual model for saving a state table.

We’ve implemented this approach with the code in Figure 7.4.
Notice in this implementation that the names of the pointers, TOP,

BOTTOM, etc., always return the same address. There is only one
location used to represent the current value of any state at any time.

Also notice that we define POINTERS (the name of the table) with
CONSTANT, not with CREATE, using a dummy value of zero. This is
because we refer to POINTERS in the defining word POSITION, but it’s
not until after we’ve defined all the field names that we know how big
the table must be and can actually ALLOT it.

As soon as we create the field names, we define the size of the table
as a constant /POINTERS. At last we reserve room for the table itself,
patching its beginning address (HERE) into the constant POINTERS.
(The word >BODY converts the address returned by tick into the address
of the constant’s value.) Thus POINTERS returns the address of the
table allotted later, just as a name defined by CREATE returns the
address of a table allotted directly below the name’s header.

Although it’s valid to patch the value of a CONSTANT at compile
time, as we do here, there is a restriction of style:

The State Table 299

Figure 7.4: Implementation of save/restorable state table.

0 CONSTANT POINTERS \ address of state table PATCHED LATER

: POSITION (o -- o+2) CREATE DUP , 2+

DOES> (-- a) @ POINTERS + ;

0 \ initial offset

POSITION TOP

POSITION BOTTOM

POSITION LEFT

POSITION RIGHT

POSITION INSIDE

POSITION OUT

CONSTANT /POINTERS \ final computed offset

HERE ’ POINTERS >BODY ! /POINTERS ALLOT \ real table

CREATE SAVED /POINTERS ALLOT \ saving place

: SAVE POINTERS SAVED /POINTERS CMOVE ;

: RESTORE SAVED POINTERS /POINTERS CMOVE ;

7.11

Tip

A CONSTANT’s value should never be changed once the applica-
tion is compiled.

The case of alternating states is slightly more involved. In this situation
we need to alternate back and forth between two (or more) states,
never clobbering the conditions in each state when we jump to the
other state. Figure 7.5 shows the conceptual model for this kind of
state table.

The State Table 300

Figure 7.5: Conceptual model for alternating-states tables.

In this model, the names TOP, BOTTOM, etc., can be made to point
into either of two tables, REAL or PSEUDO. By making the REAL table
the current one, all the pointer names reference addresses in the REAL
table; by making the PSEUDO table current, they address the PSEUDO

table.
The code in Figure 7.6 implements this alternating states mecha-

nism. The words WORKING and PRETENDING change the pointer ap-
propriately. For instance:

WORKING

10 TOP !

TOP ? 10

PRETENDING

20 TOP !

TOP ? 20

WORKING

TOP ? 10

PRETENDING

TOP ? 20

The major difference with this latter approach is that names go through
an extra level of indirection (POINTERS has been changed from a con-
stant to a colon definition). The field names can be made to point to
either of two state tables. Thus each name has slightly more work to

The State Table 301

Figure 7.6: Implementation of alternating-states mechanism.

VARIABLE ’POINTERS \ pointer to state table

: POINTERS (-- adr of current table) ’POINTERS @ ;

: POSITION (o -- o+2) CREATE DUP , 2+

DOES> (-- a) @ POINTERS + ;

0 \ initial offset

POSITION TOP

POSITION BOTTOM

POSITION LEFT

POSITION RIGHT

POSITION INSIDE

POSITION OUT

CONSTANT /POINTERS \ final computed offset

CREATE REAL /POINTERS ALLOT \ real state table

CREATE PSEUDO /POINTERS ALLOT \ temporary state table

: WORKING REAL ’POINTERS ! ; WORKING

: PRETENDING PSEUDO ’POINTERS ! ;

do. Also, in the former approach the names refer to fixed locations; aCMOVE is required each time we save or restore the values. In this ap-
proach, we have only to change a single pointer to change the current
table.

Vectored Execution

Vectored execution extends the ideas of currentness and indirection
beyond data, to functions. Just as we can save values and flags in
variables, we can also save functions, because functions can be referred
to by address.

Vectored Execution 302

The traditional techniques for implementing vectored execution are
described in Starting Forth, Chapter Nine. In this section we’ll discuss
a new syntax which I invented and which I think can be used in many
circumstances more elegantly than the traditional methods.

The syntax is called DOER/MAKE. (If your system doesn’t include
these words, refer to Appendix B for code and implementation de-
tails.) It works like this: You define the word whose behavior will be
vectorable with the defining word DOER, as in

DOER PLATFORM

Initially, the new word PLATFORM does nothing. Then you can write
words that change what PLATFORM does by using the word MAKE:
: LEFTWING MAKE PLATFORM ." proponent " ;

: RIGHTWING MAKE PLATFORM ." opponent " ;

When you invoke LEFTWING, the phrase MAKE PLATFORM changes what
PLATFORM will do. Now if you type PLATFORM, you’ll see:

LEFTWING ok

PLATFORM proponent ok

RIGHTWING will make PLATFORM display “opponent.” You can use
PLATFORM within another definition:

: SLOGAN ." Our candidate is a longstanding " PLATFORM

." of heavy taxation for business. " ;

The statement

LEFTWING SLOGAN

will display one campaign statement, while

Vectored Execution 303

RIGHTWING SLOGAN

will display another.
The “MAKE” code can be any Forth code, as much or as long as you

want; just remember to conclude it with semicolon. The semicolon
at the end of LEFTWING serves for both LEFTWING and for the bit of
code after MAKE. When MAKE redirects execution of the DOER word, it
also stops execution of the word in which it appears.

When you invoke LEFTWING, for example, MAKE redirects PLATFORM
and exits. Invoking LEFTWING does not cause “proponent” to be
printed. Figure 7.7 demonstrates this point, using a conceptualized
illustration of the dictionary.

If you want to continue execution, you can use the word ;AND in
place of semicolon. ;AND terminates the code that the DOER word
points to, and resumes execution of the definition in which it appears,
as you can see in Figure 7.8.

Finally, you can chain the “making” of DOER words in series by not
using ;AND. Figure 7.9 explains this better than I could write about it.

Using DOER/MAKE

There are many occasions when the DOER/MAKE construct proves ben-
eficial. They are:

1. To change the state of a function (when external testing of the
state is not necessary). The words LEFTWING and RIGHTWING

change the state of the word PLATFORM.

2. To factor out internal phrases from similar definitions, but within
control structures such as loops.

Consider the definition of a word called DUMP, designed to reveal
the contents of a specified region of memory.

Using DOER/MAKE 304

Figure 7.7: DOER and MAKE.

DOER JOE ok

JOE

Creates a DOER word called JOE, that does nothing.

: TEST MAKE JOE 1 . ; ok

JOE

TEST MAKE JOE 1 . ;

Defines a new word called TEST

TEST ok

JOE

TEST MAKE JOE 1 . ;

MAKE redirects JOE so that it points to the code after MAKE

JOE, and stops execution of the rest of TEST.

JOE 1 ok

Executes the code that JOE points to (1 .).

: DUMP (a #)

0 DO I 16 MOD 0= IF CR DUP I + 5 U.R 2 SPACES

DUP I + � 6 U.R 2 +LOOP DROP ;

Using DOER/MAKE 305

The problem arises when you write a definition called CDUMP,
designed to format the output according to bytes, not cells:

: CDUMP (a #)

0 DO I 16 MOD 0= IF CR DUP I + 5 U.R 2 SPACES

DUP I + C� 4 U.R LOOP DROP ;

The code within these two definitions is identical except for the
fragments in boldface. But factoring is difficult because the
fragments occur inside the DO LOOP.
Here’s a solution to this problem, using DOER/MAKE. The code
that changes has been replaced with the word .UNIT, whose
behavior is vectored by the code in DUMP and CDUMP. (Recognize
that “1 +LOOP” has the same effect as “LOOP”.)
DOER .UNIT (a -- increment) \ display byte or cell

: <DUMP> (a #)

0 DO I 16 MOD 0= IF CR DUP I + 5 U.R 2 SPACES

DUP I + .UNIT +LOOP DROP ;

: DUMP (a #) MAKE .UNIT @ 6 U.R 2 ;AND <DUMP> ;

: CDUMP (a #) MAKE .UNIT C@ 4 U.R 1 ;AND <DUMP> ;

Notice how DUMP and CDUMP set-up the vector, then go on to
execute the shell (the word <DUMP>).

3. To change the state of related functions by invoking a single
command. For instance:

DOER TYPE’

DOER EMIT’

DOER SPACES’

DOER CR’

: VISIBLE MAKE TYPE’ TYPE ;AND

MAKE EMIT’ EMIT ;AND

MAKE SPACES’ SPACES ;AND

Using DOER/MAKE 306

MAKE CR’ CR ;

: INVISIBLE MAKE TYPE’ 2DROP ;AND

MAKE EMIT’ DROP ;AND

MAKE SPACES’ DROP ;AND

MAKE CR’ ;

Here we’ve defined a vectorable set of output words, each name
having a “prime” mark at the end. VISIBLE sets them to their
expected functions. INVISIBLE makes them no-ops, eating up
the arguments that would normally be passed to them. Say
INVISIBLE and any words defined in terms of these four output
operators will not produce any output.

4. To change the state for the next occurrence only, then change
the state (or reset it) again.

Suppose we’re writing an adventure game. When the player first
arrives at a particular room, the game will display a detailed
description. If the player returns to the same room later, the
game will show a shorter message.

We write:

DOER ANNOUNCE

: LONG MAKE ANNOUNCE

CR ." You’re in a large hall with a huge throne"

CR ." covered with a red velvet canopy."

MAKE ANNOUNCE

CR ." You’re in the throne room." ;

The word ANNOUNCE will display either message. First we say
LONG, to initialize ANNOUNCE to the long message. Now we can
test ANNOUNCE, and find that it prints the long message. Having
done that, however, it continues to “make” ANNOUNCE display
the short message.

Using DOER/MAKE 307

If we test ANNOUNCE a second time, it prints the short message.
And it will for ever more, until we say LONG again.

In effect we’re queuing behaviors. We can queue any number of
behaviors, letting each one set the next. The following example
(though not terribly practical) illustrates the point.

DOER WHERE

VARIABLE SHIRT

VARIABLE PANTS

VARIABLE DRESSER

VARIABLE CAR

: ORDER \ specify search order

MAKE WHERE SHIRT MAKE WHERE PANTS

MAKE WHERE DRESSER MAKE WHERE CAR

MAKE WHERE 0 ;

: HUNT (-- a|0) \ find location containing 17

ORDER 5 0 DO WHERE DUP 0= OVER @ 17 = OR IF

LEAVE ELSE DROP THEN LOOP ;

In this code we’ve created a list of variables, then defined an
ORDER in which they are to be searched. The word HUNT looks
through each of them, looking for the first one that contains a
17. HUNT returns either the address of the correct variable, or a
zero if none have the value.

It does this by simply executing WHERE five times. Each time,
WHERE returns a different address, as defined in ORDER, then
finally zero.

We can even define a DOER word that toggles its own behavior
endlessly:

DOER SPEECH

: ALTERNATE

Using DOER/MAKE 308

BEGIN MAKE SPEECH ." HELLO "

MAKE SPEECH ." GOODBYE "

0 UNTIL ;

5. To implement a forward reference. A forward reference is usu-
ally needed as a “hook,” that is, a word invoked in a low-level
definition but reserved for use by a component defined later in
the listing.

To implement a forward reference, build the header of the word
with DOER, before invoking its name.

DOER STILL-UNDEFINED

Later in the listing, use MAKE;

MAKE STILL-UNDEFINED ALL THAT JAZZ ;

(Remember, MAKE can be used outside a colon definition.)

6. Recursion, direct or indirect.

Direct recursion occurs when a word invokes itself. A good exam-
ple is the recursive definition of greatest-common-denominator:

GCD of a, b = a if b = 0

GCD of b, a mod b if b > 0

This translates nicely into:

DOER GCD (a b -- gcd)

MAKE GCD ?DUP IF DUP ROT ROT MOD GCD THEN ;

Indirect recursion occurs when one word invokes a second word,
while the second word invokes the first. This can be done using
the form:

Using DOER/MAKE 309

DOER B

: A ... B ... ;

MAKE B ... A ... ;

7. Debugging. I often define:

DOER SNAP

(short for SNAPSHOT), then edit SNAP into my application at a
point where I want to see what’s going on. For instance, with
SNAP invoked inside the main loop of a keystroke interpreter,
I can set it up to let me watch what’s happening to a data
structure as I enter keys. And I can change what SNAP does
without having to recompile the loop.

The situations in which it’s preferable to use the tick-and-execute
approach are those in which you need control over the address of the
vector, such as when vectoring through an element in a decision table,
or attempting to save/restore the contents of the vector.

Summary

In this chapter we’ve examined the tradeoffs between using the stack
and using variables and other data structures. Using the stack is
preferable for testing and reusability, but too many values manipulated
on the stack by a single definition hurts readability and writeability.

We also explored techniques for saving and restoring data structures,
and concluded with a study of vectored execution using DOER/MAKE.

References

[1] Michael Ham, “Why Novices Use So Many Variables,” Forth
Dimensions, vol. 5, no. 4, November/December 1983.

Summary 310

[2] Daniel Slater, “A State Space Approach to Robotics,” The
Journal of Forth Application and Research, 1, 1 (September 1983),
17.

References 311

Figure 7.8: Multiple MAKEs in parallel using ;AND.

DOER SAM ok
DOER BIFF ok

SAM BIFF

Creates two DOER words that do nothing.

: TESTB MAKE SAM 2 . ;AND MAKE BIFF 3 . ; ok

TESTB MAKE SAM 2 . ;AND MAKE BIFF 3 . ;

Defines a new word called TESTB.

TESTB ok

SAM BIFF

TESTB MAKE SAM 2 . ;AND MAKE BIFF 3 . ;

The first MAKE redirects SAM so that it points to the code after
it. . .

SAM BIFF
CONTINUE

TESTB MAKE SAM 2 . ;AND MAKE BIFF 3 . ;

The ;AND continues execution of TESTB. The second MAKE

redirects BIFF.

SAM 2 ok
BIFF 3 ok

Two DOER words have been redirected at the same time by the

Figure 7.9: Multiple MAKEs in series.

: TESTC MAKE JOE 4 . MAKE JOE 5 . ; ok

TESTC MAKE JOE 4 . MAKE JOE 5 . ;

Defines a new word called TESTC.

TESTC ok

JOE

TESTC MAKE JOE 4 . MAKE JOE 5 . ;

MAKE redirects JOE to the code after MAKE JOE.

JOE 4 ok

TESTC MAKE JOE 4 . MAKE JOE 5 . ;

Executes the code that JOE points to (4 . MAKE etc.).

JOE

TESTC MAKE JOE 4 . MAKE JOE 5 . ;

After execution of 4 . the second MAKE redirects JOE to point
to the five. (There was no ;AND to stop it.).

JOE 5 ok

TESTC MAKE JOE 4 . MAKE JOE 5 . ;

Typing JOE a second time executes the new code pointed to by
JOE (5 .). Here the pointer will stay.

EIGHT

Minimizing
Control Structures

Control structures aren’t as important in Forth as they are in other lan-
guages. Forth programmers tend to write very complex applications in
terms of short words, without much emphasis on IF THEN constructs.

There are several techniques for minimizing control structures. They
include:

• computing or calculating

• hiding conditionals through re-factoring

• using structured exits

• vectoring

• redesigning.

In this chapter we’ll examine these techniques for simplifying and elim-
inating control structures from your code.

What’s So Bad about Control Structures?

Before we begin reeling off our list of tips, let’s pause to examine why
conditionals should be avoided in the first place.

What’s So Bad about Control Structures? 315

The use of conditional structures adds complexity to your code. The
more complex your code is, the harder it will be for you to read and to
maintain. The more parts a machine has, the greater are its chances
of breaking down. And the harder it is for someone to fix.

Moore tells this story:

I recently went back to a company we had done some work for
several years ago. They called me in because their program is now
five years old, and it’s gotten very complicated. They’ve had pro-
grammers going in and patching things, adding state variables and
conditionals. Every statement that I recall being a simple thing five
years ago, now has gotten very complicated. “If this, else if this,
else if this” . . . and then the simple thing.

Reading that statement now, it’s impossible for me to figure out
what it’s doing and why. I’d have to remember what each vari-
able indicated, why it was relevant in this case, and then what was
happening as a consequence of it—or not happening.

It started innocently. They had a special case they needed to worry
about. To handle that special case, they put a conditional in one
place. Then they discovered that they also needed one here, and
here. And then a few more. Each incremental step only added a
little confusion to the program. Since they were the programmers,
they were right on top of it.

The net result was disastrous. In the end they had half a dozen
flags. Test this one, reset it, set that one, and so on. As a result of
this condition, you knew you had other conditions coming up you
had to look out for. They created the logical equivalent of spaghetti
code in spite of the opportunity for a structured program.

The complexity went far beyond what they had ever intended. But
they’d committed themselves to going down this path, and they

What’s So Bad about Control Structures? 316

missed the simple solution that would have made it all unnecessary—
having two words instead of one. You either say GO or you say
PRETEND.

In most applications there are remarkably few times when you need
to test the condition. For instance in a video game, you don’t really
say “If he presses Button A, then do this; if he presses Button B,
then do something else.” You don’t go through that kind of logic.

If he presses the button, you do something. What you do is associ-
ated with the button, not with the logic.

Conditionals aren’t bad in themselves—they are an essential con-
struct. But a program with a lot of conditionals is clumsy and
unreadable. All you can do is question each one. Every conditional
should cause you to ask, “What am I doing wrong?”

What you’re trying to do with the conditional can be done in a
different way. The long-term consequences of the different way are
preferable to the long-term consequences of the conditional.

Before we introduce some detailed techniques, let’s look at three ap-
proaches to the use of conditionals in a particular example. Figure 8.1,
Figure 8.2, and Figure 8.3 illustrate three versions of a design for an
automatic teller machine.

The first example comes straight out of the School for Structured
Programmers. The logic of the application depends on the correct
nesting of IF statements.

Easy to read? Tell me under what condition the user’s card gets
eaten. To answer, you have to either count ELSEs from the bottom
and match them with the same number of IFs from the top, or use a
straightedge.

The second version, Figure 8.2, shows the improvement that using
many small, named procedures can have on readability. The user’s
card is eaten if the owner is not valid.

What’s So Bad about Control Structures? 317

Figure 8.1: The structured approach.

AUTOMATIC-TELLER

IF card is valid DO
IF card owner is valid DO

IF request withdrawal DO
IF authorization code is valid DO

query for amount
IF request ≤ current balance DO

IF withdrawal ≤ available cash DO
vend currency
debit account

ELSE
message
terminate session

ELSE
message
terminate session

ELSE
message
terminate session

ELSE
IF authorization code is valid DO

query for amount
accept envelope through hatch
credit account

ELSE
message
terminate session

ELSE
eat card

ELSE
message

END

But even with this improvement, the design of each word depends
completely on the sequence in which the tests must be performed.

What’s So Bad about Control Structures? 318

Figure 8.2: Nesting conditionals within named procedures.

AUTOMATIC-TELLER

PROCEDURE READ-CARD
IF card is readable THEN CHECK-OWNER

ELSE eject card END

PROCEDURE CHECK-OWNER
IF owner is valid THEN CHECK-CODE

ELSE eat card END

PROCEDURE CHECK-CODE
IF code entered matches owner THEN TRANSACT

ELSE message, terminate session END

PROCEDURE TRANSACT
IF requests withdrawal THEN WITHDRAW

ELSE DEPOSIT END

PROCEDURE WITHDRAW
Query
If request ≤ current balance THEN DISBURSE END

PROCEDURE DISBURSE
IF disbursement ≤ available cash THEN

vend currency
debit account

ELSE message END

PROCEDURE DEPOSIT
accept envelope
credit account

The supposedly “highest” level procedure is burdened with eliminating
the worst-case, most trivial kind of event. And each test becomes
responsible for invoking the next test.

What’s So Bad about Control Structures? 319

The third version comes closest to the promise of Forth. The highest
level word expresses exactly what’s happening conceptually, showing
only the main path. Each of the subordinate words has its own error
exit, not cluttering the reading of the main word. One test does not
have to invoke the next test.

Also TRANSACT is designed around the fact that the user will make
requests by pressing buttons on a keypad. No conditions are neces-
sary. One button will initiate a withdrawal, another a deposit. This
approach readily accommodates design changes later, such as the ad-
dition of a feature to transfer funds. (And this approach does not
thereby become dependent on hardware. Details of the interface to
the keypad may be hidden within the keypad lexicon, READ-BUTTON
and BUTTON.)

Of course, Forth will allow you to take any of the three approaches.
Which do you prefer?

How to Eliminate Control Structures

In this section we’ll study numerous techniques for simplifying or avoid-
ing conditionals. Most of them will produce code that is more readable,
more maintainable, and more efficient. Some of the techniques pro-
duce code that is more efficient, but not always as readable. Remem-
ber, therefore: Not all of the tips will be applicable in all situations.

Using the Dictionary

8.1

Tip

Give each function its own definition.

By using the Forth dictionary properly, we’re not actually eliminating
conditionals; we’re merely factoring them out from our application

How to Eliminate Control Structures 320

code. The Forth dictionary is a giant string case statement. The
match and execute functions are hidden within the Forth system.

Moore:

In my accounting package, if you receive a check from somebody,
you type the amount, the check number, the word FROM, and the
person’s name:

200.00 127 FROM ALLIED

The word FROM takes care of that situation. If you want to bill
someone, you type the amount, the invoice number, the word BILL

and the person’s name:

1000.00 280 BILL TECHNITECH

. . . One word for each situation. The dictionary is making the deci-
sion.

This notion pervades Forth itself. To add a pair of single-length num-
bers we use the command +. To add a pair of double-length numbers
we use the command D+. A less efficient, more complex approach
would be a single command that somehow “knows” which type of
numbers are being added.

Forth is efficient because all these words—FROM and BILL and + and
D+—can be implemented without any need for testing and branching.

8.2

Tip

Use dumb words.

This isn’t advice for TV writers. It’s another instance of using the dic-
tionary. A “dumb” word is one that is not state-dependent, but instead,
has the same behavior all the time (“referentially transparent”).

Using the Dictionary 321

A dumb word is unambiguous, and therefore, more trustworthy.
A few common Forth words have been the source of controversy

recently over this issue. One such word is ." which prints a string. In
its simplest form, it’s allowed only inside a colon definition:

: TEST ." THIS IS A STRING " ;

Actually, this version of the word does not print a string. It compiles
a string, along with the address of another definition that does the
printing at run time.

This is the dumb version of the word. If you use it outside a colon
definition, it will uselessly compile the string, not at all what a beginner
might expect.

To solve this problem, the FIG model added a test inside ." that
determined whether the system was currently compiling or interpreting.
In the first case, ." would compile the string and the address of the
primitives; in the second case it would TYPE it.
." became two completely different words housed together in one

definition with an IF ELSE THEN structure. The flag that indicates
whether Forth is compiling or interpreting is called STATE. Since the
." depends on STATE, it is said to be “STATE-dependent,” literally.

The command appeared to behave the same inside and outside a
colon definition. This duplicity proved useful in afternoon introduc-
tions to Forth, but the serious student soon learned there’s more to it
than that.

Suppose a student wants to write a new word called B." (for “bright-
dot-quote”) to display a string in bright characters on her display, to
be used like this:

." INSERT DISK IN " B." LEFT " ." DRIVE "

She might expect to define B." as

: B." BRIGHT ." NORMAL ;

Using the Dictionary 322

that is, change the video mode to bright, print the string, then reset
the mode to normal.

She tries it. Immediately the illusion is destroyed; the deception is
revealed; the definition won’t work.

To solve her problem, the programmer will have to study the defini-
tion of (.") in her own system. I’m not going to get sidetracked here
with explaining how (.") works—my point is that smartness isn’t all
it appears to be.

Incidentally, there’s a different syntactical approach to our student’s
problem, one that does not require having two separate words, ." and
B." to print strings. Change the system’s (.") so that it always
sets the mode to normal after typing, even though it will already be
normal most of the time. With this syntax, the programmer need
merely precede the emphasized string with the simple word BRIGHT.

." INSERT DISK IN " BRIGHT ." LEFT " ." DRIVE "

The ’83 Standard now specifies a dumb ." and, for those cases where
an interpretive version is wanted, the new word .(has been added.
Happily, in this new standard we’re using the dictionary to make a
decision by having two separate words.

The word ’ (tick) has a similar history. It was STATE-dependent
in fig-Forth, and is now dumb in the ’83 Standard. Tick shares with
dot-quote the characteristic that a programmer might want to reuse
either of these words in a higher-level definition and have them behave
in the same way they do normally.

8.3

Tip

Words should not depend on STATE if a programmer might ever
want to invoke them from within a higher-level definition and
expect them to behave as they do interpretively.

Using the Dictionary 323

ASCII works well as a STATE-dependent word, and so does MAKE. (See
Appendix C.)

Nesting and Combining Conditionals

8.4

Tip

Don’t test for something that has already been excluded.

Take this example, please:

: PROCESS-KEY

KEY DUP LEFT-ARROW = IF CURSOR-LEFT THEN

DUP RIGHT-ARROW = IF CURSOR-RIGHT THEN

DUP UP-ARROW = IF CURSOR-UP THEN

DOWN-ARROW = IF CURSOR-DOWN THEN ;

This version is inefficient because all four tests must be made regardless
of the outcome of any of them. If the key pressed was the left-arrow
key, there’s no need to check if it was some other key.

Instead, you can nest the conditionals, like this:

: PROCESS-KEY

KEY DUP LEFT-ARROW = IF CURSOR-LEFT ELSE

DUP RIGHT-ARROW = IF CURSOR-RIGHT ELSE

DUP UP-ARROW = IF CURSOR-UP ELSE

CURSOR-DOWN

THEN THEN THEN DROP ;

8.5

Tip

Combine booleans of similar weight.

Nesting and Combining Conditionals 324

Many instances of doubly-nested IF THEN structures can be simpli-
fied by combining the flags with logical operators before making the
decision. Here’s a doubly-nested test:

: ?PLAY SATURDAY? IF WORK FINISHED? IF

GO PARTY THEN THEN ;

The above code uses nested IFs to make sure that it’s both Saturday
and the chores are done before it boogies on down. Instead, let’s
combine the conditions logically and make a single decision:

: ?PLAY SATURDAY? WORK FINISHED? AND IF

GO PARTY THEN ;

It’s simpler and more readable.
The logical “or” situation, when implemented with IF THENs, is

even clumsier:

: ?RISE PHONE RINGS? IF UP GET THEN

ALARM-CLOCK RINGS? IF UP GET THEN ;

This is much more elegantly written as

: ?RISE PHONE RINGS? ALARM RINGS? OR IF UP GET THEN ;

One exception to this rule arises when the speed penalty for checking
some of the conditions is too great.

We might write

: ?CHOW-MEIN BEAN-SPROUTS? CHOW-MEIN RECIPE? AND IF

CHOW-MEIN PREPARE THEN ;

But suppose it’s going to take us a long time to hunt through our
recipe file to see if there’s anything on chow mein. Obviously there’s
no point in undertaking the search if we have no bean sprouts in the
fridge. It would be more efficient to write

Nesting and Combining Conditionals 325

: ?CHOW-MEIN BEAN-SPROUTS? IF CHOW-MEIN RECIPE? IF

CHOW-MEIN PREPARE THEN THEN ;

We don’t bother looking for the recipe if there are no sprouts.
Another exception arises if any term is probably not true. By elimi-

nating such a condition first, you avoid having to try the other condi-
tions.

8.6

Tip

When multiple conditions have dissimilar weights (in likelihood
or calculation time) nest conditionals with the term that is least
likely to be true or easiest to calculate on the outside.

Trying to improve performance in this way is more difficult with the
OR construct. For instance, in the definition

: ?RISE PHONE RINGS? ALARM RINGS? OR IF UP GET THEN ;

we’re testing for the phone and the alarm, even though only one of
them needs to ring for us to get up. Now suppose it were much more
difficult to determine that the alarm clock was ringing. We could write

: ?RISE PHONE RINGS? IF UP GET ELSE

ALARM-CLOCK RINGS? IF UP GET THEN THEN ;

If the first condition is true, we don’t waste time evaluating the second.
We have to get up to answer the phone anyway.

The repetition of UP GET is ugly—not nearly as readable as the
solution using OR—but in some cases desirable.

Nesting and Combining Conditionals 326

Choosing Control Structures

8.7

Tip

The most elegant code is that which most closely matches the
problem. Choose the control structure that most closely matches
the control-flow problem.

Case Statements

A particular class of problem involves selecting one of several possible
paths of execution according to a numeric argument. For instance, we
want the word .SUIT to take a number representing a suit of playing
cards, 0 through 3, and display the name of the suit. We might define
this word using nested IF ELSE THENs, like this:

: .SUIT (suit --)

DUP 0= IF ." HEARTS " ELSE

DUP 1 = IF ." SPADES " ELSE

DUP 2 = IF ." DIAMONDS " ELSE

." CLUBS "

THEN THEN THEN DROP ;

We can solve this problem more elegantly by using a “case statement.”
Here’s the same definition, rewritten using the “Eaker case state-

ment” format, named after Dr. Charles E. Eaker, the gentleman
who proposed it [1].

: .SUIT (suit --)

CASE

0 OF ." HEARTS " ENDOF

1 OF ." SPADES " ENDOF

2 OF ." DIAMONDS " ENDOF

3 OF ." CLUBS " ENDOF ENDCASE ;

Choosing Control Structures 327

The case statement’s value lies exclusively in its readability and write-
ability. There’s no efficiency improvement either in object memory or
in execution speed. In fact, the case statement compiles much the
same code as the nested IF THEN statements. A case statement is a
good example of compile-time factoring.

Should all Forth systems include such a case statement? That’s a
matter of controversy. The problem is twofold. First, the instances
in which a case statement is actually needed are rare—rare enough to
question its value. If there are only a few cases, a nested IF ELSETHEN construct will work as well, though perhaps not as readably. If
there are many cases, a decision table is more flexible.

Second, many case-like problems are not quite appropriate for the
case structure. The Eaker case statement assumes that you’re test-
ing for equality against a number on the stack. In the instance of
.SUIT, we have contiguous integers from zero to three. It’s more effi-
cient to use the integer to calculate an offset and directly jump to the
right code.

In the case of our Tiny Editor, later in this chapter, we have not
one, but two, dimensions of possibilities. The case statement doesn’t
match that problem either.

Personally, I consider the case statement an elegant solution to a
misguided problem: attempting an algorithmic expression of what is
more aptly described in a decision table.

A case statement ought to be part of the application when useful,
but not part of the system.

Looping Structures

The right looping structure can eliminate extra conditionals.

Moore:

Many times conditionals are used to get out of loops. That partic-
ular use can be avoided by having loops with multiple exit points.

Choosing Control Structures 328

This is a live topic, because of the multiple WHILE construct which
is in polyForth but hasn’t percolated up to Forth ’83. It’s a simple
way of defining multiple WHILEs in the same REPEAT.
Also Dean Sanderson [of Forth, Inc.] has invented a new con-
struct that introduces two exit points to a DO LOOP. Given that con-
struction you’ll have fewer tests. Very often I leave a truth value on
the stack, and if I’m leaving a loop early, I change the truth value
to remind myself that I left the loop early. Then later I’ll have anIF to see whether I left the loop early, and it’s just clumsy.

Once you’ve made a decision, you shouldn’t have to make it again.
With the proper looping constructs you won’t need to remember
where you came from, so more conditionals will go away.

This is not completely popular because it’s rather unstructured. Or
perhaps it is elaborately structured. The value is that you get sim-
pler programs. And it costs nothing.

Indeed, this is a live topic. As of this writing it’s too early to make any
specific proposals for new loop constructs. Check your system’s docu-
mentation to see what it offers in the way of exotic looping structures.
Or, depending on the needs of your application, consider adding your
own conditional constructs. It’s not that hard in Forth.

I’m not even sure whether this use of multiple exits doesn’t violate
the doctrine of structured programming. In a BEGIN WHILE REPEAT
loop with multiple WHILEs, all the exits bring you to a common “con-
tinue” point: the REPEAT. But with Sanderson’s construct, you can
exit the loop by jumping past the end of the loop, continuing at anELSE. There are two possible “continue” points.

This is “less structured,” if we can be permitted to say that. And yet
the definition will always conclude at its semicolon and return to the
word that invoked it. In that sense it is well-structured; the module
has one entry point and one exit point.

Choosing Control Structures 329

When you want to execute special code only if you did not leave the
loop prematurely, this approach seems the most natural structure to
use. (We’ll see an example of this in a later section, “Using Structured
Exits.”)

8.8

Tip

Favor counts over terminators.

Forth handles strings by saving the length of the string in the first byte.
This makes it easier to type, move, or do practically anything with the
string. With the address and count on the stack, the definition ofTYPE can be coded:

: TYPE (a #) OVER + SWAP DO I C@ EMIT LOOP ;

(Although TYPE really ought to be written in machine code.)
This definition uses no overt conditional. LOOP actually hides the

conditional since each loop checks the index and returns to DO if it
has not yet reached the limit.

If a delimiter were used, let’s say ASCII null (zero), the definition
would have to be written:

: TYPE (a) BEGIN DUP C@ ?DUP WHILE EMIT 1+

REPEAT DROP ;

An extra test is needed on each pass of the loop. (WHILE is a condi-
tional operator.)

Optimization note: The use of ?DUP in this solution is expensive
in terms of time because it contains an extra decision itself. A faster
definition would be:

: TYPE (a) BEGIN DUP C@ DUP WHILE EMIT 1+

REPEAT 2DROP ;

Choosing Control Structures 330

The ’83 Standard applied this principle to INTERPRET which now ac-
cepts a count rather than looking for a terminator.

The flip side of this coin is certain data structures in which it’s
easiest to link the structures together. Each record points to the next
(or previous) record. The last (or first) record in the chain can be
indicated with a zero in its link field.

If you have a link field, you have to fetch it anyway. You might
as well test for zero. You don’t need to keep a counter of how many
records there are. If you decrement a counter to decide whether to ter-
minate, you’re making more work for yourself. (This is the technique
used to implement Forth’s dictionary as a linked list.)

Calculating Results

8.9

Tip

Don’t decide, calculate.

Many times conditional control structures are applied mistakenly to
situations in which the difference in outcome results from a difference
in numbers. If numbers are involved, we can calculate them. (In
Chapter Four see the section called “Calculations vs. Data Structures
vs. Logic.”)

8.10

Tip

Use booleans as hybrid values.

This is a fascinating corollary to the previous tip, “Don’t decide, cal-
culate.” The idea is that booleans, which the computer represents as
numbers, can efficiently be used to effect numeric decisions. Here’s
one example, found in many Forth systems:

Choosing Control Structures 331

: S>D (n -- d) \ sign extend s to d

DUP O< IF -1 ELSE 0 THEN ;

(The purpose of this definition is to convert a single-length number to
double-length. A double-length number is represented as two 16-bit
values on the stack, the high-order part on top. Converting a positive
integer to double-length merely means adding a zero onto the stack,
to represent its high-order part. But converting a negative integer to
double-length requires “sign extension;” that is, the high-order part
should be all ones.)

The above definition tests whether the single-length number is neg-
ative. If so, it pushes a negative one onto the stack; otherwise a zero.
But notice that the outcome is merely arithmetic; there’s no change
in process. We can take advantage of this fact by using the boolean
itself:

: S>D (n -- d) \ sign extend s to d

DUP O< ;

This version pushes a zero or negative one onto the stack without a
moment’s (in)decision.

(In pre-1983 systems, the definition would be:

: S>D (n -- d) \ sign extend s to d

DUP O< NEGATE ;

See Appendix C.)

We can do even more with “hybrid values”:

8.11

Tip

To effect a decision with a numeric outcome, use AND.
Choosing Control Structures 332

In the case of a decision that produces either zero or a non-zero “n,”
the traditional phrase

(?) IF n ELSE 0 THEN

is equivalent to the simpler statement

(?) n AND

Again, the secret is that “true” is represented by −1 (all ones) in ’83
Forth systems. ANDing “n” with the flag will either produce “n” (all
bits intact) or “0” (all bits cleared).

To restate with an example:

(?) IF 200 ELSE 0 THEN

is the same as

(?) 200 AND

Take a look at this example:

n a b < IF 45 + THEN

This phrase either adds 45 to “n” or doesn’t, depending on the relative
sizes of “a” and “b.” Since “adding 45 or not” is the same as “adding
45 or adding 0,” the difference between the two outcomes is purely
numeric. We can rid ourselves of a decision, and simply compute:

n a b < 45 AND +

Moore:

Choosing Control Structures 333

The “45 AND” is faster than the IF, and certainly more graceful.
It’s simpler. If you form a habit of looking for instances where
you’re calculating this value from that value, then usually by doing
arithmetic on the logic you get the same result more cleanly.

I don’t know what you call this. It has no terminology; it’s merely
doing arithmetic with truth values. But it’s perfectly valid, and
someday boolean algebra and arithmetic expressions will accommo-
date it.

In books you often see a lot of piece-wise linear approximations that
fail to express things clearly. For instance the expression

x = 0 for t < 0

x = 1 for t ≥ 0

This would be equivalent to

t O< 1 AND

as a single expression, not a piece-wise expression.

I call these flags “hybrid values” because they are booleans (truth
values) being applied as data (numeric values). Also, I don’t know
what else to call them.

We can eliminate numeric ELSE clauses as well (where both results
are non-zero), by factoring out the difference between the two results.
For instance,

: STEPPERS ’TESTING? @ IF 150 ELSE 151 THEN LOAD ;

can be simplified to

: STEPPERS 150 ’TESTING? @ 1 AND + LOAD ;

This approach works here because conceptually we want to either load
Screen 150, or if testing, the next screen past it.

Choosing Control Structures 334

A Note on Tricks

This sort of approach is often labeled a “trick.” In the computing
industry at large, tricks have a bad reputation.

A trick is simply taking advantage of certain properties of operation.
Tricks are used widely in engineering applications. Chimneys eliminate
smoke by taking advantage of the fact that heat rises. Automobile tires
provide traction by taking advantage of gravity.

Arithmetic Logic Units (ALUs) take advantage of the fact that sub-
tracting a number is the same as adding its two’s complement.

These tricks allow simpler, more efficient designs. What justifies
their use is that the assumptions are certain to remain true.

The use of tricks becomes dangerous when a trick depends on some-
thing likely to change, or when the thing it depends on is not protected
by information hiding.

Also, tricks become difficult to read when the assumptions on which
they’re based aren’t understood or explained. In the case of replacing
conditionals with AND, once this technique becomes part of every pro-
grammer’s vocabulary, code can become more readable. In the case
of a trick that is specific to a specific application, such as the order in
which data are arranged in a table, the listing must clearly document
the assumption used by the trick.

8.12

Tip

Use MIN and MAX for clipping.

Suppose we want to decrement the contents of the variable VALUE,
but we don’t want the value to go below zero:

-1 VALUE +! VALUE @ -1 = IF 0 VALUE ! THEN

This is more simply written:

A Note on Tricks 335

VALUE @ 1- 0 MAX VALUE !

In this case the conditional is factored within the word MAX.
Using Decision Tables

8.13

Tip

Use decision tables.

We introduced these in Chapter Two. A decision table is a structure
that contains either data (a “data table”) or addresses of functions
(a “function table”) arranged according to any number of dimensions.
Each dimension represents all the possible, mutually exclusive states
of a particular aspect of the problem. At the intersection of the “true”
states of each dimension lies the desired element: the piece of data or
the function to be performed.

A decision table is clearly a better choice than a conditional structure
when the problem has multiple dimensions.

One-Dimensional Data Table

Here’s an example of a simple, one-dimensional data table. Our appli-
cation has a flag called ’FREEWAY? which is true when we’re referring
to freeways, false when we’re referring to city streets.

Let’s construct the word SPEED-LIMIT, which returns the speed
limit depending on the current state. Using IF THEN we would write:

: SPEED-LIMIT (-- speed-limit)

’FREEWAY? @ IF 55 ELSE 25 THEN ;

We might eliminate the IF THEN by using a hybrid value with AND:
: SPEED-LIMIT 25 ’FREEWAY? @ 30 AND + ;

Using Decision Tables 336

But this approach doesn’t match our conceptual model of the problem
and therefore isn’t very readable.

Let’s try a data table. This is a one-dimensional table, with only
two elements, so there’s not much to it:

CREATE LIMITS 25 , 55 ,

The word SPEED-LIMIT? now must apply the boolean to offset into
the data table:

: SPEED-LIMIT (-- speed-limit)

LIMITS ’FREEWAY? @ 2 AND + @ ;

Have we gained anything over the IF THEN approach? Probably not,
with so simple a problem.

What we have done, though, is to factor out the decision-making
process from the data itself. This becomes more cost-effective when we
have more than one set of data related to the same decision. Suppose
we also had

CREATE #LANES 4 , 10 ,

representing the number of lanes on a city street and on a freeway.
We can use identical code to compute the current number of lanes:

: #LANES? (-- #lanes)

#LANES ’FREEWAY? @ 2 AND + @ ;

Applying techniques of factoring, we simplify this to:

: ROAD (for-freeway for-city) CREATE , ,

DOES> (-- data) ’FREEWAY? @ 2 AND + @ ;

55 25 ROAD SPEED-LIMIT?

10 4 ROAD #LANES?

Another example of the one-dimensional data table is the “superstring”
(Starting Forth, Chapter Ten).

Using Decision Tables 337

Two-Dimensional Data Table

In Chapter Two we presented a phone-rate problem. Figure 8.4 gives
one solution to the problem, using a two-dimensional data structure.

In this problem, each dimension of the data table consists of three
mutually exclusive states. Therefore a simple boolean (true/false)
is inadequate. Each dimension of this problem is implemented in a
different way.

The current rate, which depends on the time of day, is stored as an
address, representing one of the three rate-structure sub-tables. We
can say

FULL RATE !

or

LOWER RATE !

etc.
The current charge, either first minute, additional minute, or per

mile, is expressed as an offset into the table (0, 2, or 4).
An optimization note: we’ve implemented the two-dimensional table

as a set of three one-dimensional tables, each pointed to by RATE. This
approach eliminates the need for a multiplication that would otherwise
be needed to implement a two-dimensional structure. The multiplica-
tion can be prohibitively slow in certain cases.

Two-Dimensional Decision Table

We’ll hark back to our Tiny Editor example in Chapter Three to illus-
trate a two-dimensional decision table.

In Figure 8.5 we’re constructing a table of functions to be performed
when various keys are pressed. The effect is similar to that of a case
statement, but there are two modes, Normal Mode and Insert Mode.
Each key has a different behavior depending on the current mode.

The first screen implements the change of the modes. If we invoke

Using Decision Tables 338

NORMAL MODE# !

we’ll go into Normal Mode.

INSERTING MODE# !

enters Inserting Mode.
The next screen constructs the function table, called FUNCTIONS.

The table consists of the ASCII value of a key followed by the address
of the routine to be performed when in Normal Mode, followed by the
address of the routine to be performed when in Insert Mode, when
that key is pressed. Then comes the second key, followed by the next
pair of addresses, and so on.

In the third screen, the word ’FUNCTION takes a key value, searches
through the FUNCTIONS table for a match, then returns the address
of the cell containing the match. (We preset the variable MATCHED to
point to the last row of the table—the functions we want when any
character is pressed.)

The word ACTION invokes ’FUNCTION, then adds the contents of
the variable MODE#. Since MODE# will contain either a 2 or a 4, by
adding this offset we’re now pointing into the table at the address of
the routine we want to perform. A simple

@ EXECUTE

will perform the routine (or �EXECUTE if you have it).
In fig-Forth, change the definition of IS to:

: IS [COMPILE] ’ CFA , ;

In 79-Standard Forths, use:

: IS [COMPILE] ’ , ;

We’ve also used non-redundancy at compile time in the definition just
below the function table:

Using Decision Tables 339

HERE /KEY - CONSTANT ’NOMATCH \ adr of no-match key

We’re making a constant out of the last row in the function table. (At
the moment we invoke HERE, it’s pointing to the next free cell after
the last table entry has been filled in. Six bytes back is the last row.)
We now have two words:

FUNCTIONS (adr of beginning of function table)

’NOMATCH (adr of "no-match" row; these are the

routines for any key not in the table)

We use these names to supply the addresses passed to DO:
’NOMATCH FUNCTION DO

to set up a loop that runs from the first row of the table to the last.
We don’t have to know how many rows lie in the table. We could even
delete a row or add a row to the table, without having to change any
other piece of code, even the code that searches through the table.

Similarly the constant /KEY hides information about the number of
columns in the table.

Incidentally, the approach to ’FUNCTION taken in the listing is a
quick-and-dirty one; it uses a local variable to simplify stack manipu-
lation. A simpler solution that uses no local variable is:

: ’FUNCTION (key -- adr of match)

’NOMATCH SWAP ’NOMATCH FUNCTIONS DO DUP

I @ = IF SWAP DROP I SWAP LEAVE THEN

/KEY +LOOP DROP ;

(We’ll offer still another solution later in this chapter, under “Using
Structured Exits.”)

Using Decision Tables 340

Decision Tables for Speed

We’ve stated that if you can calculate a value instead of looking it up
in a table, you should do so. The exception is where the requirements
for speed justify the extra complexity of a table.

Here is an example that computes powers of two to 8-bit precision:

CREATE TWOS

1 C, 2 C, 4 C, 8 C, 16 C, 32 C,

: 2** (n -- 2-to-the-n)

TWOS + C@ ;

Instead of computing the answer by multiplying two times itself “n”
times, the answers are all pre-computed and placed in a table. We
can use simple addition to offset into the table and get the answer.

In general, addition is much faster than multiplication.

Moore provides another example:

If you want to compute trig functions, say for a graphics display, you
don’t need much resolution. A seven-bit trig function is probably
plenty. A table look-up of 128 numbers is faster than anything else
you’re going to be able to do. For low-frequency function calcula-
tions, decision tables are great.

But if you have to interpolate, you have to calculate a function
anyway. You’re probably better off calculating a slightly more com-
plicated function and avoiding the table lookup.

Redesigning

8.14

Tip

One change at the bottom can save ten decisions at the top.

Decision Tables for Speed 341

In our interview with Moore at the beginning of the chapter, he
mentioned that much conditional testing could have been eliminated
from an application if it had been redesigned so that there were two
words instead of one: “You either say GO or you say PRETEND.”

It’s easier to perform a simple, consistent algorithm while changing
the context of your environment than to choose from several algo-
rithms while keeping a fixed environment.

Recall from Chapter One our example of the word APPLES. This
was originally defined as a variable; it was referred to many times
throughout the application by words that incremented the number of
apples (when shipments arrive), decremented the number (when apples
are sold), and checked the current number (for inventory control).

When it became necessary to handle a second type of apples, the
wrong approach would have been to add that complexity to all the
shipment/sales/inventory words. The right approach was the one we
took: to add the complexity “at the bottom”; that is, to APPLES itself.

This principle can be realized in many ways. In Chapter Seven
(under “The State Table”) we used state tables to implement the words
WORKING and PRETENDING, which changed the meaning of a group of
variables. Later in that chapter, we used vectored execution to define
VISIBLE and INVISIBLE, to change the meanings of TYPE’, EMIT’,
SPACES’ and CR’ and thereby easily change all the formatting code
that uses them.

8.15

Tip

Don’t test for something that can’t possibly happen.

Many contemporary programmers are error-checking-happy.
There’s no need for a function to check an argument passed by

another component in the system. The calling program should bear
the responsibility for not exceeding the limits of the called component.

Redesigning 342

8.16

Tip

Reexamine the algorithm.

Moore:

A lot of conditionals arise from fuzzy thinking about the problem.
In servo-control theory, a lot of people think that the algorithm for
the servo ought to be different when the distance is great than when
it is close. Far away, you’re in slew mode; closer to the target you’re
in decelerate mode; very close you’re in hunt mode. You have to
test how far you are to know which algorithm to apply.

I’ve worked out a non-linear servo-control algorithm that will handle
full range. This approach eliminates the glitches at the transitioning
points between one mode and the other. It eliminates the logic
necessary to decide which algorithm to use. It eliminates your having
to empirically determine the transition points. And of course, you
have a much simpler program with one algorithm instead of three.

Instead of trying to get rid of conditionals, you’re best to question
the underlying theory that led to the conditionals.

8.17

Tip

Avoid the need for special handling.

One example we mentioned earlier in the book: if you keep the user
out of trouble you won’t have to continually test whether the user has
gotten into trouble.

Moore:

Redesigning 343

Another good example is writing assemblers. Very often, even
though an opcode may not have a register associated with it, pre-
tending that it has a register—say, Register 0—might simplify the
code. Doing arithmetic by introducing bit patterns that needn’t ex-
ist simplifies the solution. Just substitute zeros and keep on doing
arithmetic that you might have avoided by testing for zero and not
doing it.

It’s another instance of the “don’t care.” If you don’t care, then give
it a dummy value and use it anyway.

Anytime you run into a special case, try to find an algorithm for which
the special case becomes a normal case.

8.18

Tip

Use properties of the component.

A well-designed component—hardware or software—will let you im-
plement a corresponding lexicon in a clean, efficient manner. The
character graphics set from the old Epson MX-80 printer (although
now obsolete) illustrates the point well. Figure 8.6 shows the graphics
characters produced by the ASCII codes 160 to 223.

Each graphics character is a different combination of six tiny boxes,
either filled in or left blank. Suppose in our application we want to use
these characters to create a design. For each character, we know what
we want in each of the six positions—we must produce the appropriate
ASCII character for the printer.

A little bit of looking will tell you there’s a very sensible pattern
involved. Assuming we have a six-byte table in which each byte repre-
sents a pixel in the pattern:

Redesigning 344

PIXELS 0 1
2 3
4 5

and assuming that each byte contains hex FF if the pixel is “on;” zero if
it is “off,” then here’s how little code it takes to compute the character:

CREATE PIXELS 6 ALLOT

: PIXEL (i -- a) PIXELS + ;

: CHARACTER (-- graphics character)

160 6 0 DO I PIXEL C@ I 2** AND + LOOP ;

(We introduced 2** a few tips back.)
No decisions are necessary in the definition of CHARACTER. The

graphics character is simply computed.
Note: to use the same algorithm to translate a set of six adjoining

pixels in a large grid, we can merely redefine PIXEL. That’s an example
of adding indirection backwards, and of good decomposition.

Unfortunately, external components are not always designed well.
For instance, The IBM Personal Computer uses a similar scheme for
graphics characters on its video display, but without any discernible
correspondence between the ASCII values and the pattern of pixels.
The only way to produce the ASCII value is by matching patterns in
a lookup table.

Moore:

The 68000 assembler is another example you can break your heart
over, looking for a good way to express those op-codes with the
minimal number of operators. All the evidence suggests there is
no good solution. The people who designed the 68000 didn’t have
assemblers in mind. And they could have made things a lot easier,
at no cost to themselves.

Redesigning 345

By using properties of a component in this way, your code becomes
dependent on those properties and thus on the component itself. This
is excusable, though, because all the dependent code is confined to a
single lexicon, which can easily be changed if necessary.

Using Structured Exits

8.19

Tip

Use the structured exit.

In the chapter on factoring we demonstrated the possibility of factoring
out a control structure using this technique:

: CONDITIONALLY A B OR C AND IF NOT R> DROP THEN ;

: ACTIVE CONDITIONALLY TUMBLE JUGGLE JUMP ;

: LAZY CONDITIONALLY SIT EAT SLEEP ;

Forth allows us to alter the control flow by directly manipulating the
return stack. (If in doubt, see Starting Forth, Chapter Nine.) Indis-
creet application of this trick can lead to unstructured code with nasty
side effects. But the disciplined use of the structured exit can actually
simplify code, and thereby improve readability and maintainability.

Moore:

More and more I’ve come to favor R> DROP to alter the flow of
control. It’s similar to the effect of an ABORT", which has an IFTHEN built in it. But that’s only one IF THEN in the system, not at
every error.

I either abort or I don’t abort. If I don’t abort, I continue. If I do
abort, I don’t have to thread my way through the path. I short-
circuit the whole thing.

Using Structured Exits 346

The alternative is burdening the rest of the application with checking
whether an error occurred. That’s an inconvenience.

The “abort route” circumvents the normal paths of control flow un-
der special conditions. Forth provides this capability with the wordsABORT" and QUIT.

The “structured exit” extends the concept by allowing the immediate
termination of a single word, without quitting the entire application.

This technique should not be confused with the use of GOTO, which
is unstructured to the extreme. With GOTO you can go anywhere, in-
side or outside the current module. With this technique, you effectively
jump directly to the final exit point of the module (the semicolon) and
resume execution of the calling word. The word EXIT terminates the
definition in which the word appears. The phrase R> DROP terminates
the definition that called the definition in which the phrase appears;
thus it has the same effect but can be used one level down. Here are
some examples of both approaches.

If you have an IF ELSE THEN phrase in which no code follows THEN,
like this:

... HUNGRY? IF EAT-IT ELSE FREEZE-IT THEN ;

you can eliminate ELSE by using EXIT:
... HUNGRY? IF EAT-IT EXIT THEN FREEZE-IT ;

(If the condition is true, we eat and run; EXIT acts like a semicolon.
If the condition is false, we skip to THEN and FREEZE-IT.)

The use of EXIT here is more efficient, saving two bytes and extra
code to perform, but it is not as readable.

Moore comments on the value, and danger, of this technique:

Using Structured Exits 347

Especially if your conditionals are getting elaborate, it’s handy to
jump out in the middle without having to match all your THENs at
the end. In one application I had a word that went like this:

: TESTING

SIMPLE 1CONDITION IF ... EXIT THEN

2CONDITION IF ... EXIT THEN

3CONDITION IF ... EXIT THEN ;

SIMPLE handled the simple cases. SIMPLE ended up with R> DROP.
These other conditions were the more complex ones.

Everyone exited at the same point without having to painfully match
all the IFs, ELSEs, and THENs. The final result, if none of the
conditions matched, was an error condition.

It was bad code, difficult to debug. But it reflected the nature of
the problem. There wasn’t any better scheme to handle it. TheEXIT and R> DROP at least kept things manageable.

Programmers sometimes also use EXIT to get out of a complicatedBEGIN loop in a graceful way. Or we might use a related technique in
the DO LOOP that we wrote for ’FUNCTION in our Tiny Editor, earlier
in this chapter. In this word, we are searching through a series of
locations looking for a match. If we find a match, we want to return
the address where we found it; if we don’t find a match, we want the
address of the last row of the functions table.

We can introduce the word LEAP (see Appendix C), which will work
like EXIT (it will simulate a semicolon). Now we can write:

: ’FUNCTION (key -- adr-of-match)

’NOMATCH FUNCTIONS DO DUP I @ = IF DROP I LEAP

THEN /KEY +LOOP DROP ’NOMATCH ;

Using Structured Exits 348

If we find a match we LEAP, not to +LOOP, but right out of the defini-
tion, leaving I (the address at which we found it) on the stack. If we
don’t find a match, we fall through the loop and execute

DROP ’NOMATCH

which drops the key# being searched for, then leaves the address of
the last row!

As we’ve seen, there may be times when a premature exit is appro-
priate, even multiple exit points and multiple “continue” points.

Remember though, this use of EXIT and R> DROP is not consistent
with structured programming in the strictest sense, and requires great
care.

For instance, you may have a value on the stack at the beginning
of a definition which is consumed at the end. A premature EXIT will
leave the unwanted value on the stack.

Fooling with the return stack is like playing with fire. You can get
burned. But how convenient it is to have fire.

Employing Good Timing

8.20

Tip

Take the action when you know you need to, not later.

Any time you set a flag, ask yourself why you’re setting it. If the
answer is, “So I’ll know to do such-and-such later,” then ask yourself
if you can do such-and-such now. A little restructuring can greatly
simplify your design.

8.21

Tip

Don’t put off till run time what you can compile today.

Employing Good Timing 349

Any time you can make a decision prior to compiling an application,
do.

Suppose you had two versions of an array: one that did bounds
checking for your protection during development and one that ran
faster, though unprotected for the actual application.

Keep the two versions in different screens. When you compile your
application, load only the version you need.

By the way, if you follow this suggestion, you may go crazy editing
parentheses in and out of your load blocks to change which version
gets loaded each time. Instead, write throw-away definitions that make
the decisions for you. For instance (as already previewed in another
context):

: STEPPERS 150 ’TESTING? @ 1 AND + LOAD ;

8.22

TipDUP a flag, don’t recreate it.

Sometimes you need a flag to indicate whether or not a previous piece
of code was invoked. The following definition leaves a flag which
indicates that DO-IT was done:

: DID-I? (-- t=I-did)

SHOULD-I? IF DO-IT TRUE ELSE FALSE THEN ;

This can be simplified to:

: DID-I? (-- t=I-did)

SHOULD-I? DUP IF DO-IT THEN ;

8.23

Tip

Don’t set a flag, set the data.

Employing Good Timing 350

If the only purpose to setting a flag is so that later some code can
decide between one number and another, you’re better off saving the
number itself.

The “colors” example in Chapter Six’s section called “Factoring Cri-
teria” illustrates this point.

The purpose of the word LIGHT is to set a flag which indicates
whether we want the intensity bit to be set or not. While we could
have written

: LIGHT TRUE ’LIGHT? ! ;

to set the flag, and

’LIGHT? @ IF 8 OR THEN ...

to use the flag, this approach is not quite as simple as putting the
intensity bit-mask itself in the variable:

: LIGHT 8 ’LIGHT? ! ;

and then simply writing

’LIGHT? @ OR ...

to use it.

8.24

Tip

Don’t set a flag, set the function. (Vector.)

This tip is similar to the previous one, and lives under the same restric-
tion. If the only purpose to setting a flag is so that later some code
can decide between one function and another, you’re better off saving
the address of the function itself.

For instance, the code for transmitting a character to a printer is
different than for slapping a character onto a video display. A poor
implementation would define:

Employing Good Timing 351

VARIABLE DEVICE (0=video | 1=printer)

: VIDEO FALSE DEVICE ! ;

: PRINTER TRUE DEVICE ! ;

: TYPE (a # --) DEVICE @ IF

(...code for printer...) ELSE

(...code for video...) THEN ;

This is bad because you’re deciding which function to perform every
time you type a string.

A preferable implementation would use vectored execution. For in-
stance:

DOER TYPE (a # --)

: VIDEO MAKE TYPE (...code for video...) ;

: PRINTER MAKE TYPE (...code for printer...) ;

This is better because TYPE doesn’t have to decide which code to use,
it already knows.

(On a multi-tasked system, the printer and monitor tasks would
each have their own copies of an execution vector for TYPE stored in
a user variable.)

The above example also illustrates the limitation of this tip. In our
second version, we have no simple way of knowing whether our current
device is the printer or the video screen. We might need to know, for
instance, to decide whether to clear the screen or issue a formfeed.
Then we’re making an additional use of the state, and our rule no
longer applies.

A flag would, in fact, allow the simplest implementation of addi-
tional state-dependent operations. In the case of TYPE, however, we’re
concerned about speed. We type strings so often, we can’t afford to
waste time doing it. The best solution here might be to set the func-
tion of TYPE and also set a flag:

Employing Good Timing 352

DOER TYPE

: VIDEO 0 DEVICE ! MAKE TYPE

(...code for video...) ;

: PRINTER 1 DEVICE ! MAKE TYPE

(...code for printer...) ;

Thus TYPE already knows which code to execute, but other definitions
will refer to the flag.

Another possibility is to write a word that fetches the parameter of
the DOER word TYPE (the pointer to the current code) and compares
it against the address of PRINTER. If it’s less than the address of
PRINTER, we’re using the VIDEO routine; otherwise we’re using the
PRINTER routine.

If changing the state involves changing a small number of functions,
you can still use DOER/MAKE. Here are definitions of three memory-
move operators that can be shut off together.

DOER !’ (vectorable !)

DOER CMOVE’ (vectorable CMOVE)

DOER FILL’ (vectorable FILL)

: STORING MAKE !’ ! ;AND

MAKE CMOVE’ CMOVE ;AND

MAKE FILL’ FILL ;

: -STORING MAKE !’ 2DROP ;AND

MAKE CMOVE’ 2DROP DROP ;AND

MAKE FILL’ 2DROP DROP ;

But if a large number of functions need to be vectored, a state table
would be preferable.

A corollary to this rule introduces the “structured exit hook,” a DOER
word vectored to perform a structured exit.

DOER HESITATE (the exit hook)

: DISSOLVE HESITATE FILE-DIVORCE ;

Employing Good Timing 353

(. . . Much later in the listing:)

: RELENT MAKE HESITATE SEND-FLOWERS R> DROP ;

By default, HESITATE does nothing. If we invoke DISSOLVE, we’ll end
up in court. But if we RELENT before we DISSOLVE, we’ll send flowers,
then jump clear to the semicolon, canceling that court order before
our partner ever finds out.

This approach is especially appropriate when the cancellation must
be performed by a function defined much later in the listing (decom-
position by sequential complexity). Increased complexity of the earlier
code is limited solely to defining the hook and invoking it at the right
spot.

Simplifying

I’ve saved this tip for last because it exemplifies the rewards of opt-
ing for simplicity. While other tips concern maintainability, perfor-
mance, compactness, etc., this tip relates to the sort of satisfaction
that Thoreau sought at Walden Pond.

8.25

Tip

Try to avoid altogether saving flags in memory.

A flag on the stack is quite different from a flag in memory. Flags
on the stack can simply be determined (by reading the hardware, cal-
culating, or whatever), pushed onto the stack, then consumed by the
control structure. A short life with no complications.

But save a flag in memory and watch what happens. In addition to
having the flag itself, you now have the complexity of a location for
the flag. The location must be:

• created

Simplifying 354

• initialized (even before anything actually changes)

• reset (otherwise, passing a flag to a command leaves the flag in
that current state).

Because flags in memory are variables, they are not reentrant.
An example of a case in which we might reconsider the need for a

flag is one we’ve seen several times already. In our “colors” example
we made the assumption that the best syntax would be:

LIGHT BLUE

that is, the adjective LIGHT preceding the color. Fine. But remember
the code to implement that version? Compare it with the simplicity
of this approach:

0 CONSTANT BLACK 1 CONSTANT BLUE 2 CONSTANT GREEN

3 CONSTANT CYAN 4 CONSTANT RED 5 CONSTANT MAGENTA

6 CONSTANT BROWN 7 CONSTANT GRAY

: LIGHT (color -- color) 8 OR ;

In this version we’ve reversed the syntax, so that we now say

BLUE LIGHT

We establish the color, then we modify the color.
We’ve eliminated the need for a variable, for code to fetch from the

variable and more code to reset the variable when we’re done. And
the code is so simple it’s impossible not to understand.

When I first wrote these commands, I took the English-like approach.
“BLUE LIGHT” sounded backwards, not at all acceptable. That was
before my conversations with Chuck Moore.

Simplifying 355

Moore’s philosophy is persuasive:

I would distinguish between reading nicely in English and reading
nicely. In other languages such as Spanish, adjectives follow nouns.
We should be independent of details like which language we’re think-
ing in.

It depends on your intention: simplicity, or emulation of English.
English is not such a superb language that we should follow it slav-
ishly.

If I were selling my “colors” words in a package for graphic artists, I
would take the trouble to create the flag. But writing these words for
my own use, if I had to do it over again, I’d favor the Moore-ish
influence, and use “BLUE LIGHT.”

Summary

The use of logic and conditionals as a significant structural element
in programming leads to overly-complicated, difficult-to-maintain, and
inefficient code. In this chapter we’ve discussed several ways to mini-
mize, optimize or eliminate unnecessary conditional structures.

As a final note, Forth’s downplaying of conditionals is not shared by
most contemporary languages. In fact, the Japanese are basing their
fifth-generation computer project on a language called PROLOG—for
PROgramming in LOGic—in which one programs entirely in logic. It
will be interesting to see the battle-lines forming as we ponder the
question:

To IF or not to IF
In this book we’ve covered the first six steps of the software devel-
opment cycle, exploring both the philosophical questions of designing

Summary 356

software and practical considerations of implementing robust, efficient,
readable software.

We have not discussed optimization, validation, debugging, doc-
umenting, project management, Forth development tools, assembler
definitions, uses and abuses of recursion, developing multiprogrammed
applications, or target compilation.

But that’s another story.

References

[1] Charles Eaker, “Just in Case,” Forth Dimensions II/3, p. 37.

For Further Thinking

Define the word DIRECTION, which returns either 1, −1, or 0, depend-
ing on whether the input argument is non-zero positive, negative, or
zero, respectively.

References 357

Figure 8.3: Refactoring and/or eliminating conditionals.

AUTOMATIC-TELLER

: RUN
READ-CARD CHECK-OWNER CHECK-CODE TRANSACT ;

: READ-CARD
valid code sequence NOT readable IF eject card QUIT

THEN ;

: CHECK-OWNER
owner is NOT valid IF eat card QUIT THEN ;

: CHECK-CODE
code entered MISmatches owner’s code IF message QUIT

THEN ;

: READ-BUTTON (-- adr-of-button’s-function)
(device-dependent primitive) ;

: TRANSACT
READ-BUTTON EXECUTE ;

1 BUTTON WITHDRAW

2 BUTTON DEPOSIT

: WITHDRAW
Query
request ≤ current balance IF DISBURSE THEN ;

: DISBURSE
disbursement ≤ available cash IF

vend currency
debit account

ELSE message THEN ;

: DEPOSIT
accept envelope
credit account ;

Figure 8.4: A solution to the phone rate problem.

Screen # 103
0 \ Telephone rates 03/30/84
1 CREATE FULL 30 , 20 , 12 ,
2 CREATE LOWER 22 , 15 , 10 ,
3 CREATE LOWEST 12 , 9 , 6 ,
4 VARIABLE RATE \ points to FULL, LOWER or LOWEST
5 \ depending on time of day
6 FULL RATE ! \ for instance
7 : CHARGE (o --) CREATE ,
8 DOES> (-- rate) @ RATE @ + @ ;
9 0 CHARGE 1MINUTE \ rate for first minute

10 2 CHARGE +MINUTES \ rate for each additional minute
11 4 CHARGE /MILES \ rate per each 100 miles

Screen # 104
0 \ Telephone rates 03/30/84
1 VARIABLE OPERATOR? \ 90 if operator assisted; else 0
2 VARIABLE #MILES \ hundreds of miles
3 : ?ASSISTANCE (direct-dial charge -- total charge)
4 OPERATOR? @ + ;
5 : MILEAGE (-- charge) #MILES @ /MILES * ;
6 : FIRST (-- charge) 1MINUTE ?ASSISTANCE MILEAGE + ;
7 : ADDITIONAL (-- charge) +MINUTES MILEAGE + ;
8 : TOTAL (#minutes -- total charge)
9 1- ADDITIONAL * FIRST + ;

Figure 8.5: Implementation of the Tiny Editor.

Screen # 30
0 \ Tiny Editor
1 2 CONSTANT NORMAL \ offset in FUNCTIONS
2 4 CONSTANT INSERTING \ "
3 6 CONSTANT /KEY \ bytes in table for each key
4 VARIABLE MODE# \ current offset into table
5 NORMAL MODE# !
6 : INSERT-OFF NORMAL MODE# ! ;
7 : INSERT-ON INSERTING MODE# ! ;
8

9 VARIABLE ESCAPE? \ t=time-to-leave-loop
10 : ESCAPE TRUE ESCAPE? ! ;
11

12

13

14

15

Screen # 31
0 \ Tiny Editor function table 07/29/83
1 : IS ’ , ; \ function (--) (for ’83 standard)
2 CREATE FUNCTIONS
3 \ keys normal mode insert mode
4 4 , (ctrl-D) IS DELETE IS INSERT-OFF
5 9 , (ctrl-I) IS INSERT-ON IS INSERT-OFF
6 8 , (backspace) IS BACKWARD IS INSERT<
7 60 , (left arrow) IS BACKWARD IS INSERT-OFF
8 62 , (right arrow) IS FORWARD IS INSERT-OFF
9 27 , (return) IS ESCAPE IS INSERT-OFF

10 0 , (no match) IS OVERWRITE IS INSERT
11 HERE /KEY - CONSTANT ’NOMATCH \ adr of no-match key
12

13

14

15

Screen # 32
0 \ Tiny Editor cont’d 07/29/83
1 VARIABLE MATCHED
2 : ’FUNCTION (key -- adr-of-match) ’NOMATCH MATCHED !
3 ’NOMATCH FUNCTIONS DO DUP I @ = IF
4 I MATCHED ! LEAVE THEN /KEY +LOOP DROP

Figure 8.6: The Epson MX-80 graphics character set.

EPILOGUE

Forth’s Effect on
Thinking

Forth is like the Tao: it is a Way, and is realized when followed.
Its fragility is its strength; its simplicity is its direction (Michael

Ham, winning entry in Mountain View Press’s contest to describe
Forth in twenty-five words or less).

To help extract something of the Forth philosophy, I conducted
a poll among several Forth users in which I asked, “How has Forth
affected your thinking? Have you found yourself applying ‘Forth-like’
principles in other areas?”

Here are some of the replies:

Mark Bernstein is president of Eastgate Systems Inc. in Cam-
bridge, Massachusetts, and holds a doctorate from the department of
chemistry at Harvard University.

I first met Forth while working in laser chemistry. I was trying
to build a rather complicated controller for a new laser spectrome-
ter. The original plans called for a big green box full of electronics,
The Interface. Nobody had built this particular kind of instrument
before—that’s why we were doing it—and the list of things we
wanted the computer to handle changed every couple of weeks.

Forth’s Effect on Thinking 363

After a few months, I had hundreds of pages of assembly-language
routines, three big circuit boards filled with ICs, and a 70-odd pin
System Bus. Day by day, everything got more fragile and harder
to fix. The wiring on the circuit boards frayed, the connectors got
loose, the assembler code grew ever more tangled.

Forth was an obvious solution to the software problem, since it
provided a decent environment in which to build and maintain a
complex and rapidly-changing program. But the essence of good
Forth programming is the art of factoring procedures into useful,
free-standing words. The idea of the Forth word had unexpected
implications for laboratory hardware design.

Instead of building a big, monolithic, all-purpose Interface, I found
myself building piles of simple little boxes which worked a lot like
Forth words: they had a fixed set of standard inputs and standard
outputs, they performed just one function, they were designed to
connect up to each other without much effort, and they were simple
enough that you could tell what a box did just by looking at its label.

. . . The idea of “human scale” is, I think, today’s seminal concept
in software design. This isn’t specifically a Forth development; the
great joy of UNIX, in its youth at least, was that you could read it
(since it was written in C), understand it (since it was small), and
modify it (since it was simple). Forth shares these virtues, although
it’s designed to tackle a different sort of problem.

Because Forth is small, and because Forth gives its users control over
their machines, Forth lets humans control their applications. It’s just
silly to expect scientists to sit in front of a lab computer playing
“twenty-questions” with packaged software. Forth, used properly,
lets a scientist instruct the computer instead of letting the computer
instruct the scientist.

Forth’s Effect on Thinking 364

In the same sense that in baseball, a batter is supposed to feel
the bat as an extension of himself, Forth is human-scaled, and helps
convince you that the computer’s achievements, and its failures, are
also your own.

Raymond E. Dessy is Professor of Chemistry at Virginia Polytechnic
Institute and State University, Blacksburg, Virginia.

As I attempted to understand the nature and structure of the lan-
guage C, I found myself drawing upon the knowledge I had of the
organization and approach of Forth. This permitted me to under-
stand convoluted, or high-fog-coefficient sections describing C.

I have found the Forth approach is an ideal platform upon which
to build an understanding and an educational framework for other
languages and operating system concepts.

Jerry Boutelle is owner of Nautilus Systems in Santa Cruz, Cali-
fornia, which markets the Nautilus Cross-compiler.

Forth has changed my thinking in many ways. Since learning Forth
I’ve coded in other languages, including assembler, BASIC and FOR-
TRAN. I’ve found that I used the same kind of decomposition we
do in Forth, in the sense of creating words and grouping them to-
gether. For example, in handling strings I would define subroutines
analogous to CMOVE, -TRAILING, FILL, etc.

More fundamentally, Forth has reaffirmed my faith in simplicity.
Most people go out and attack problems with complicated tools.
But simpler tools are available and more useful.

I try to simplify all the aspects of my life. There’s a quote I like
from Tao Te Ching by the Chinese philosopher Lao Tzu: “To
attain knowledge, add things every day; to obtain wisdom, remove
things every day.”

Forth’s Effect on Thinking 365

APPENDIX A

Overview of Forth
(For Newcomers)

The Dictionary

Forth is expressed in words (and numbers) and is separated by spaces:

HAND OPEN ARM LOWER HAND CLOSE ARM RAISE

Such commands may be typed directly from the keyboard, or edited
onto mass storage then “LOAD”ed.

All words, whether included with the system or user-defined, exist
in the “dictionary,” a linked list. A “defining word” is used to add new
names to the dictionary. One defining word is : (pronounced “colon”),
which is used to define a new word in terms of previously defined words.
Here is how one might define a new word called LIFT:

: LIFT HAND OPEN ARM LOWER HAND CLOSE ARM RAISE ;

The ; terminates the definition. The new word LIFT may now be used
instead of the long sequence of words that comprise its definition.

Forth words can be nested like this indefinitely. Writing a Forth
application consists of building increasingly powerful definitions, such
as this one, in terms of previously defined ones.

Another defining word is CODE, which is used in place of colon to
define a command in terms of machine instructions for the native

The Dictionary 367

processor. Words defined with CODE are indistinguishable to the user
from words defined with colon. CODE definitions are needed only for
the most time-critical portions of an applications, if at all.

Data Structures

Still another defining word is CONSTANT, which is used like this:

17 CONSTANT SEVENTEEN

The new word SEVENTEEN can now be used in place of the actual
number 17.

The defining word VARIABLE creates a location for temporary data.
VARIABLE is used like this:

VARIABLE BANANAS

This reserves a location which is identified by the name BANANAS.
Fetching the contents of this location is the job of the word � (pro-

nounced “fetch”). For instance,

BANANAS @

fetches the contents of the variable BANANAS. Its counterpart is !
(pronounced “store”), which stores a value into the location, as in:

100 BANANAS !

Forth also provides a word to increment the current value by the given
value; for instance, the phrase

2 BANANAS +!

increments the count by two, making it 102.
Forth provides many other data structure operators, but more im-

portantly, it provides the tools necessary for the programmer to create
any type of data structure needed for the application.

Data Structures 368

The Stack

In Forth, variables and arrays are used for saving values that may be
required by many other routines and/or at unpredictable times. They
are not used for the local passing of data between the definitions. For
this, Forth employs a much simpler mechanism: the data stack.

When you type a number, it goes on the stack. When you invoke
a word which has numeric input, it will take it from the stack. Thus
the phrase

17 SPACES

will display seventeen blanks on the current output device. “17” pushes
the binary value 17 onto the stack; the word SPACES consumes it.

A constant also pushes its value onto the stack; thus the phrase:

SEVENTEEN SPACES

has the same effect.
The stack operates on a “last-in, first-out” (LIFO) basis. This means

that data can be passed between words in an orderly, modular way,
consistent with the nesting of colon definitions.

For instance, a definition called GRID might invoke the phrase 17

SPACES. This temporary activity on the stack will be transparent to
any other definition that invokes GRID because the value placed on
the stack is removed before the definition of GRID ends. The calling
definition might have placed some numbers of its own on the stack
prior to calling GRID. These will remain on the stack, unharmed, until
GRID has been executed and the calling definition continues.

Control Structures

Forth provides all the control structures needed for structured, GOTO-
less programming.

The syntax of the IF THEN construct is as follows:

The Stack 369

... (flag) IF KNOCK THEN OPEN ...

The “flag” is a value on the stack, consumed by IF. A non-zero value
indicates true, zero indicates false. A true flag causes the code afterIF (in this case, the word KNOCK) to be executed. The word THEN
marks the end of the conditional phrase; execution resumes with the
word OPEN. A false flag causes the code between IF and THEN to not
be executed. In either case, OPEN will be performed.

The word ELSE allows an alternate phrase to be executed in the
false case. In the phrase:

(flag) IF KNOCK ELSE RING THEN OPEN ...

the word KNOCK will be performed if the flag is true, otherwise the word
RING will be performed. Either way, execution will continue starting
with OPEN.

Forth also provides for indexed loops in the form

(limit) (index) DO ... LOOP

and indefinite loops in the forms:

... BEGIN ... (flag) UNTIL

and

... BEGIN ... (flag) WHILE ... REPEAT ;

For the Whole Story

For a complete introduction to the Forth command set, read Starting
Forth, published by Prentice-Hall.

For the Whole Story 370

APPENDIX B

Defining DOER/MAKE

If your system doesn’t have DOER and MAKE already defined, this ap-
pendix is meant to help you install them and, if necessary, understand
how they work. Because by its nature this construct is system depen-
dent, I’ve included several different implementations at the end of this
appendix in the hope that one of them will work for you. If no, and if
this section doesn’t give you enough information to get them running,
you probably have an unusual system. Please don’t ask me for help;
ask your Forth vendor.

Here’s how it works. DOER is a defining word that creates an entry
with one cell in its parameter field. That cell contains the vector
address, and is initialized to point to a no-op word called NOTHING.

Children of DOER will execute that DOES> code of DOER, which does
only two things: fetch the vector address and place it on the return
stack. That’s all. Forth execution then continues with this address
on the return stack, which will cause the vectored function to be
performed. It’s like saying (in ’83-Standard)

’ NOTHING >BODY >R <return>

which executes NOTHING. (This trick only works with colon definitions.)
Here’s an illustration of the dictionary entry created when we enter

Defining DOER/MAKE 372

DOER JOE
JOE pfa of NOTHING
header parameter field

Now suppose we define:

: TEST MAKE JOE CR ;

that is, we define a word that can vector JOE to do a carriage return.
Here’s a picture of the compiled definition of TEST:

adr of adr of adr of adr of
TEST (MAKE) 0 JOE CR EXIT

header MARKER

Let’s look at the code for MAKE. Since we’re using MAKE inside a colon
definition, STATE will be true, and we’ll execute the phrase:

COMPILE (MAKE) HERE MARKER ! 0 ,

We can see how MAKE has compiled the address of the run-time routine,(MAKE), followed by a zero. (We’ll explain what the zero is for, and
why we save its address in the variable MARKER, later).

Now let’s look at what (MAKE) does when we execute our new
definition TEST:

Defining DOER/MAKE 373

R> Gets an address from the return stack.
This address points to the cell just
past (MAKE), where the zero is.

DUP 2+ Gets the address of the second cell
after (MAKE), where the address ofJOE is.

DUP 2+ Gets the address of the third cell after(MAKE), where the code we want
to execute begins. The stack now
has:

(’marker, ’joe, ’code ––)
SWAP @ >BODY Fetches the contents of the address

pointing to JOE (i.e., gets the ad-
dress of JOE) and computes JOE’s
pfa, where the vector address goes.

! Stores the address where the new
code begins (CR, etc.) into the vec-
tor address of JOE.

Now JOE points inside the definition
of TEST. When we type JOE, we’ll
do a carriage return.

@ ?DUP IF >R THEN Fetches the contents of the cell con-
taining zero. Since the cell does
contain zero, the IF THEN state-
ment is not performed.

That’s the basic idea. But what about that cell containing zero?
That’s for the use of ;AND. Suppose we changed TEST to read:

: TEST MAKE JOE CR ;AND SPACE ;

That is, when we invoke TEST we’ll vector JOE to do a CR, and we’ll
do a SPACE right now. Here’s what this new version of TEST will look
like:

Defining DOER/MAKE 374

adr of adr of adr of adr of adr of adr of

TEST (MAKE) adr JOE CR EXIT SPACE EXIT

header MARKER

Here’s the definition of ;AND:
: ;AND COMPILE EXIT HERE MARKER @ ! ; IMMEDIATE

We can see that ;AND has compiled an EXIT, just as semicolon would.
Next, recall that MAKE saved the address of that cell in a variable

called MARKER. Now ;AND stores HERE (the location of the second
string of code beginning with SPACE) into the cell previously containing
zero. Now (MAKE) has a pointer to the place to resume execution. The
phrase

IF >R THEN

will leave on the return stack the address of the code beginning withSPACE. Thus execution will skip over the code between MAKE and ;AND
and continue with the remainder of the definition up to semicolon.

The word UNDO ticks the name of a DOER word, and stores the
address of NOTHING into it.

One final note: on some systems you may encounter a problem. If
you use MAKE outside of a colon definition to create a forward reference,
you may not be able to find the most recently defined word. For
instance, if you have:

: REFRAIN DO-DAH DO-DAH ;

MAKE SONG CHORUS REFRAIN ;

your system might think that refrain has not been defined. The prob-
lem is due to the placement of SMUDGE. As a solution, try rearranging
the order of definitions or, if necessary, put MAKE code inside a defini-
tion which you then execute:

Defining DOER/MAKE 375

: SETUP MAKE SONG CHORUS REFRAIN ; SETUP

In Laboratory Microsystems PC/FORTH 2.0, the UNSMUDGE on line 9
handles the problem. This problem does not arise with the Laxen/Perry/Harris
model.

The final screen is an example of using DOER/MAKE. After loading
the block, enter

RECITAL

then enter

WHY?

followed by return, as many times as you like (you’ll get a different
reason each time).

Screen # 21
0 (DOER/MAKE Shadow screen LPB 12/05/83
1 NOTHING A no-opp
2 DOER Defines a word whose behavior is vectorable.
3 MARKER Saves adr for optional continuation pointer.
4 (MAKE) Stuffs the address of further code into the
5 parameter field of a doer word.
6 MAKE Used interpretively: MAKE doer-name forth-code
7 or inside a definition:
8 : def MAKE doer-name forth-code ;
9 Vectors the doer-name word to the forth-code.

10 ;AND Allows continuation of the "making" definition
11 UNDO Usage: UNDO doer-name ; makes it safe to execute
12

13

14

15

Defining DOER/MAKE 376

Screen # 22
0 \ DOER/MAKE FORTH-83 Laxen/Perry/Harris model LPB 12/05/83
1 : NOTHING ;
2 : DOER CREATE [’] NOTHING >BODY , DOES> @ >R ;
3 VARIABLE MARKER
4 : (MAKE) R> DUP 2+ DUP 2+ SWAP @ >BODY !
5 @ ?DUP IF >R THEN ;
6 : MAKE STATE @ IF (compiling)
7 COMPILE (MAKE) HERE MARKER ! 0 ,
8 ELSE HERE [COMPILE] ’ >BODY !
9 [COMPILE]] THEN ; IMMEDIATE

10 : ;AND COMPILE EXIT HERE MARKER @ ! ; IMMEDIATE
11 : UNDO [’] NOTHING >BODY [COMPILE] ’ >BODY ! ;
12

13 \ The code in this screen is in the public domain.
14

15

Screen # 23
0 (DOER/MAKE FORTH-83 Lab. Micro PC/FORTH 2.0 LPB 12/05/83
1 : NOTHING ;
2 : DOER CREATE [’] NOTHING >BODY , DOES> @ >R ;
3 VARIABLE MARKER
4 : (MAKE) R> DUP 2+ DUP 2+ SWAP @ >BODY !
5 @ ?DUP IF >R THEN ;
6 : MAKE STATE @ IF (compiling)
7 COMPILE (MAKE) HERE MARKER ! 0 ,
8 ELSE HERE [COMPILE] ’ >BODY !
9 [COMPILE]] UNSMUDGE THEN ; IMMEDIATE

10 : ;AND COMPILE EXIT HERE MARKER @ ! ; IMMEDIATE
11 : UNDO [’] NOTHING >BODY [COMPILE] ’ >BODY ! ;
12

13 (The code in this screen is in the public domain.)
14

15

Defining DOER/MAKE 377

Screen # 24
0 (DOER/MAKE FIG model LPB 12/05/83
1 : NOTHING ;
2 : DOES-PFA (pfa -- pfa of child of <BUILD-DOES>) 2+ ;
3 : DOER <BUILDS ’ NOTHING , DOES> @ >R ;
4 0 VARIABLE MARKER
5 : (MAKE) R> DUP 2+ DUP 2+ SWAP @ 2+ DOES-PFA !
6 @ -DUP IF >R THEN ;
7 : MAKE STATE @ IF (compiling)
8 COMPILE (MAKE) HERE MARKER ! 0 ,
9 ELSE HERE [COMPILE] ’ DOES-PFA !

10 SMUDGE [COMPILE]] THEN ; IMMEDIATE
11 : ;AND COMPILE ;S HERE MARKER @ ! ; IMMEDIATE
12 : UNDO ’ NOTHING [COMPILE] ’ DOES-PFA ! ;
13 ;S
14 The code in this screen is in the public domain.
15

Screen # 25
0 (DOER/MAKE 79-Standard MVP FORTH LPB 12/05/83
1 : NOTHING ;
2 : DOER CREATE ’ NOTHING , DOES> @ >R ;
3 VARIABLE MARKER
4 : (MAKE) R> DUP 2+ DUP 2+ SWAP @ 2+ (pfa) !
5 @ ?DUP IF >R THEN ;
6 : MAKE STATE @ IF (compiling)
7 COMPILE (MAKE) HERE MARKER ! 0 ,
8 ELSE HERE [COMPILE] ’ !
9 [COMPILE]] THEN ; IMMEDIATE

10 : ;AND COMPILE EXIT HERE MARKER @ ! ; IMMEDIATE
11 : UNDO [’] NOTHING [COMPILE] ’ ! ;
12

13

14 (The code in this screen is in the public domain.)
15

Defining DOER/MAKE 378

Screen # 26
0 (TODDLER: Example of DOER/MAKE 12/01/83
1 DOER ANSWER
2 : RECITAL
3 CR ." Your daddy is standing on the table. Ask him ’WHY?’
4 MAKE ANSWER ." To change the light bulb."
5 BEGIN
6 MAKE ANSWER ." Because it’s burned out."
7 MAKE ANSWER ." Because it was old."
8 MAKE ANSWER ." Because we put it in there a long time ago."
9 MAKE ANSWER ." Because it was dark!"

10 MAKE ANSWER ." Because it was night time!!"
11 MAKE ANSWER ." Stop saying WHY?"
12 MAKE ANSWER ." Because it’s driving me crazy."
13 MAKE ANSWER ." Just let me change this light bulb!"
14 FALSE UNTIL ;
15 : WHY? CR ANSWER QUIT ;

Defining DOER/MAKE 379

APPENDIX C

Other Utilities
Described
in This Book

This appendix is here to help you define some of the words referred to
in this book that may not exist in your system. Definitions are given
in Forth-83 Standard.

From Chapter Four

A definition of ASCII that will work in ’83 Standard is:

: ASCII (-- c) \ Compile: c (--)

\ Interpret: c (-- c)

BL WORD 1+ C@ STATE @

IF [COMPILE] LITERAL THEN ; IMMEDIATE

From Chapter Five

The word \ can be defined as:

: \ (skip rest of line)

>IN @ 64 / 1+ 64 * >IN ! ; IMMEDIATE

If you decide not to use EXIT to terminate a screen, you can define\S as:

From Chapter Four 381

: \S 1024 >IN ! ;

The word FH can be defined simply as:

: FH \ (offset -- offset-block) "from here"

BLK @ + ;

This factoring allows you to use FH in many ways, e.g.:

: TEST [1 FH] LITERAL LOAD ;

or

: SEE [2 FH] LITERAL LIST ;

A slightly more complicated version of FH also lets you edit or load
a screen with a phrase such as “14 FH LIST,” relative to the screen
that you just listed (SCR):

: FH \ (offset -- offset-block) "from here"

BLK @ ?DUP 0= IF SCR @ THEN + ;BL is a simple constant:

32 CONSTANT BLTRUE and FALSE can be defined as:

0 CONSTANT FALSE

-1 CONSTANT TRUE

(Forth’s control words such as IF and UNTIL interpret zero as “false”
and any non-zero value as “true.” Before Forth ’83, the convention was
to indicate “true” with the value 1. Starting with Forth ’83, however,
“true” is indicated with hex FFFF, which is the signed number −1 (all
bits set).WITHIN can be defined in high level like this:

From Chapter Five 382

: WITHIN (n lo hi+1 -- ?)

>R 1- OVER < SWAP R> < AND ;

or

: WITHIN (n lo hi+1 -- ?)

OVER - >R - R> U< ;

From Chapter Eight

The implementation of LEAP will depend on how your system imple-
ments DO LOOPs. If DO keeps two items on the return stack (the index
and the limit), LEAP must drop both of them plus one more return-
stack item to exit:

: LEAP R> R> 2DROP R> DROP ;

If DO keeps three items on the return stack, it must be defined:

: LEAP R> R> 2DROP R> R> 2DROP ;

From Chapter Eight 383

APPENDIX D

Answers to
“Further Thinking”
Problems

Chapter Three

1. The answer depends on whether you believe that other compo-
nents will need to “know the numeric code associated with each
key. Usually this would not be the case. The simpler, more
compact form is therefore preferable. Also in the first version,
to add a new key would require a change in two places.

2. The problem with the words RAM-ALLOT and THERE are that
they are time-dependent: we must execute them in a particular
order. Our solution then will be to devise an interface to the
RAM allocation pointer that is not dependent on order; the way
to do this is to have a single word which does both functions
transparently.

Our word’s syntax will be

: RAM-ALLOT (#bytes-to-allot -- starting-adr)

... ;

This syntax will remain the same whether we define it to allocate
growing upward:

Chapter Three 385

: RAM-ALLOT (#bytes-to-allot -- starting-adr)

>RAM @ DUP ROT + >RAM ! ;

or to allocate growing downward:

: RAM-ALLOT (#bytes-to-allot -- starting-adr)

>RAM @ SWAP - DUP >RAM ! ;

Chapter Four

Our solution is as follows:

\ CARDS Shuffle 6-20-83

52 CONSTANT #CARDS

CREATE DECK #CARDS ALLOT \ one card per byte

: CARD (i -- adr) DECK + ;

: INIT-DECK #CARDS 0 DO I I CARD C! LOOP ;

INIT-DECK

: ’CSWAP (a1 a2 --) \ swap bytes at a1 and a2

2DUP C@ SWAP C@ ROT C! SWAP C! ;

: SHUFFLE \ shuffle deck of cards

#CARDS 0 DO I CARD #CARDS CHOOSE CARD ’CSWAP

LOOP ;

Chapter Eight

: DIRECTION (n|-n|0 -- 1|-1|0) DUP IF 0< 1 OR THEN ;

Chapter Four 386

APPENDIX E

Summary of
Style Conventions

The contents of this Appendix are in the public domain. We encourage
publication without restriction, provided that you credit the source.

Spacing and Indentation Guidelines

1 space between the colon and the name

2 spaces between the name and the comment∗

2 spaces, or a carriage return, after the comment and before the
definition∗

3 spaces between the name and definition if no comment is used

3 spaces indentation on each subsequent line (or multiples of 3 for
nested indentation)

1 space between words/numbers within a phrase

2 or 3 spaces between phrases

1 space between the last word and the semicolon

∗ An often-seen alternative calls for 1 space between the name and comment

and 3 between the comment and the definition. A more liberal technique uses 3

spaces before and after the comment. Whatever you choose, be consistent.

Spacing and Indentation Guidelines 388

1 space between semicolon and IMMEDIATE (if invoked)

No blank lines between definitions, except to separate distinct groups
of definitions

Stack-Comment Abbreviations

n single-length signed number

d double-length signed number

u single-length unsigned number

ud double-length unsigned number

t triple-length

q quadruple-length

c 7-bit character value

b 8-bit byte

? boolean flag; or:

t= true

f= false

a or adr address

acf address of code field

apf address of parameter field

‘ (as prefix) address of

s d (as a pair) source destination

lo hi lower-limit upper-limit (inclusive)

count

o offset

i index

m mask

x don’t care (data structure notation)

An “offset” is a difference expressed in absolute units, such as bytes.

Stack-Comment Abbreviations 389

An “index” is a difference expressed in logical units, such as elements
or records.

Input-Stream Comment Designations

c single character, blank-delimited
name sequence of characters, blank delimited
text sequence of characters, delimited by non-blank

Follow “text” with the actual delimiter required; e.g., text” or text).

Samples of Good Commenting Style

Here are two sample screens to illustrate good commenting style.

Screen # 126
0 \ Formatter Data Structures -- p.2 06/06/83
1 6 CONSTANT TMARGIN \ line# where body of text begins
2 55 CONSTANT BMARGIN \ line# where body of text ends
3

4 CREATE HEADER 82 ALLOT
5 \ { 1left-ent | 1right-cnt | 80header }
6 CREATE FOOTER 82 ALLOT
7 \ { 1left-cnt | 1right-ent | 80footer }
8

9 VARIABLE ACROSS \ formatter’s current horizontal position
10 VARIABLE DOWNWARD \ formatter’s current vertical position
11 VARIABLE LEFT \ current primary left margin
12 VARIABLE WALL \ current primary right margin
13 VARIABLE WALL-WAS \ WALL when curr. line started being formt’d
14

Input-Stream Comment Designations 390

Screen # 127
0 \ Formatter positioning -- p.1 06/06/83
1 : SKIP (n) ACROSS +! ;
2 : NEWLEFT \ reset left margin
3 LEFT @ PERMANENT @ + TEMPORARY @ + ACROSS ! ;
4 : \LINE \ begin new line
5 DOOR CR’ 1 DOWNWARD +! NEWLEFT WALL @ WALL-WAS ! ;
6 : AT-TOP? (-- t=at-top) TMARGIN DOWNWARD @ = ;
7 : >TMARGIN \ move from crease to TMARGIN
8 0 DOWNWARD ! BEGIN \LINE AT-TOP? UNTIL ;
9

Naming Conventions

Meaning Form Example

Arithmetic
integer 1 1name 1+

integer 2 2name 2*

takes relative input parameters +name +DRAW

takes scaled input parameters *name *DRAW

Compilation
start of “high-level” code name: CASE:

end of “high-level” code ;name ;CODE

put something into dictionary name, C,

executes at compile time [name] [COMPILE]

slightly different name’ (prime) CR’

internal form or primitive (name) (TYPE)

or <name> <TYPE>

compiling word run-time part:
systems with no folding lower-case if

systems with folding (NAME) (IF)

defining word :name :COLOR

Naming Conventions 391

Meaning Form Example

block-number where overlay begins namING DISKING

Data Structures
table or array names EMPLOYEES

total number of elements #name #EMPLOYEES

current item number (variable) name# EMPLOYEE#

sets current item (n) name 13 EMPLOYEE

advance to next element +name +EMPLOYEE

size of offset to item from name+ DATE +

beginning of structure
size of (bytes per) /name /EMPLOYEE

(short for BYTES/name)
index pointer >name >IN

convert address of structure to >name >BODY

address of item
file index (name) (PEOPLE)

file pointer –name –JOB

initialize structure 0name 0RECORD

Direction, Conversion
backwards name< SLIDE<

forwards name> CMOVE>

from <name <TAPE

to >name >TAPE

convert to name>name FEET>METERS

downward \name \LINE
upward /name /LINE

open {name {FILE

close }name }FILE

Logic, Control
return boolean value name? SHORT?

returns reversed boolean -name? -SHORT?

Naming Conventions 392

Meaning Form Example

address of boolean ’name? ’SHORT?

operates conditionally ?name ?DUP

(maybe DUP)
enable +name +CLOCK

or, absence of symbol name BLINKING

disable -name -CLOCK

-BLINKING

Memory
save value of @name @CURSOR

restore value of !name !CURSOR

store into name! SECONDS!

fetch from name@ INDEX@

name of buffer :name :INSERT

address of name ’name ’S

address of pointer to name ’name ’TYPE

exchange, especially bytes >name< >MOVE<

Numeric Types
byte length Cname C@

2 cell size, 2’s complement Dname D+

integer encoding
mixed 16 and 32-bit operator Mname M*

3 cell size Tname T*

4 cell size Qname Q*

unsigned encoding Uname U.

Output, Printing
print item .name .S

print numeric (name denotes type) name. D. , U.

print right justified name.R U.R

Quantity
“per” /name /SIDE

Naming Conventions 393

Meaning Form Example

Sequencing
start <name <#

end name> #>

Text
string follows delimited by ” name” ABORT” text”

text or string operator “name “COMPARE

(similar to $ prefix in BASIC)
superstring array “name” “COLORS”

How to Pronounce the Symbols

Naming Conventions 394

! store
@ fetch
sharp (or “number,” as in #RECORDS)
$ dollar
% percent
ˆ caret
& ampersand
* star
(left paren; paren
) right paren; paren
– dash; not
+ plus
= equals
{ } braces (traditionally called “curly brackets”)
[] square brackets
“ quote
’ as prefix: tick; as suffix: prime
˜ tilde
| bar
\ backslash. (also “under,” “down,” and “skip”)
/ slash. (also “up”)
< less-than

left dart
> greater-than

right dart
? question (some prefer “query”)
, comma
. dot

Naming Conventions 395

INDEX

A
Abbreviations, 165–166
Abstraction, 3–5
Address-precedes-counts syn-

tax rule, 115
Algorithms, 12, 20, 21, 119–

120, 122, 125–127, 133,
249–250

Analogous problems, 102
Analysis, 38, 45–49

budgeting, 66–68
conceptual model, 46–53,

59–60, 68
constraints, 46
data structure definition, 59–

60
decision table, 55–59
decision tree, 55
defined, 45
interface definition, 49–52
requirements, 46

rule definition, 52–59
scheduling, 66–68
simplicity, 60–65
Structured English, 53–54

AND, 241–242
Arrays, 193–194
ASCII, 234, 276
Assemblers, 3, 34, 118
Assembly language, 3, 5
Auxiliary problems, 104, 106

B
BASE, 148–149, 210–211
BASIC, 3, 5, 7
Batch-compile development

sequence
elimination of, 31

Bernstein, Mark, 29, 262–263
Blank space (BL), 169, 277
Booleans, as hybrid values,

240

Boutelle, Jerry, 263
Branching, 5
Brooks,Fredrick P., Jr., 68
Budgeting, 66–68
Bundling of names and num-

bers, 167
Burgess, Donald A., 108–110

C
Calculations, 120–122, 240–

242
Calls, implicit, 19
Capability, 32
Case statements, 175, 237–

238
Chapter-load screens, 140–143
Chapters, 138
Clichés, 188
CODE, 266
Code:

factoring out from within
control structures, 174–
175

repetition of, 180–181
Coincidental binding, 14
Commands, reducing number

of, 184–187
Comment conventions, 150–

159
Comment line, 146–147
Commenting style, 285–286
Communicational binding, 14

Compile-time factoring, 188–
192

Compilers, 34, 116–119
Compiling words, comments

for, 158–159
Component programming, 20–

23
Components:

decomposition by, 72–88
sharing, 213–215

Composition, 138
Conceptual model, 46–59, 68,

131
data structure definition, 59–

60
defined, 46
interface definition, 49–52
rule definition, 52–59

Conditionals, nesting and com-
bining, 235–236

CONSTANT, 266
Constraints, 46
Control flags, 174
Control flow, 5
Control structure minimiza-

tion, 228–259
calculating results, 240–242
case statements, 237–238
decision tables, 243–249
dictionary, 232–234
looping structures, 238–240

INDEX 397

nesting and combining con-
ditionals, 235–236

reasons for, 228–229
redesigning, 249–252
simplification, 258–259
structured exits, 252–254
timing, 254–258
tricks, 242

Control structures:
choosing, 237
defined, 268
factoring out, 174–175
factoring out code from within,

174–175
minimization of, see Con-

trol structure minimiza-
tion

Counted strings, 176–177
Counts vs. terminators, 239–

240
Coupling, 15
Cross-compilers, 34
Customer constraints, 46

D
Data abstraction, 18
Data coupling, 15
Data handling, see Data stacks,

Data structures
Data passing, implicit, 19, 25
Data stacks, 19, 32

concept of, 198–199

vs. data structures, 201–
203

defined, 267
depth of, 199–201
drawings, 204–206
local variables and„ 201–

203
PICK and ROLL, 203–204
return, 206, 213
saving and restoring states,

210–212
Data structures:, see also Vari-

ables
vs. calculation vs. logic,

120–122
vs. data stacks, 201–203
defined, 120
defining, 59–60
hiding construction of, 25–

27
operators, 266, 267

Data, factoring out, 172–173
Data-flow diagrams, 49–51
Data-structure comment, 150,

155
Dates, representation of, 146
DECIMAL, 148–149
Decision table, 55–59, 243–

249
Decision tree, 55
Decomposition, 138

by component, 72–88

INDEX 398

by sequential complexity, 88–
90

Defining words:
comments for, 158
compile-time factoring through,

190
length, 178–180
procedure, 266

Definitions-consume-arguments
syntax rule, 114

Design, see Detailed design,
Preliminary design

Dessy, Raymond E., 263
Detailed design, 100–133

algorithms, 119–120
calculations, 120–122
data structures, 120–122
demonstration of, 122–133
Forth syntax, 110–119
logic, 120–122
problem solving techniques,

100–108
steps in, 110

Development cycle, see Pro-
gramming Cycle

Dicing, 21
Dictionary:

control structure minimiza-
tion with, 232–234

defined, 266–267
Disk partitioning, 144
DO LOOP, 188, 190, 238

DOER/MAKE, 219–226, 270–
274

Dumb words, 233–234

E
Electives, 145–146
ELSE, 268
EMIT, 174–175
Encryption, 164
Engineering, see Detailed de-

sign; Preliminary de-
sign

Error handling, 50
Error-code, 205–206
EXIT, 140, 253, 272
Expectations-in-input-stream

syntax rule, 115–116
Expecting, 156
Expressive words, 163

F
Factoring, 172–195

compile-time, 188–192
criteria, 178–188
defined, 172
iterative approach, 192–195
techniques, 172–177

FALSE, 169, 277
FH, 276–277
File-based system, 144
Flags, 155, 174, 268
Flow charts, 5

INDEX 399

Forth, 19–35
advantages of, 29, 32
capability of, 32
component programming,

20–23
data handling, see Data

stacks, Data structures
as design language, 31
effect on thinking, 262–263
high-level language issue,

27–31
implicit calls, 19
implicit data passing, 19–

20
information-hiding, 16–18,

24, 182–184
lexicon, 22–23
overview of, 266–268
performance of, 32–34
programming cycle, see Pro-

gramming cycle
size of, 34
speed of, 32
style, see Implementation
syntax, 110–119

FORTRAN, 3, 5
Functional strength, 14–15
Functions:

factoring out, 174, 177
vectored execution, 219–220

“Fun-down” approach, 91

G
Global variables, 210
GO TO commands, 5, 6

H
Ham, Michael, 208, 262
Hardware constraints, 46
Harris, Kim, 39, 136
Hart, Leslie, 107
Hierarchical input-process-output

designing, 15–16
High-level languages:

development of, 3, 5
Forth as, 27–31

How to Solve It (Polya), 100
Hybrid values, 241–242
Hyphenated names, 166–167

I
Implementation, 136–170

choosing names, 163–168
comment conventions, 150–

159
factoring, see Factoring
listing organization, 136–

146
screen layout, 146–150
vertical format vs. hori-

zontal format, 159–163
Implicit calls, 19
Implicit data passing, 19–20
Indentation, 150, 284

INDEX 400

INDEX, 145
Information-hiding, 16–18, 24,

85, 182–184
Input-process-output design-

ing, hierarchical, 15–
16

Input-stream comment, 150,
156, 285

Interface component, 85–88
Interface definition, 49–52, 101
Interface lexicon, 210
INTERPRET, 239
Interpreters, 118–119
Iterative approach, 39–40, 192–

195

J
Johnson, Dave, 40–41, 52,

160
Jump instructions, 5, 6

K
Kogge, Peter, 44–45, 208

L
LaManna, Michael, 65
Laxen, Henry, 164
LEAP, 277
“Level” thinking, limits of, 90–

95
Lexicons, 22–23, 110–119, 138

Line-by-line commenting, 161
Listing organization, 136–143
LIT, 177
Load screens, 138–143

application, 138–140
chapter, 140–143

Local variables, 201–203, 210
Logic, 120–122
Logical binding, 14
Loops, 5, 238–240, 268

M
Macro assembler, 3
MAKE, 234
Manageability, 5
MAX, 242
MIN, 242
Mnemonics, 3
Modularity, see Structured pro-

gramming
Moore Products Company, 142
Moore, Charles, 27, 52, 60–

63, 90–91, 119, 133,
142–143, 149, 164–166,
170, 178–181, 188, 193–
195, 198, 210, 212,
228–229, 233, 238, 241–
242, 248–250, 252–253,
259

Multiple exit loops, 175
Multiprocedure module, 18

INDEX 401

Mythical Man-Month, The Brooks,
68

N
Nameability, 181–182
Named files, storing source

code in, 144
Names:

choosing, 163–167
factoring out, 176–177

Naming conventions, 167–168,
286–288

Narrative comments, 151, 160–
161

Nesting conditionals, 235–236
Next block, 143
Numbers-precede-names syn-

tax rule, 111

O
Object, 92
OFF, 169
ON, 169
One-dimensional data table,

243–244

P
Parnas, David, 16, 18, 20
Pascal, 8
Pattern repetition, 181
Performance, 32–34

Phrases, 164–165
PICK, 203–204
Planning:

limitations of, 42–45
value of, 40–42

Polya, G., 100
Postfix notation, 111–113
Prefixes, 168
Preliminary Design, 72–95

decomposition by compo-
nent, 72–88

decomposition by sequen-
tial complexity, 88–90

Presuming, 156
Problem-solving techniques, see

also Detailed design,
100–108

Programmable Array Logic (PAL),
119

Programming cycle:
analysis, see Analysis
detailed design, see Detailed

design
implementation, see Imple-

mentation
iterative approach, 39–40
limitations of planning, 42–

45
phases, 38–39
preliminary design/decomposition,

see Preliminary design
value of planning, 40–42

INDEX 402

Prototyping, 31
Pseudocode, 51–52
Purpose comment, 151, 156–

157

Q
Quantization, 63

R
Redesigning to minimize con-

trol structures, 249–
252

Relative loading, 140–143
Requirements, 46
Return stack, 206, 211
Rockwell R65F11 Forth-based

microprocessor, 34
ROLL, 203–204
Roman numeral computation

problem, 122–133
Rule definition, 52–59, 101

S
Sanderson, Dean, 238, 239
Scanning-for, 156
Scheduling, 66–68
Screens, 23

layout, 146–150
load, see Load screens
numbering, 145

Sequential binding, 15

Sequential complexity, decom-
position by, 88–90

Sharing components, 213–215
Simplicity, 60–65, 258–259
Skip commands, 140, 276
Software development cycle,

see Programming cy-
cle

Software elegance, history of,
2–18

abstraction, 3–5
manageability, 5
mnemonics, 2–3
power, 3
structured programming, see

Structured programming
Source-precede-destination syn-

tax rule, 115
Spacing, 149–150, 284
“Spaghetti” programs, 5
Speed, 32
Spelled-out names, 165–166
Stack abbreviation standards,

153, 284–285
Stack effect, 152
Stack notation, 151
Stack picture, 151–152
Stack-effect comment, 150,

152–154
Stacks, see Data stacks
Stamp, 146
Starling, Michael, 43–44

INDEX 403

STATE, 234
State table, 215–219
Stolowitz, Michael, 119
String input, receiving, 156
Structure

superficiality of, 18
Structure chart, 15–16
Structured analysis, 50–51
Structured English, 53–54
Structured exits, 252–254
Structured programming

(modularity), 5–22
characteristics of, 5–9
vs. component program-

ming, 21–22
coupling, 15
functional strength, 14–15
hierarchical input-process-

output designing, 15–
16

information-hiding, 16–18
new view of, 18
premises of, 6
subroutines, 9–12
successive refinement, 12
top-down design, 9
writeability, 8–9

Stuart, LaFarr, 63
Subroutines, 9–12
Successive refinement, 12
Suffixes, 168
Symbols, pronunciation of, 288

Syntax Forth, 110–119

T
Target compilers, 34
Teleska, John, 41–43, 49–50
Terminators vs. counts, 239–

240
Text-follows-names syntax rule,

113
Thesaurus, 164
THRU, 143
Top-down design, 9
Tricks, 242
TRUE, 169, 277
Two-dimensional data table,

244–245
Two-dimensional decision ta-

ble, 245–248

V
VARIABLE, 266
Variable possibilities, notation

of, 153–154
Variables:

global, 210
local, 201–203, 210
problem with, 207–208
saving and restoring states,

210–212
state table, 215–219

Vectored Execution, 219–220
Vectored execution, 90

INDEX 404

Vertical format vs. horizon-
tal format, 159–163

W
Whole-brain thinking, 107
Wirth, Niklaus, 8
WITHIN, 169, 277
Words:

choosing names, 163–168
defining, see Defining words
ordering, 113

Working backwards, 103–104
Working forwards, 103
Writeability, 8–9

Z
Zero-relative numbering, 114–

115

INDEX 405

	Preface to the 2004 Edition
	Acknowledgments for 2004 Edition

	Preface to the 1994 Edition
	Preface
	Acknowledgments

	Contents
	The Philosophy of Forth
	An Armchair History of Software Elegance
	Memorability
	Power
	Abstraction
	Manageability
	Modularity
	Writeability
	Designing from the Top
	Subroutines
	Successive Refinement
	Structured Design
	Functional Strength
	Coupling
	Hierarchical Input-Process-Output Designing
	Information-Hiding

	The Superficiality of Structure
	Looking Back, and Forth
	Implicit Calls
	Implicit Data Passing

	Component Programming
	Hide From Whom?
	Hiding the Construction of Data Structures
	But Is It a High-Level Language?
	The Language of Design
	The Language of Performance
	Speed
	Capability
	Size

	Summary
	References

	Analysis
	The Nine Phases of the Programming Cycle
	The Iterative Approach
	The Value of Planning
	The Limitations of Planning
	The Analysis Phase
	Discovering the Requirements
	Discovering the Constraints
	Building a Conceptual Model of the Solution

	Defining the Interfaces
	Defining the Rules
	Structured English
	The Decision Tree
	The Decision Table

	Defining the Data Structures
	Achieving Simplicity
	Budgeting and Scheduling
	Reviewing the Conceptual Model
	References

	Preliminary Design/Decomposition
	Decomposition by Component
	Example: A Tiny Editor
	Maintaining a Component-based Application
	Designing and Maintaining a Traditional Application
	Change in Plan

	The Interface Component
	A Design Mistake

	Decomposition by Sequential Complexity
	The Limits of Level Thinking
	Where to Begin?
	No Segregation Without Representation
	The Tower of Babble

	Summary
	For Further Thinking

	Detailed Design/Problem Solving
	Problem-Solving Techniques
	Interview with a Software Inventor
	Detailed Design
	Forth Syntax
	Algorithms and Data Structures
	Calculations vs. Data Structures vs. Logic
	Solving a Problem: Computing Roman Numerals
	Data Structure
	Algorithm

	Summary
	References
	For Further Thinking

	Implementation: Elements of Forth Style
	Listing Organization
	Decomposition
	Composition
	Application-load Screen
	Skip Commands
	Chapter-load Screens
	—-> vs. THRU
	An Alternative to Screens: Source in Named Files
	Disk Partitioning
	Electives

	Screen Layout
	Spacing and Indentation

	Comment Conventions
	Stack Notation
	Stack Picture
	Stack Effect
	Stack Effect Comment
	Stack Abbreviation Standards
	Notation of Flags
	Notation of Variable Possibilities
	Data-Structure Comments
	Input-stream Comments
	Purpose Comments
	Comments for Defining Words
	Comments for Compiling Words

	Vertical Format vs. Horizontal Format
	Choosing Names: The Art
	Naming Standards: The Science
	More Tips for Readability
	Summary
	References

	Factoring
	Factoring Techniques
	Factoring Out Data
	Factoring Out Functions
	Factoring Out Code from Within Control Structures
	Factoring Out Control Structures Themselves
	Factoring Out Names
	Factoring Out Functions into Defining Words

	Factoring Criteria
	Compile-Time Factoring
	Compile-Time Factoring through Defining Words

	The Iterative Approach in Implementation
	Summary

	References

	Handling Data: Stacks and States
	The Stylish Stack
	Redesign
	Local Variables
	On PICK and ROLL
	Make Stack Drawings
	Stack Tips

	The Stylish Return Stack
	The Problem With Variables
	Local and Global Variables/Initialization
	Saving and Restoring a State
	Application Stacks
	Sharing Components
	The State Table
	Vectored Execution
	Using DOER/MAKE
	Summary
	References

	Minimizing Control Structures
	What's So Bad about Control Structures?
	How to Eliminate Control Structures
	Using the Dictionary
	Nesting and Combining Conditionals
	Choosing Control Structures
	Case Statements
	Looping Structures
	Calculating Results

	A Note on Tricks
	Using Decision Tables
	One-Dimensional Data Table
	Two-Dimensional Data Table
	Two-Dimensional Decision Table

	Decision Tables for Speed
	Redesigning
	Using Structured Exits
	Employing Good Timing
	Simplifying

	Summary
	References
	For Further Thinking

	Forth's Effect on Thinking
	Overview of Forth (For Newcomers)
	The Dictionary
	Data Structures
	The Stack
	Control Structures
	For the Whole Story

	Defining DOER/MAKE
	Other Utilities Described in This Book
	From Chapter Four
	From Chapter Five
	From Chapter Eight

	Answers to "Further Thinking" Problems
	Chapter Three
	Chapter Four
	Chapter Eight

	Summary of Style Conventions
	Spacing and Indentation Guidelines
	Stack-Comment Abbreviations
	Input-Stream Comment Designations
	Samples of Good Commenting Style
	Naming Conventions

	Index

